Australian Government
Forest and Wood Products Research and Development Corporation

Moisture variation in dried hardwood timber

© 2004 Forest \& Wood Products Research \& Development Corporation All rights reserved.

Publication: Moisture Variation in Dried Hardwood Timber

The Forest and Wood Products Research and Development Corporation ("FWPRDC") makes no warranties or assurances with respect to this publication including merchantability, fitness for purpose or otherwise. FWPRDC and all persons associated with it exclude all liability (including liability for negligence) in relation to any opinion, advice or information contained in this publication or for any consequences arising from the use of such opinion, advice or information.
This work is copyright and protected under the Copyright Act 1968 (Cth). All material except the FWPRDC logo may be reproduced in whole or in part, provided that it is not sold or used for commercial benefit and its source (Forest and Wood Products Research and Development Corporation) is acknowledged. Reproduction or copying for other purposes, which is strictly reserved only for the owner or licensee of copyright under the Copyright Act, is prohibited without the prior written consent of the Forest and Wood Products Research and Development Corporation.

Project no: PN01.1305

Researchers:

A. Redman

Formerly: QFRI - Processing \& Utilisation
Queensland Forestry Research Institute
GPO Box 46, Brisbane, Qld 4001
Currently: CSIRO Forestry and Forest Products
Private Bag 10, Clayton South, VIC 3169

Forest and Wood Products Research and Development Corporation
PO Box 69, World Trade Centre, Victoria 8005
Phone: 0396147544 Fax: 0396146822 Email: info@fwprdc.org.au
Web: www.fwprdc.org.au

Moisture Variation in
 Dried Hardwood Timber

Prepared for the
Forest \& Wood Products Research \& Development Corporation

by
A. Redman

The FWPRDC is jointly funded by the Australian forest and wood products industry and the Australian Government.

Introduction

This was a joint project of the Timber Research Unit (TRU) of the University of Tasmania and the Queensland Forest Research Institute (QFRI). It was supported by the Tasmanian Forests and Forest Industry Council (FFIC), and many of Australia's major hardwood producers including Hume and Kerrison, Hyne \& Son, Clennett Timbers, Hurfords Hardwoods and J. Notaras \& Sons.

This project was nominated by the Australian hardwood timber industry and therefore demonstrates that the desired outcomes should be directly beneficial to this sector. The focus of the Australian hardwood timber industry is currently moving from producing predominantly structural grade products to appearance grade products. This is due to increased demand for appearance grade timber for products such as flooring and furniture, increasing competition in the structural timber market from softwoods and non-timber products and expanding export markets.

The objectives of this project were to:

1. Understand why moisture gradients occur in Australian hardwoods during drying and their affects on the performance of timber in service;
2. Improve existing technology(ies) and/or processes to reduce moisture content (MC) variability between and within boards during drying of Australian hardwoods in an economical and practical manner.

The equilibrium moisture content (EMC) tolerances for appearance grade timbers are more demanding than those for structural grade timbers due to performance requirements, as is reflected in the grade quality requirements. Varying MC within and between pieces leads to problems in timber utilisation, mainly through shrinkage and instability. Eucalypts are regarded as being notorious for exhibiting problems with MC variation and this problem is a significant threat to the successful marketing of Australian hardwoods in markets such as flooring, joinery and furniture. Additionally, problems with MC variation are regarded as a serious impediment to the drying of hardwoods.

Anecdotally it is reported that the problems are more pronounced in younger plantation and regrowth material. Increasing pressure to produce appearance grade products, where there is reduced tolerance of moisture variation in the relevant standards, compounds the problem. As a direct result of this, the increased incidence of MC related problems in the marketplace has in turn led to an increase in the number of consumer claims against timber processors. Additionally, moisture variation in hardwood timber during drying increases production costs because of the longer kiln drying time required to produce more uniformly dried timber.

Therefore, the importance of identifying problematic species, establishing causal factors and their affect on service performance and investigation of potential economically viable solutions would be of great benefit to the current hardwood timber industry.

Originally this project had a two-year time span. However due to the unexpected nature of the results obtained the project has been terminated, after approximately one year, under unanimous agreement between FWPRDC, QFRI, TRU and other industry collaborators. The section of research covered in this document involves an intensive case study by QFRI at Hurfords Building Supplies Pty. Ltd. (NSW) to identify the cause of MC variation and its effect on the performance of timber in service. Additionally, dry stock appraisal studies were performed at Clennett Timber, Hume and Kerrison, Hurfords Building Supplies, Hyne \& Son and J. Notaras \& Sons mills.

Executive Summary

This project comprised two parts. The first involved an extensive study conducted at Hurfords Building Supplies sawmill to investigate the cause of the moisture variation problem. The second concerned the determination of the extent of the problem's occurrence through appraisals of randomly selected dried stock at various industrial hardwood sawmills.

The case study at Hurfords Building Supplies was performed predominately to examine appropriate variables of regrowth spotted gum (E. maculata) from the harvest site to the final dried product in order to obtain problematic material and thus establish the cause of the problem. The variables examined in this study were: coupe location; board location within a log; moisture content (MC) of boards before and after pre-drying; location of board within a stack; kiln airflow and temperature distribution during drying; and board length and sawn (growth ring) orientation. Each variable was considered a potential cause of the moisture variation problem. They were measured with the premise of determining if a correlation exists between any of the variables, and the final MC of problematic material selected at the end of the trial.

Initially, approximately $1350100 \times 25 \mathrm{~mm}$ (nominal dimension) were sawn from a selection of logs from 4 different coupes. Approximately half of the boards contained templates adhered to their ends to identify their within log position. The boards were racked and left in the air-drying yard to dry to an average MC of 19%. The timber is usually dried to a lower average MC but it was believed that this higher MC would exacerbate the variation problem. The material was then kiln dried. Temperature and airflow tests at the stack face proved to be stable with little variation. After kiln drying and equalising to a target MC of 11%, the MC of each board was tested using a resistance type moisture meter.

Results at this stage revealed that MC values for the entire set of boards ranged from 8% to 16%. The 50 wettest, 50 driest and 50 boards with MCs closest to the target (control boards) were selected and tested for MC at 500 mm intervals using the more accurate oven dry method (in accordance with AS/NZS 1080.1). This revealed the MC variation of the selected material to be even less, ranging from 9.2% to 12.8%. For the number of boards and associated variables used in this study these results, did not produce any problematic moisture variable material to be used for further research.

This second part of this project involved dry stock appraisals conducted at, Clennett Timber (Tas), Hume and Kerrison Pty. Ltd. (Tas), Hurfords Building Supplies Pty. Ltd. (NSW), J. Notaras \& Sons Pty. Ltd. (NSW), Hyne \& Son Pty. Ltd. (QLD). The two highest output volume species of timber were appraised for each sawmill, concentrating on high grade joinery and flooring material. The species investigated were E. delegatensis, E. pilularis, E. regnans, and Corymbia maculata.

The appraisals themselves involved measurements of both average MC and MC gradient from a subset (in accordance with AS/NZ 4787). Results from the dry stock appraisals indicated that a moisture variation problem did exist. Additionally, further questions have been raised relating drying practice to the problem, indicating that timber properties are not necessarily the underlining cause as initially believed.

As the results obtained from the mill study section of this research prevented further investigations, through consensus from the industry stakeholders, FWPRDC, University of Tasmania and QFRI, the project was terminated after approximately one year. The results from this study have however, broadened our knowledge of the moisture variation and have changed the scope for further investigations into the problem.

Contents

Introduction i
Executive Summary ii
Chapter 1 Literature Review 1
Chapter 2 Sawmill Study 9
Chapter 3. Dry Stock Appraisals 22
Recommendations for Further Work 26
References 28
Appendix A. Survey Meeting Minutes - Hurfords 30
Appendix B Mill Study Data 31
Appendix C Dry Stock Appraisal Data 51

Chapter 1. Literature Review

The objective of timber drying, simply stated, is to remove moisture from a board as quickly as possible without an unacceptable amount of degrade. Inherent in the terms "moisture removal" is the concept of changing the moisture level from some initial, often variable, value to a lower level or range that is dictated by either standards or customer requirements. Generally, this end point moisture content value is specified to be within a certain range of values and is dictated by the atmospheric conditions of the end use location so that it is close to the equilibrium moisture content of the timber. Occasionally, problematic boards occur after drying which are wetter or drier than the average and which are not believed to be due to drying practices. Thus, a review of previous literature was conducted to explore potential reasons for the occurrence of this phenomenon.

Equilibrium Moisture Content (EMC) \& EMC Charts

The equilibrium moisture content (EMC) of timber is the moisture content (MC), at which the timber neither gains nor loses moisture from the surrounding atmosphere. The EMC varies to some extent with seasonal changes and, for practical purposes, an EMC range is normally quoted for a particular locality. Subsequent shrinkage or expansion will be minimal when timber is used at a MC within the quoted EMC range (McNaught, 1987).

The atmospheric variables that affect the EMC of timber include: the surrounding temperature, relative humidity (RH) and atmospheric pressure. Of these, the one that has by far the largest influence is RH. RH is defined as a measure of the amount of water vapour in the air at any particular temperature, expressed as a percentage of the vapour that can be carried by the air when it is saturated at that temperature.

The term isotherm is defined as a graphical line or map connecting temperature to other variables. This data is often presented as a chart or table made up of a number of isotherms relating dry bulb temperature, wet bulb depression, RH and corresponding EMC values. The chart most commonly used in the timber industry in Australia was created by CSIRO and is presented in figure 1.1. It is also reproduced in Waterson (1997).

This chart has significant importance for the timber industry in terms of creating drying schedules and determining the best conditions to give end point MCs corresponding to atmospheric EMC conditions.

Figure 1.1 - Equilibrium Moisture Content (EMC) chart

Wood Hygroscopicity

The term hygroscopic describes a material's tendency to absorb moisture from the air. Wood, by nature, is hygroscopic as it is able to absorb (adsorption) and expel (desorption) water to the surrounding environment depending on atmospheric conditions. The following is an account of the interactions that take place between the wood substance and water during moisture flow.

The cell wall of wood microstructure is organised as a structural system involving filamentous microfibrils, mostly cellulosic and crystalline in composition, and orientated essentially in the direction of the longitudinal axis, embedded in an amorphous matrix of noncrystalline cellulose, hemicelluloses, and lignin (Wangaard, 1979). The molecules of the amorphous regions, primarily because of -OH groups in their structure, are all capable of forming hydrogen bonds. Unlike the close-packed cellulose chains in the crystal lattice within the microfibrils, they are accessible to water molecules through diffusion from the surrounding atmosphere. Water molecules themselves are highly susceptible to hydrogen bonding. The intermolecular hydrogen bond that develops between them when a water molecule approaches within 0.3 nm (Wangaard, 1979) of the attractive site on the polymer is the basis for the hygroscopicity of wood. The adsorbed water is "bound" to molecular surfaces within the polymer matrix which expands in proportion to the quantity of water adsorbed. The microfibrillar network is distended, and the wood swells.

The range of hygroscopic activity is limited to the range of equilibria between bound water and water vapour below the fibre saturation point. Above fibre saturation, the fully swollen cell wall can take up no more water. Consequently, at this point all MC change occurs through the addition or subtraction of "free" water held in the cell cavities.

Potential Causes and Theories Relating to moisture variation

A number of factors have been previously researched and related to the cause of moisture variation. Chafe (1991) states that factors which can affect the EMC of timber (as researched by others) include the desorption-adsorption hysteresis effect, temperature, previous drying history, stress, species and wood extractives. The following is an account of previous research regarding these factors. In addition, there are factors that do not affect the EMC but influence the drying rate of a particular board. These can cause affected boards to be at a different MC to others in a stack at the end of drying.

1.3.1. Moisture Sorption Hysteresis in Wood

The term hysteresis is derived from the Greek word hysterein, which means to "lag behind" (Skaar, 1979). The term was initially used to describe the observed lag in magnetisation of ferromagnetic material subjected to varying magnetic fields.

Hygroscopic materials such as wood also exhibit an analogous phenomenon to magnetic hysteresis, known as moisture sorption hysteresis. This refers to the lag or reduction in the sorption isotherm of EMC of wood against RH, compared with its EMC when it desorbs or loses moisture. Figures 1.2 and 1.3, respectively, show hypothetical adsorption and desorption isotherms and the approach to desorption and adsorption equilibrium with increasing time (figures extracted from Skaar, 1979).

Figure A2 - Hysteresis- (Humidity)

Figure A3 - Hysteresis (Time)

Kadir et al. (2001) studied the effect of different sample size and grain configuration on the EMC of red oak. Microtome slices and cross sections of increasing dimension parallel to the grain where sampled from both backsawn and quartersawn boards. The samples achieved constant weight in a steady state air environment of $43.3^{\circ} \mathrm{C}$ dry bulb temperature and $84 \% \mathrm{RH}$. Matched batches were then created from the samples and one batch was desorbed from green while the other was adsorbed from the oven dry condition. Results showed a significant effect of sample type upon the EMC's. The greater the dimension of the cross section along the grain, the higher the desorption MC and the lower the adsorption MC. Back sawn cross sections consistently equilibrated to a higher MC for desorption than did quartersawn, while for adsorption the reverse was true. Microtome slices equilibrated to a higher MC for adsorption than for desorption. It was concluded that the overall results provide empirical evidence of stress relating to hysteresis.

Campean, Ispas et al. (1999) investigated adsorption/desorption hysteresis on a selection of timber species. The results of this study showed that the speed of desorption is much higher than for adsorption. The difference between the adsorption and desorption EMCs (hysteresis) differed between species. The highest value recorded was 10% MC ($\pm 5 \%$) for beech.

1.3.2. Theories of Sorption Hysteresis

Several theories have been proposed for explaining sorption hysteresis. The following is a summary of these theories cited in Skaar (1979).

1.3.2.1. Capillary Theories

The earlier theories were based on the assumption that moisture sorption was primarily through capillary forces within the tiny interstices in the wood cell wall. The earliest capillary theory produced in 1911 postulated that hysteresis was caused primarily by the lower contact angle of water within these cell wall capillaries during adsorption rather than desorption. This theory was useful in explaining sorption hysteresis at high humidities but not at low humidities.

Another capillary theory was proposed in 1949 and termed the "ink bottle" theory. According to this theory, capillaries are not of even taper, but contain constrictions. During adsorption the capillaries will gradually fill from the smaller to the larger spaces. However, during desorption some of the water in the larger spaces between the narrower "bottlenecks" will tend to be trapped at lower vapour pressures, in equilibrium with those lower vapour pressures. Again this theory does not explain the sorption hysteresis occurring at lower humidities.

1.3.2.2. Sorption Site Availability Theory

This theory of sorption hysteresis is generally thought most accurate. It is based on the reduction in the availability of hydroxyl sorption sites in wood which is absorbing moisture after having been dried. These hydroxyl groups are believed to be the primary, though not necessarily the only, sorption sites for the attachment of water molecules in the accessible regions of the cell wall.

In green wood, according to this concept, the hydroxyl groups are attached to water molecules. When the wood dries some of the hydroxyl groups are freed from the attached water molecules and mutually bond to each other as they draw closer due to shrinkage. When water is regained or adsorbed, some of the hydroxyl groups are no longer easily available to bond with water molecules. This results in less adsorption of water at a given humidity compared with the initial desorption.

As humidity increases still further, and additional water is taken up, the swelling pressures tend to break some of the hydroxyl-hydroxyl bonds, freeing some but not all of the originally water bonded hydroxyl groups or sorption sites. These are then available to be rehydrated or to absorb water molecules. During subsequent or secondary desorption the EMC is therefore higher than for absorption. However, it is generally lower than during initial desorption from the green condition, particularly at higher humidities, presumably because some of the bonds, which formed between hydroxyl groups during initial desorption, are not broken. The process repeats itself during subsequent cycling of the relative humidity, forming a more or less repetitive hysteresis loop.

1.3.2.3. Thermodynamic Hysteresis Theory

The previous theories for describing sorption hysteresis are mechanistic as they postulate one or more specific mechanisms. The Thermodynamic Hysteresis Theory is a more general theory based on thermodynamic considerations only.

It is common knowledge that wood and other hygroscopic materials exhibit plastic or inelastic behaviour when subjected to mechanical stresses. This behaviour results in the familiar
hysteresis loop in the stress-strain diagram of wood and other completely inelastic materials. The thermodynamic hysteresis theory builds on the above concepts, where the hysteresis is explained as being caused by stress effects on the sorption isotherms of hygroscopic materials such as wood.

1.3.3. Extractives

Extractives are intermediate between wood substance and water in molecular weight and range widely in water solubility and volatility. In terms of their action in, or influence on sorption, extractives are difficult to classify as to being either adsorbent or adsorbate (an adsorbing substance or a substance that is adsorbed). Extractives complicate the drying, gluing and finishing of wood, however some timbers with a high extractive content are reported to be more durable and stable (Spalt, 1979). Spalt (1979) suggested that previous work uncovered extractive-related problems in the kiln drying of these woods, especially at higher kiln operating temperatures which are now coming into wider use.

1.3.3.1. Formation and Classification

The following has been summarised from Spalt (1979).
The formation of extractives is closely associated with the transition of sapwood to heartwood. Starch and sugars stored in xylem ray and parenchyma cells are believed to be the raw materials for extractive production. At the sapwood-heartwood boundary, starch and sugars disappear and respiration rates increase. As the heartwood is approached from the sapwood, dark coloured globules that have formed and migrated to the semi-permeable cell membrane appear in the ray cells. In obligate heartwood species (those subject to the following condition) the death and disappearance of the membrane enables the extractives to migrate from the ray cells into adjoining xylem cells where they are deposited in cell lumen and infiltrate pits and cell walls. Some of these substances undergo condensation reactions that increase their molecular weight and modify their solubility and mobility.

The extractives in wood that are found in the cell wall in the greatest quantities are the polyphenols. These are primarily lignans, stilbenes, flavanoids and tannins. These substances are biosynthesised and condensed along pathways similar to lignin, and seem to have much in common with the infiltration and molecular weight building processes that lead to lignification. Deposition of the extractives into intermolecular cell wall spaces occurs when the cell wall is highly dispersed by water. Upon subsequent drying when cell wall density, strength and stability are developed, the non-volatile extractives remain as a permanent adsorbate that retains the cell wall in a partially swollen state. This phenomenon has been commonly labelled as bulking of the cell wall.

1.3.3.2. Effects of Extractives on Timber Properties

Previous research has shown that extractives can dramatically affect the water-vapour sorption of wood

The role of extractives in monomolecular sorption was presented by Soriano and Evans (1997). It was stated that in sorption and shrinkage studies of six Argentine woods, two species namely: Schinopsis balansae (Quebracho colorado santiagueno) and Hymenaea courbaril (Algarrobo blanco) were observed to have relatively low EMCs at 97% RH. It was found that high tannin contents displace void volume in wood, resulting in low EMCs. This indicated that in this case the extractives occupied bonding sites usually occupied by water, thus have a bulking effect.

Similarly studies have shown that the fiber saturation point of once-dried black walnut decreased from 31% in the unextracted condition to 28% after removal of hot water-soluble exractives. This led to the conclusion that the extractives in black walnut are more hygroscopic than the cell wall and that water bound by extractives is absorbed to a greater extent than water in the cell walls. Soriano and Evans (1997) state, 'In most sorption studies reported, differences in sorption
behaviour are often attributed to the bulking effect and the hygroscopicity of extractives compared to other cell wall components. Furthermore the effect of extractives has been deduced from sorption isotherms fitted using known sorption equations based on the concept of continuous layering of sorbed water on active surfaces.' Theoretical studies of selective sorption, however, point out strongly that sorption of water is selective of sorption sites, and the progression of sorption with increasing RH remains selective as well.

All previous extractive versus EMC research, as cited by Spalt (1979), indicate a reduction in the EMC values of wood samples which have had a significant percentage of extractives removed compared with unextracted control samples. Various methods of extracting extractives were used including soaking in benzene alcohol, and flushing with hot or cold water.

Spalt (1979) also cited that extractive levels were generally inversely proportional to shrinkage levels. This can be attributed to the bulking nature of the extractives.

The extractive properties themselves can change with temperature and hence change the overall wood properties. For instance, at ambient temperatures extractives act as relatively benign lowvolatile adsorbates in the cell wall which displace water in larger voids. At temperatures above approximately $50^{\circ} \mathrm{C}$ (Spalt, 1979), the extractives in moist wood appear to become more active absorbates that move in response to concentration gradients. In this way, they may participate in sorption and increase the overall shrinkage. As a mobile material, extractives may also serve to plasticise the cell wall, especially in desorption. The added plasticity may reduce warp related defects in kiln drying but may exacerbate collapse (Spalt, 1979).

1.3.4. Species

Predictions of the expected EMC for timber are frequently made by reference to published EMC charts for relative humidity versus temperature, which often give values founded on amalgamated data for a number of species. When applying such charts to specific species, discrepancies can be substantial (Ahmet, Dai et al., 1999).

Ahmet, Dai et al. (1999) previously demonstrated that the EMC for a wide range of species, conditioned in the same environment, could vary substantially. As an example, in one investigation MCs spanned 12.8 to 21% after conditioning at 85% relative humidity, at a temperature of $20^{\circ} \mathrm{C}$.

Ahmet, Dai et al. (1999) produced individual sets of EMC values for three commercially important species for interior use in the UK. The purpose of this work was to provide a powerful diagnostic tool for both specifiers and consumers in investigations of mis-supply or mismatching of MC and service conditions. As part of this experiment a pilot study was performed to investigate the following issues: 1) the effect of sample size on EMC for a given condition; 2) the influence of drying history on the final EMC; and 3) whether observable differences occur in the final EMC between samples conditioned in large commercial environmental cabinets and those conditioned in small-scale chambers containing saturated salt solutions.

The results of the pilot study indicated that systematic differences resulting from drying history (air and kiln drying) and sample size were observed. The differences in drying history were very small and not significant. The differences in EMC values in varying sample sizes was explained by the substantial differences in the ratio of surface area to sample volume. Inconsistencies between the commercial built chambers and the prototypes were negligible. The three species used in the preliminary experiments all showed consistent variations in EMC from the commonly used RH versus temperature chart over a range of RH used.

Wengert and Mitchell (1979) suggest that although the proportion of hemicellulose, holocelulose, and lignin may slightly influence the sorption behaviour between species, extractive levels cause much of the variation.

Previous research has shown that internal and external stresses can affect the MC of wood at equilibrium. Simpson (1971), by inducing either compressive or tensile forces in red oak samples proved conclusively that MC decreases when wood is compressed and increased when wood is subjected to tension. The rate of MC per unit stress was greater for specimens loaded in tension than those loaded in compression, and the effect of stress induced moisture change was more pronounced in the tangential direction than in the radial direction.

Stress effects are not necessarily confined to external stresses. Stresses can result from internal factors such as moisture gradients, which, if severe enough during drying will result in casehardened timber. Microscopic tissue anisotropy due to a) rays and differences between earlywood and latewood, b) fibril orientation differences in the S1 and S3 layers compared to the S2 layer, and c) interfibril bonds which limit swelling between fibril, also result in causing internal stresses.

1.3.6. Specific Gravity

Research conducted by Chafe (1991) show that a relationship also exists between wood specific gravity and EMC. An examination of wood blocks and thin sections of Eucalyptus regnans (mountain ash) showed that for each of three nominal EMC's (17\%, 12\%, 5\%) actual MC was positively related to specific gravity.

1.3.7. Temperature

A number of researchers (as cited in Wengert and Mitchell, 1979) have reported the suppressive effect that exposure to high temperatures for lengthy periods of time has on wood EMC. Studies have been undertaken on the physical and mechanical properties of high temperature dried wood that indicate the reduction in EMC through high temperature drying is of the same magnitude. The reduction is approximately between 0.5 to 3 percent compared with conventional temperature kiln drying and between 1 to 5 percent when compared to air drying (Wengert and Mitchell, 1979). The magnitude of reduction is affected primarily by species, schedule, initial MC before equalisation and extractive content.

The most widely used explanation for the thermal reduced reduction in hyroscopicity is the hydrolysis reaction in the degradation of the hemicellulose that results in the reduction of sorption sites. Other explanations have been offered such as the MC reduction due to large drying stresses created during high temperature drying, or the hysteresis effect created in the high temperature kiln.

Kubinsky and Ifju (1974) studied the effect of steaming on wood properties of red oak. The material was converted into 24 mm cubes and steamed at atmospheric pressure for various lengths of time, ranging from $1-1 / 2$ to 96 hours. The steaming process lowered the EMC of the samples. This was attributed to a decreased bulking effect due to the reduction of extractive levels, and to a more mutual bonding of OH -groups.

1.3.8. Mechanical

Mechanical treatments refer to the mechanical breakdown of solid wood. As the wood is broken down, it becomes slightly more absorptive. This may be due to a mechanical breakdown of the crystallinity of the fibres (Wengert and Mitchell, 1979).

1.3.9. Chemical

Chemical treatments can affect wood and its sorption properties in many ways and by modifying the extractives and/or cellulose constituents.

1.3.10.Radiation

The effect of gamma radiation on Sitka spruce wood shows a distinct decrease in hygroscopicity (in the order of 1 to 2% with a radiation of 10^{8} rads) (Paton and Hearmon, 1957).

Chapter 2. Mill Study

Introduction

An extensive study at Hurfords Building Supplies sawmill was conducted to investigate the cause of the moisture variation problem. According to the managers of Hurfords Building Supplies (NSW) Pty. Ltd., large variations in MC at equilibrium occur in regrowth spotted gum (Corymbia maculata) after final drying. Hurfords management believe the problem is not caused by poor practices or inadequate kiln control. They suggest that the problem is more likely to be a function of inherent properties of the resource and refer to examples of timber of the same species equilibrating to a final moisture content very different to other timbers of the same species. Minutes from discussions with Hurfords management are provided in Appendix A.

The case study at this mill was performed predominantly to examine appropriate variables of regrowth spotted gum, from the log to final dried product, in order to obtain problematic material and thus establish the cause (and extent) of the problem. The variables examined in this study were:

- Coupe location,
- board location within a log,
- MC of boards before and after pre-drying,
- MC of boards after kiln drying,
- location of board within a stack,
- Airflow and temperature distribution during kiln drying.
- Board length.
- Sawn orientation

Trial Methodology

Sourcing and Tagging of Logs

Forty-five regrowth spotted gum logs were segregated in the log yard into four groups pertaining to different coupe locations. The four locations were from surrounding areas of Northern NSW, namely: two coupes side by side at Woodburn, one coupe at Banyabba, and one coupe at Tarre/Kiwarrka.

Each log was cross cut into two to three billets depending on log quality and size. Operational staff at Hurfords, performed this task, as per their standard procedures.

Three logs from each group (twelve logs) were chosen for tagging with specially designed end tags used to determine board location within a log after processing. Each billet from each log was also tagged at both ends. These tags are made of paper and are adhered to clean-cut ends of logs using Boncrete ${ }^{\text {TM }}$ glue. Care must be taken to ensure that the tags do not become wet during the curing of the glue, which takes approximately two days depending on weather conditions. The tags themselves contain a printed pattern of labelled concentric circles spaced 10 mm apart with labelled radial lines spaced 10° apart (see figures 2.1 and 2.2). The tags are
paired, having the same identification number but with different symbols (^ and @), so that the top end and butt end of the log/board, in relation to the tree, can be recognised. All labels and symbols are located on the template in such a way that each board sawn from the tagged logs are easily identified in terms of radial, tangential and longitudinal (in terms of top and butt) position, and specific log number. The templates were adhered to each log so that the centre of the concentric circles were placed over the pith and the 0° radial lines of the top and butt templates were orientated along the same longitudinal plane of the log.

Figure 2.1 - Log tags

Figure 2.2 - Tagged billets

The remaining logs billets were colour coded on each end using four different coloured spray paints denoting each of the four coupe locations (see figure 2.3).

Figure 2.3 - Colour tagged logs.

Sawing, Stacking and Pre-Air Dry Analysis

Each billet was converted into predominantly back sawn boards of nominal (does not include overcut) dimension $100 \times 25 \mathrm{~mm}$ using Hurford's standard log conversion procedures for the production of flooring boards. Flooring boards were targeted in this study for the following two reasons.

1. The occurrence of complaints concerning unacceptable variations in MC of this finished product is the greatest, and
2. The final stage of this study involves using a resistance type moisture meter to measure MC on one face of all of boards utilised leaving unsightly holes. Therefore the board face that has not been tested can be dressed as the top face and still be used for flooring. The ends of the billets were not docked during conversion in order to maintain the identity of the sawn boards via either the end tags, or coloured markings.

The boards were blocked packed off the green chain and were immunised (boron) against insect attack in a pressurised treatment vessel.

The boards were then stripped into four racks with approximate dimensions of $6 \mathrm{~m} \times 1.8 \mathrm{~m}$ (wide) x 1 m (high). The four racks consisted of a total of 1351 boards. During stripping each board was individually weighed (see figure 2.4) to extrapolate approximate initial average MC of each board from actual MC measurements conducted after kiln drying. Two sample boards (one each side) were included within each rack to monitor MC during kiln and air-drying in order to determine the transition between air and kiln drying and the kiln drying end point. During stripping each board was individually numbered and the position of each board within the stack was noted. The racks were stacked (see figure 2.5) and placed in the air-drying yard.

Figure 2.4 - Weighing boards during racking

Figure 2.5 - Completed stack ready for air-drying

Air Drying

The mill staff periodically monitored the sample board weights to determine when kiln drying should begin. In accordance with the air/kiln dry schedule, provided by Hurfords, this should occur when the average MC of the sample boards reaches approximately 15-20\%. According to the Hurfords management greater variation in MC after final drying occurs when kiln drying begins at an average MC of 18-20\%. Therefore, an MC value of 19% was chosen as the target air-drying end point MC, so as to exacerbate MC variation and provide an adequate number of samples for further analysis. After air-drying for approximately nine weeks, the material was deemed ready for kiln-drying based on the sample board MCs.

Before kiln drying each rack was de-stripped and approximately half of the boards were reweighed to determine MC after air-drying. Only half of the boards were weighed at this stage due to time constraints. As approximately half of the material consisted of template tagged boards and it was to be these boards that the most in-depth analysis was to be undertaken on they were targeted for weighing.. The boards were re-stripped to their original positions within each rack. The racks were restacked in the same order as used during air-drying (see figure 2.5) and placed in the kiln.

Kiln Drying

The kiln used was an Incomac™ conventional drying kiln. The entire charge consisted of four stacks, each stack consisting of four racks. The four stacks were orientated two deep \times two wide. The kiln load consisted of the research stack plus three other air-dried stacks of similar spotted gum flooring material. Figures 2.6 and 2.7 show the kiln at various stages of loading.

Figure 2.6 - Research stack

Figure 2.7 - Full kiln charge

Prior to starting the kiln, air velocity uniformity was measured using an anemometer. The air velocity was set to $2 \mathrm{~m} / \mathrm{s}$ as determined by the kiln-drying schedule used by Hurfords. Over a 2dimensional grid, the measurements were taken at various locations on one face of the research stack as air was expelled from this face. The measurements were taken at 7 evenly spaced locations in the horizontal direction and at 7 locations in the vertical direction, making a total of 49 measurements for each individual rack. Air velocity measurements were also taken between the stacks (bearer gluts).

A series of eight thermocouples were placed on one face of the stack 1.5 m in from each end of each rack (see figure 2.8). This allowed real time measurements of temperature distribution vertically and horizontally at the stack face throughout the entire kiln drying process. The temperatures were measured at 15 minute intervals.

Figure 2.8 - Thermocouple

The kiln schedule used is given in table 2.1.
Table 2.1 - Kiln schedule

Time (hrs)	Temp (deg C)	RH\%
2	35	60
3	40	60
5	45	60
7	50	60
9	50	57
11	55	57
17	56	53
29	60	52
41	60	49
65	65	43
105	65	35
106	63	45
107	63	58
108	63	64
110	63	68
114	65	73
132	65	70
144	55	68
150	52	65

After 105 hours, an equalisation period at an approximate EMC of 11% was performed for 45hours.

Identification of over dry and under dry timber after kiln drying

Abstract

After kiln drying and subsequent equalisation (to $11 \% \mathrm{MC}$) was complete, the rack was destripped and every board tested for average MC. During this process a calibrated resistance type moisture meter was used to determine the average MC of each board. The measurements were taken at a point in the centre of each board at a depth of approximately $1 / 3$ the thickness, in accordance with AS/NZ 4787:2001 -Timber-assessment of drying quality. Each board was reweighed again for the purpose of extrapolating the MC of the boards before air and kiln drying using the previous board weights measured.

Over dry or under dry boards were then selected by the deviation of the average MCs from the expected EMC of the charge (11\%). Fifty boards with the highest positive MC deviation and 50 boards with the lowest deviation were segregated from the original boards. Additionally 50 boards with the lowest level of MC deviation were segregated as control boards.

Finally, the selected boards were block stacked, wrapped in impermeable plastic and transported to Queensland Forestry Research Institute - Salisbury Research Centre, Queensland for further testing.

Testing of selected material

Each board selected was tested for average MC at varying positions along the length using the oven dry testing method, in accordance with AS/NZS 1080.1 - Methods of test - TimberMoisture content. A 400 mm length section was cut from the end of each board and discarded to negate the effects of end drying. Each board was then cut into 550 mm length sections, a 25 mm length sections was then cut from each end to calculate average MC using the oven dry method. The MC of each 500 mm length section was calculated as the average MC of the two 25 mm section cut from each end. Each 500 mm length section was appropriately labelled with the original board number consecutively appended with a,b,c etc. As the original board length varied (dependent on the original billet size) differing numbers of 500 mm length sections were produced from each board.

Additional board attributes were measured during board dissection, namely; original board length, sawing orientation (back sawn, quarter sawn or transitional) and centre reference point at top and butt ends of boards (originating from templated billets).

Each of the 500 mm length sections were end coated with sealant and re-wrapped in impermeable plastic for further testing. However, due to the nature of the MC results obtained from the 25 mm sections, further testing was terminated.

Results

2.3.1 Sawing, Stacking \& Air Drying

Approximately the same volume of logs was sawn from each of the four coupe locations for the trial. Table 2.2 shows the percentage of boards from each location used in this trial. Both, the ratio of the total number of boards and the ratio of tagged boards (converted from tagged logs) are given.

Table 2.2

	Total Boards		Tagged Boards		
Coup	\# Boards	\% Total	\# Boards	\% Total	
Woodburn1	154	12	117	23	
Woodburn2	550	41	141	28	
Banyabba	296	22	121	24	
Tarre	332	25	124	25	
Total	1332		503		

The data shows that relatively even proportions of tagged boards were included in this study, even though 41% of all of the boards used were from the Woodburn1 coupe and only 12% came from the Woodburn2 coupe. This was because the volume of timber converted from each coupe exceeded the amount required for the actual trial. When the material was racked, the most convenient material was removed form the block packs first and so material from the Woodburn1 coupe was predominantly left over. An exception to this rule was the tagged boards, which were all used, hence the even coupe proportions

The air drying phase of this trial took approximately 68 days. The initial and final average MC of the sample boards were 47.6% and 19.1%, respectively. The air drying period was slower than expected due to a two week period of constant rain.

The kiln drying process took approximately 6.25 days including equalisation.

2.3.2 Kiln Conditions

1.3.2.4. Air Velocity

The air velocity was set to $2 \mathrm{~m} / \mathrm{s}$ using the PC kiln control unit. Measurements were taken over a two-dimensional grid at various locations on one face of the research stack as air was expelled from this face.

The measurement results are given in appendix B, section B.2.1, where rack numbers are sequential, i.e. rack1 denotes the top rack (nearest the roof of the kiln), and rack 4 denotes the bottom rack. Table 2.3 contains the average air velocity values for each stack, the total average, maximum and minimum values recorded. Figures 2.9-2.12 graphically illustrate the air velocity measurements as a two-dimensional grid.

Table 2.3 - Air velocity results

	Average Air flow Values		
	Average	Minimum	Maximum
Rack1	1.8	1.3	2.3
Rack2	1.8	1.0	2.4
Rack3	1.9	1.5	2.6
Rack4	1.9	1.3	2.3
Total	1.8		

The average air velocity results for each rack are comparatively consistent with an average value of $1.8 \mathrm{~m} / \mathrm{s}$ over the entire rack face (excluding gluts). This is 10% below the set value of $2 \mathrm{~m} / \mathrm{s}$ but is very accurate for a kiln of this size.

The minimum and maximum values recorded seem to indicate quite large variations, however the air velocity maps (figures 2.9-2.12) show that the lower values recorded occur predominantly at the rack edges where baffling is rarely perfect. Overall the airflow results show good uniformity for each rack in both the horizontal and vertical directions.

Figure 2.9 - Air Velocity Map Rack 1

Figure 2.11 - Air Velocity Map Rack 3

Figure 2.10 - Air Velocity Map Rack 2

Figure 2.12 - Air Velocity Map Rack 4

1.3.2.5. Temperature

Figure 2.13 is a temperature versus time graph of these real time thermocouple temperatures. Appendix B.2.2 contains the thermocouple data used to produce this graph.

Figure 2.13 - Thermocouple temperature graph

The resulting graph indicates that the temperature variation through the research stack was consistent both vertically and horizontally. The maximum difference recorded between thermocouples was approximately $3^{\circ} \mathrm{C}$. This is insignificant for a kiln of this size. The spikes shown on the graph represent either fan reversals or kiln openings during periodic measurement of sample board weights.

2.3.3 Moisture Content (Moisture Meter)

Using a calibrated resistance type moisture meter, the corrected (for temperature and species) MC of each board used in this study was measured. From these values, estimated initial and airdry MCs of the boards were calculated. These values were calculated to observe if a correlation existed between, oven drv MCs calculated for the problematic selected material, and the estimated MCs of the same material before and after air-drying.

The estimated MCs of the boards were calculated using the following formulae 2.1 and 2.2.
Firstly the estimated oven dry weight of each board was calculated using,

$$
\begin{equation*}
W_{\text {ode }}=\frac{W_{k d} \times 100}{M C_{m}+100} \tag{2.1}
\end{equation*}
$$

where
$W_{\text {ode }}=$ Estimated oven dry weight.
$W_{k d}=$ Kiln dried final measured weight.
$\mathrm{MC}_{\mathrm{m}}=$ Kiln dried moisture meter measured MC.

The initial and air dried estimated MC of the boards were calculated using,

$$
\begin{equation*}
M C_{i / a}=\left(\frac{W_{i / a}-W_{\text {ode }}}{W_{\text {ode }}}\right) \times 100 \tag{2.2}
\end{equation*}
$$

where $\quad M C_{i / a}=$ Either initial of air dried moisture content.
$\mathrm{W}_{\mathrm{i} / \mathrm{a}}=$ Either initial or air dried measured weight.

The estimated initial and air dried MCs, kiln dried moisture meter MCs, associated weights and corresponding coupe numbers for each board are given in appendix B.1. The coupe numbers 1 to 4 correspond to Woodburn1, Woodburn2, Banyabba, and Tarre/Kiwarrka coupes respectively. The average, minimum and maximum MCs were calculated from the initial air dried and final dried estimated MC data and is tabulated below (table 2.4).

Table 2.4 - Inital, air dried and final dried MC analysis

	Moisture Content (Whole Boards)		
	Initial	Pre-Kiln Post-Air	Final
Average	52.4	21.5	11.2
Maximum	85.8	28.7	16.0
Minimum	28.5	17.4	8.0

The maximum and minimum MC variation is reduced dramatically from the initial value of 57.2% to the air-dried (pre-kiln post-air) value of 11.3%. A further reduction is evident after final drying (8\%).

The average final dried MC (11.2\%) is close to the target MC (11\%).
The maximum and minimum variation after drying was not as large as was desired in terms of the objective of this study. Only five boards (0.4% of total) had a measured MC below 9% and 3 boards above $15 \% \mathrm{MC}(0.2 \%$ of total). In fact 96% of the boards had moisture contents in the range of 9 to $13 \% \mathrm{MC}(\pm 2 \%$ of target MC$)$.

A greater maximum/minimum MC variation was expected after kiln drying. Hurford's staff has previously measured greater variations (boards with MCs over 18\% have been recorded).

3 Selected Material Testing (Oven Dry MC)

As detailed in section 2.2.5, 150 boards were selected for further testing. These boards consisted of the 50 wettest, 50 driest and 50 boards with a measured MC closest to the target MC (11\%).

Each board was cut into 500 mm sections such that a 25 mm section was cut from each end for oven dry MC testing. The results of these tests are given in appendix B.3.1. The average MC of each 500 mm section was calculated as the average of the two 25 mm sections cut from each end. The average MC of each whole board was calculated as the average of the 500 mm sections cut from that board. Table 2.5 summarises these results tabulating the average, maximum and minimum values for the whole volume of $25 \mathrm{~mm}, 500 \mathrm{~mm}$ and full length boards respectively.

Table 2.5 - Summary of oven dry test results

	Moisture Content Data		
	25mm Sections	500mm Sections	Whole Board
Average	10.6	10.6	10.6
Maximum	13.5	13.4	12.8
Minimum	7.9	8.5	9.2

The summary of results further emphasises the lack of problematic MC variable material obtained from this study. From the 150 boards selected 82225 mm sections were oven dry tested for MC. The range from this large selection of samples was minimal (7.9% to 13.5%). The maximum and minimum MCs for the whole boards ranged from 9.2 to 12.8%.

A low r^{2} correlation of 0.41 was calculated between the average board oven dry MCs and the measured moisture meter MCs. This is illustrated in figure 2.1.4.

Additional board attributes were also measured during board dissection, namely; original board length, sawing orientation (back sawn, quarter sawn or transitional) and centre reference point at top and butt ends of boards originating from templated billets. These attributes were measured as potential variables to analyse their correlation against the existence of problematic material. However, as no problematic material was observed these attributes were not analysed. The data has been included in this report (see appendix B.3.2.).

Figure 2.14 - Moisture meter MC vs. Oven dry MC

Conclusions

The main outcome from this study was the unexpected lack of material with undesirable final dry moisture contents. This was unexpected due to previous history at the site when drying this material using similar drying techniques. Exacerbation of problematic material through initialising kiln drying at higher than normal moisture contents did not occur. Given this and the large volume of material tested, from a production point of view, the results are exceptional.

An additional outcome from the mill study was the greater variation in MC readings obtained from the moisture meter compared with oven dry results. This is also emphasised by the low correlation observed between the two. It is common knowledge in the industry that moisture meters are not as accurate as the oven dry method for determining MC.

It should be noted that the kiln conditions, in terms of temperature and air-flow distribution, were also exceptionally stable with little variation. With this in mind and the lack of problematic material obtained, it can be theorised that the initial assumption that unacceptable variation in final moisture contents is a caused by variations in timber properties may only be partly true. Kiln performance and drying practice may also be factors causing the reported problem.

Although this section of work was prevented by the lack of obvious problematic material it is believed that by broadening the scope of this project could be continued in the future. The final section of this report (section 3.5) proposes recommendations toward furthering this study based on the results obtained throughout this report.

Chapter 3. Dry Stock Appraisals

Introduction

The dry stock appraisals were undertaken to determine the extent of moisture content variation through the inspection of randomly selected dried stock. The appraisals were conducted at various commercial hardwood sawmills which were collaborating in this project. The inspections were conducted at Clennett Timber (Tas), Hume and Kerrison Pty. Ltd. (Tas), Hurfords Building Supplies Pty. Ltd. (NSW), J. Notaras \& Sons Pty. Ltd. (NSW), Hyne \& Son Pty. Ltd. (QLD). At each mill, the two species that are processed to produce the highest volume of quality joinery or flooring sawn timber were appraised. As such, the species investigated were Eucalyptus delegatensis, E. regnans, Corymbia maculata,and E. pilularis.

It should be noted that due to the sensitive 'commercial in confidence' nature of the outcomes, the results are not linked to the commercial names of each sawmill. Rather, each sawmill is given a number from one to five (that does not correspond to the order given above). Additionally, species names are not given for each mill due to obvious geographical linkages.

The appraisals themselves involved measurement of MC average and gradient from a material subset. These two properties are the most relevant for investigating MC variation. The average MC is directly related to the desired target MC sought after drying. Additionally, the moisture gradient (difference in MC across a set distance of the case and core of a board) is important as it is linked to the MC variation through the thickness of a board.

Methodology

Dried stock appraisals were conducted in accordance with AS/NZS 4787:2001 - Timber Assessment of drying quality.

Using this standard as a guide, assessment of average MC and MC gradient were investigated on dried stock to give drying quality class classifications for these two properties. It should be noted that to easily explain the procedures used, the following methodology section contains excerpts from the aforementioned standard.

Initial Information

In order to compare the quality of grade output the following information was obtained from the management of each participating site:

- What are the most common two species of dried quality stock with a cross sectional thickness not greater than 80 mm (maximum thickness at which standard is valid) produced?
- What are the cross sectional dimensions of these products?
- What is your target final average MC for these products?

At each mill, after the initial questions were answered, sampling was undertaken on 25 mm and 50 mm thick rough sawn material, and 19 mm thick dressed material of the target species, dependant on availability of stock.

Sampling

At each mill, forty boards of each species were tested for average MC and MC gradient. The boards were selected randomly from either dressed or rough sawn packed stock, so that five individual pieces were selected from each of eight packs. Where this was not possible, material was selected directly from the dry chain such that eight groups of five boards were selected leaving sufficient time between each group of boards to cover an approximate volume of one pack. The number of samples chosen was sufficient to cover all quality class groups (see section 3.2.4), as specified by AS/NZS 4787:2001.

Measurements

All measurements were taken at least 400 mm from the end of a test piece. Additionally, the ambient air temperature where the packs were stored was measured before testing. The following summarises moisture content measuring procedures.

- Average Moisture Content

The average MC was measured using an insulated electrode resistance type moisture meter (pre calibrated to Douglas Fir) at a depth of $1 / 3$ of the thickness of each test piece (denoted by $\mathrm{MC}_{1 / 3}$).

- Moisture Content Gradient

Assessment of MC gradient was carried out by successive MC measurements, on the same cross-section of each sample piece at two defined depths. The first reading was taken at a depth of $1 / 6$ the thickness or 5 mm , whichever was the larger (denoted by $\mathrm{MC}_{1 / 6}$). The second reading was taken at a depth of $1 / 2$ the thickness of the test piece (denoted by $\mathrm{MC}_{1 / 2}$).

All MC measurements were corrected for temperature and species in accordance with AS/NZS 1080.1 - Timber Methods of Test - Moisture Content.

Quality Class Specifications

In accordance with AS/NZS 4787:2001 drying quality class specifications can be made dependant on the results of the MC gradient and average MC measurements.

For average MC, 90% of samples must comply with moisture content tolerances from the target average MC (denoted by MC_{t}) as specified by the sawmill management.

Table 3.1 lists the allowable range and associated quality class for 90% of all MC readings around the target MC.

Table 3.1 - Moisture content quality class specifications

Quality class	Allowable deviation between measured moisture content $\left(\mathrm{MC}_{1 / 3} \%\right)$ and target				
	$\mathrm{MC}_{\mathrm{t}}=8$	$\mathrm{MC}_{\mathrm{t}}=10$	$\mathrm{MC}_{\mathrm{t}}=12$	$\mathrm{MC}_{\mathrm{t}}=14$	$\mathrm{MC}_{\mathrm{t}}=18$
Class A	1	1	2	3	3
Class B	1	2	3	4	5
Class C	2	3	4	5	5
Class D	3	4	5	6	7
Class E	4	5	6	7	9

For MC gradients, 90% of samples must adhere to MC tolerances from case $\left(\mathrm{MC}_{16}\right)$ to core ($\mathrm{MC}_{1 / 2}$).

Table 3.2 lists the maximum allowable deviation in MC between $\mathrm{MC}_{1 / 2}$ and MC_{166}, by target MC and quality class.

Table 3.2 - Moisture gradient quality class specifications

Quality class	Allowable deviation between core $\left(\mathrm{MC}_{1 / 2}\right)$ and case $\left(\mathrm{MC}_{1 / 6}\right)$ moisture content by target moisture content $\left(\mathrm{MC}_{\mathrm{t}} \%\right)$				
	$\mathrm{MC}_{\mathrm{t}}=8$	$\mathrm{MC}_{\mathrm{t}}=10$	$\mathrm{MC}_{\mathrm{t}}=12$	$\mathrm{MC}_{\mathrm{t}}=14$	$\mathrm{MC}_{\mathrm{t}}=18$
Class A	1	1	2	3	3
Class B	1	2	3	4	5
Class C	2	3	4	5	5
Class D	3	4	5	6	7
Class E	4	5	6	7	9

The quality class descriptions described in AS/NZS 4787:2001 are as follows:
Class A - caters for specific end uses and very specific requirements for drying quality;
Class B - applies where tight control over drying is required to limit 'in service' movement resulting from changes in equilibrium moisture content;

Class C - applies where higher drying quality is required and the final use environment is clearly defined;

Class D - applies when the final use environment is more clearly defined but again the drying quality requirements are not considered high; and

Class E - applies when the final use and drying quality requirements are not high.

Results

All measurements were conducted in accordance with the methodology (section 3.2). Table 3.3 summarises the dried stock quality assessment results for each sawmill. Contained in the table are the, species identification number (for some mills only one species was available for testing), thicknesses for each species, target moisture content, average MC grade quality class, and the MC gradient grade quality class (see 3.2 for description of class classifications). Full sets of results are included in appendix C .

Table 3.3 - Dried stock quality assessment results

	Site 1		Site 2		Site 3		Site 4		Site 5
Species	1	2	1	1	1	2	1	2	1
Thickness	19 mm	19 mm	25mm	50 mm	19 mm	19 mm	19 mm	19 mm	25 mm
Target MC (\%)	12	10	12	12	10	10	10	10	12
Average MC Grade	B	A	C	Fail	B	B	B	B	A
MC Gradient Grade	A	A	B	C	B	B	A	A	D

In terms of the objective, the following results from each site are considered to be of importance:
Site 1: The resulting grade quality of the selected samples for this site (species 1 and 2) are high quality in terms of average MC and MC gradient. However sample number 7, species 1 (see C.1.1), had a moisture content value considered to be much higher or wetter than the other samples, which is a cause for concern. This sample would be viewed as being a problematic piece in terms of the scope of this project.

Site 2: For the 25 mm material the average MC quality was poor (see C.2.1). This is because the majority of the board average MC values were higher than the target MC of 12%. This indicates insufficient drying to reach the target MC. Additionally, samples number 2, 11 and 18 (see C.2.1) have considerably higher average MC values than the other samples. Again these samples would be viewed as being problematic pieces.

The grade quality results for the 50 mm material were very poor (see C.2.2). The average MC value for each board was well above the target MC of 12%, with 47.5% of boards failing to even receive a quality classification (greater than 6\%MC above target). The average MC of all samples was 18.1%. This material had definitely not been dried for a long enough period to reach the desired target MC. Due to insufficient drying it is not possible to identify problematic moisture variable timber at this stage.

Site 3: In terms of average MC grade, there were no over or under dry boards measured (species 1 and 2). The grade quality in terms of average MC and MC gradient was high.

Site 4: In terms of average MC grade, there were no over or under dry boards measured (species 1 and 2). The grade quality in terms of average MC and MC gradient was high.

Site 5: In terms of average MC grade, there were no over or under dry boards measured. However, the MC gradient grade for the majority of these boards (see C.5.1) were average. A result such as this is a common indicator of material that has not been sufficiently equalised to EMC conditions after drying.

Note: In terms of MC gradient grade quality, sites 1, 3, and 4 performed better than sites 2 and 5. This may be affected by the thinner (19mm) dressed material tested at these sites. As MC gradients generally occur such that the surface of a board is drier than the core, obviously the MC gradient will be reduced when the surfaces of a board is dressed.

Conclusions

Through appraisals of randomly selected dried stock the extent of moisture content variation was examined at various commercial hardwood sawmills.

Although the series of appraisals were only taken on one day of production, from a random selection of material on a small cross-section of the Australian hardwood industry, the study has uncovered enough information to a) indicate that a problem does exist and b) a number of underlying issues are also in evidence. These underlying issues are predominantly concerned with drying practice. This second issue is relatively sensitive, and although a series of postulations leading to recommendations are included in these conclusions, this was not within the scope of this project and hence becomes an opportunity for further research (see section 3.5).

Analysis of data taken at sites 1 and 2 indicate the existence of small numbers of boards with average MCs much greater than other boards dried under the same conditions. The reasons for this are still yet unknown. The existence of this type of material is of great concern to the industry due to its potential to create problems between timber processors and their clients (and in application).

From the results given for sites 2 and 5 it is evident that the moisture variation/drying issue can easily be confused with issues pertaining to practice. The 50 mm material tested at site 2 specifically shows insufficient drying to the target MC. Reasons for this may be caused by; relying on MC resistance probes instead of using sample boards, incorrect use and/or using uncorrected moisture content readings of moisture meters, relying on time based drying schedules, kiln limitations, and storing material in wet climatic conditions after drying. Without further study however, only postulations can be considered at this stage.

The MC gradient quality of the material tested at site 5 was considered to be poor. The average MC quality for the same material however, was high. This seems to indicate insufficient equalisation at the end of the drying process. This is again a drying practice issue rather than an issue pertaining to timber properties.

Even though the results from the previous chapter did not produce the required results to continue this study, the results from the sawmill dry stock appraisals definitely indicate that the moisture variation problem, consisting of rogue wet material, does exist. Additionally, further questions have been raised relating drying best practice to this issue. The potential to identify the cause of this problem exists and further research is required, building on the scope of this project. Outlines containing further recommendations for continuing this study are given in the following section.

Recommendations for Future Work

At the time of writing this report the moisture variation issue still remains unresolved. This is due to unforseen circumstances governing the outcomes of the mill study (as detailed in Chapter Two). Results obtained in this chapter however, have given enough insight into the problem to continue this line of research in order to find a solution.

The dry stock appraisal survey has shown that the existence of the moisture variation problem may not be entirely caused by timber properties as first postulated. Rather, drying practice may also be a causal factor.

An outline of a future project to complete the research started in this project may be as follows:

1) Survey a greater number of sawmills throughout Australia to identify those that are experiencing problems with moisture content variation after final drying.
2) Perform on site investigations at sites that are experiencing the problem. This would involve personal interviews with site managers and staff. Additionally data measurement of air drying and kiln drying conditions including air velocity, humidity and temperature variation would also be conducted.
3) Obtain problematic material from these sites along with non-problematic control material, over a set time period, to compare timber properties. Timber property measurement could include, vessel frequency, lumen diameter, cell wall thickness, percentage of hemi-cellulose, extractive content (using both methanol + hot water extraction methods).
4) Perform stability measurements in a constant environment chamber on the material obtained from 2).
5) Provide economically feasible solutions to address the problem.

It is believed that this type of approach would not only guarantee that problematic material will be obtained for testing, but also the underlying best practice issue would be investigated.

References

Ahmet, K., G. Dai, et al. (1999). "Experimental procedures for determining the equilibrium moisture content of twenty timber species." Forest Products Journal 49(1): 88-93.

Campean, M., M. Ispas, et al. (1999). Experimental Study Concerning the Hysteresis of Sorbtion and Desorbtion for Different Wood Species. 6th International IUFRO Wood Drying Conference, Stellenbosch, South Africa.

Chafe, S. C. (1991). "A relationship between equilibrium moisture content and specific gravity in wood." Journal of the Institute of Wood Science 12(3): 119-122.

Kadir, K., R. Erickson, et al. (2001). The Effect of Sample Size and Configuration on Red Oak Hysteresis. 7th International IUFRO Wood Drying Conference, Tsukuba, Japan.

Kubinsky, E. and G. Ifju (1974). "Influence of steaming on the properties of Red Oak. Part II. Changes in shrinkage and related properties." Wood Science 7(2): 103-110.

McNaught, A. (1987). Equilibrium moisture content of timber. QFRI Timber Note. 23. Paton, I. M. and R. F. S. Hearmon (1957). "Effect of exposure to gamma rays on the hygroscopicity of Sitlea sprucewood." Nature 180: 651.

Simpson, W. T. (1971). "Moisture changes induced in red oak by transverse stress." Wood and Fiber 3(1): 13-21.

Skaar, C. (1979). Moisture Sorption Hysteresis of Wood. Rosen, H. N.; Simpson, W.; Wengert, E. M.; (Chairmen): Symposium on wood moisture content temperature and humidity relationships, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, Oct. 29, 1979. 1979, 4 11; 31 ref., Forest Products Laboratory, USDA Forest Service.; Madison, Wisconsin; USA.

Soriano, F. P. and P. D. Evans (1997). "The role of extractives in monomolecular sorption and cluster formation in thin King William pine (Athrotaxis selaginoides D. Don.) wood strips." FPRDI Journal 23(1): 47-66.

Spalt, H. A. (1979). Water-Vapour Sorption by Woods of High Extractive Content. Rosen, H. N.; Simpson, W.; Wengert, E. M.; (Chairmen): Symposium on wood moisture content temperature and humidity relationships, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, Oct. 29, 1979. 1979, 4 11; 31 ref., Forest Products Laboratory, USDA Forest Service.; Madison, Wisconsin; USA.

Wangaard, F. F. (1979). The Hygroscopic Nature of Wood. Rosen, H. N.; Simpson, W.; Wengert, E. M.; (Chairmen): Symposium on wood moisture content temperature and humidity relationships, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, Oct. 29, 1979. 1979, 4 11; 31 ref., Forest Products Laboratory, USDA Forest Service.; Madison, Wisconsin; USA.

Wengert, E. M. and P. M. Mitchell (1979). Psychrometric relationships and equilibrium moisture content of wood at temperatures below 212 deg F (100 deg C) [a review]. Rosen, H. N.; Simpson, W.; Wengert, E. M.; (Chairmen): Symposium on wood moisture content temperature and humidity relationships, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, Oct. 29, 1979. 1979, 4 11; 31 ref., Forest Products Laboratory, USDA Forest Service.; Madison, Wisconsin; USA.

Waterson, G 1997. Australian Timber Seasoning Manual. Australasian Furnishing Research and Development Institute Limited.

Appendices

- Appendix A. Survey Meeting Minutes at Hurfurds
- Appendix B. Mill Study Data
- Appendix C. Dry Stock Appraisal Data

Appendix A. Survey Meeting Minutes-Hurfords

Bob Engwirda is the manager of the dry mill at Hurford Hardwood - Lismore NSW. This is the site for the case study examination. The following is an account of an informal meeting held on 13/12/01.

In the past Bob has experienced problems with moisture variation particularly "wet wood" after kiln drying, predominantly with spotted gum and blackbutt.

The material is generally air dried first to below FSP and enters the kiln for final drying when the average moisture content of the material is between approximately 15% and 20%. Under his current schedule Bob states, 'at 15\%MC the material usually takes approximately $5-6$ days to dry and at $18-20 \% \mathrm{MC}$ the material takes approximately 6-7 days to dry.

Bob has trialed higher temperatures during final drying to speed up the process. The drying times were faster, however the moisture variation problem was exacerbated. A greater proportion of under-drys were present. Less variation is currently present with the slower/colder drying schedules being used. Other observations conducted by Bob were:
a) moisture content variation seems to be worse for timber entering the kiln drying phase at higher average moisture contents (ie. 20\% c/f. 15\%),
b) by observation, a large proportion of wet wood boards are quarter/transitional sawn and/or exhibit comparatively closely packed (denser) growth rings,
c) the best method to reduce moisture variation is to over dry the material from the desired target MC to 8-9\%, then steam to approximately to $13-14 \%$ before redrying at the same final conditions to 10%. Additionally, it was observed that the steaming treatment did not seem to effect the permeability (drying rate) of the material.

When sawing, Hurfords usually saw the same species for approximately 1 weeks to produce approximately 50-60 stacks of green boards. Air drying takes approximately 12 weeks and the kiln charge consists of 16 stacks. The stacks are orientated inside the kiln 4 high $\times 2$ wide $\times 2$ long

Graeme Palmer, was also present at this meeting, and suggested that drying at higher temperatures increases the transport rate of water movement exponentially with temperature so that the material that is more permeable will dry faster compared with the material of lower permeability. Hence a greater number of wet wood boards will be present at the end of drying.

Graeme also suggested a number of potential areas of research regarding this project as follows:

1) The variation trends of MC between boards has not yet been investigated when comparing the same boards at the end of air drying with those at the end of kiln drying.
2) Intermittent cyclic/humidity treatments during final drying.
3) Holding the material at a fixed EMC for a period of time towards the end of drying to equalise before drying is completed.
4) Drying schedule/Energy cost issue. le. would it be more cost effective to kiln dry at lower initial temperatures and a higher wet bulb depression initially when compared with current schedules?

Appendix B. Mill Study Data

A.1. Board weight, MC, and Coup Location Data

		0 0 0 \sum 0 $\frac{0}{0}$ $\frac{0}{5}$ $\frac{0}{0}$ 0		$\begin{aligned} & \text { o } \\ & 0 \\ & \hline 0 \\ & \frac{0}{0} \\ & \frac{0}{0} \\ & 0 \\ & 0 \\ & \vdots \end{aligned}$			0 0 0 3 0 0 0 0 0 0 0 0	
1	18.53	55.9	-	-	13.31	12	11.88	4
2	16.30	49.3	-	-	12.17	11.5	10.91	2
3	17.30	43.1	-	-	13.30	10	12.09	2
4	16.73	50.9	-	-	12.31	11	11.09	2
5	20.48	43.5	-	-	15.70	10	14.27	2
6	16.41	46.0	-	-	12.36	10	11.24	2
7	16.81	51.6	-	-	12.31	11	11.09	2
8	16.80	48.6	-	-	12.44	10	11.31	2
9	17.01	48.5	-	-	12.60	10	11.45	2
10	16.03	49.3	-	-	11.81	10	10.74	2
11	17.53	52.1	-	-	12.79	11	11.52	2
12	16.96	57.5	-	-	12.06	12	10.77	2
13	20.54	56.4	-	-	14.45	10	13.14	2
14	19.93	57.7	-	-	14.15	12	12.63	2
15	16.99	48.3	-	-	12.72	11	11.46	2
17	9.53	56.0	-	-	6.72	10	6.11	3
18	13.95	53.8	-	-	10.07	11	9.07	4
19	14.24	51.8	-	-	10.60	13	9.38	3
20	13.35	55.5	-	-	9.87	15	8.58	3
21	18.89	57.8	-	-	13.35	11.5	11.97	3
22	13.00	62.7	-	-	9.03	13	7.99	3
23	13.25	61.8	-	-	9.42	15	8.19	3
24	14.70	57.1	-	-	10.34	10.5	9.36	3
25	12.66	52.5	-	-	9.13	10	8.30	3
26	9.92	53.5	-	-	7.27	12.5	6.46	3
27	18.09	58.7	-	-	12.94	13.5	11.40	3
28	13.69	56.6	-	-	9.88	13	8.74	3
29	12.57	58.0	-	-	9.15	15	7.96	3
30	12.29	64.8	-	-	8.65	16	7.46	3
31	11.66	56.6	-	-	8.34	12	7.45	4
32	12.00	60.5	-	-	8.41	12.5	7.48	4
33	9.54	53.3	-	-	6.97	12	6.22	2
34	11.77	52.2	-	-	8.74	13	7.73	3
35	13.75	53.7	-	-	9.84	10	8.95	3
36	9.51	49.0	-	-	7.15	12	6.38	2
37	8.76	44.3	-	-	6.68	10	6.07	2
38	11.65	48.3	-	-	8.72	11	7.86	3
39	10.29	52.0	-	-	7.58	12	6.77	3
40	7.92	49.0	-	-	5.90	11	5.32	2
41	17.65	56.5	-	-	12.52	11	11.28	4
42	10.35	51.7	-	-	7.54	10.5	6.82	2
43	10.32	50.7	-	-	7.67	12	6.85	2
44	10.21	60.7	-	-	6.99	10	6.35	2
45	10.36	54.2	-	-	7.39	10	6.72	3
46	14.42	55.9	-	-	10.45	13	9.25	3
47	12.34	50.7	-	-	9.01	10	8.19	3
48	11.17	50.6	-	-	8.16	10	7.42	3
49	13.78	51.0	-	-	10.22	12	9.13	3
50	10.66	55.4	-	-	7.58	10.5	6.86	2
51	10.22	51.3	-	-	7.43	10	6.75	2
52	13.37	57.2	-	-	9.44	11	8.50	3
53	11.91	53.2	-	-	8.55	10	7.77	3
54	9.54	47.9	-	-	7.29	13	6.45	2
55	10.65	56.3	-	-	7.63	12	6.81	2
56	14.77	58.3	-	-	10.45	12	9.33	3
57	13.34	59.0	-	-	9.44	12.5	8.39	4
58	11.95	52.5	-	-	8.70	11	7.84	2
59	13.77	57.2	-	-	9.81	12	8.76	4
60	9.31	46.3	-	-	7.00	10	6.36	2
61	11.84	44.7	-	-	9.00	10	8.18	2
62	11.54	47.7	-	-	8.75	12	7.81	3
63	10.23	49.6	-	-	7.59	11	6.84	3
64	11.20	55.0	-	-	7.95	10	7.23	4
65	8.09	52.2	-	-	5.90	11	5.32	3
66	16.54	56.6	-	-	11.62	10	10.56	3

67	10.97	45.4	-	-	8.30	10	7.55	3
68	12.61	54.8	-	-	9.37	15	8.15	3
69	11.04	50.2	-	-	8.23	12	7.35	3
70	14.11	60.9	-	-	9.82	12	8.77	4
71	13.67	56.4	-	-	9.70	11	8.74	4
72	11.77	52.5	-	-	8.72	13	7.72	2
73	13.61	65.3	-	-	9.14	11	8.23	3
74	12.24	56.4	-	-	8.65	10.5	7.83	3
75	12.52	44.4	-	-	9.58	10.5	8.67	3
76	12.29	47.0	-	-	9.11	9	8.36	3
77	11.85	48.1	-	-	9.08	13.5	8.00	2
78	9.40	50.0	-	-	7.02	12	6.27	2
79	10.88	49.7	-	-	8.07	11	7.27	4
80	12.63	51.6	-	-	9.33	12	8.33	4
81	13.65	66.0	-	-	9.29	13	8.22	4
82	14.46	56.3	-	-	10.36	12	9.25	4
83	14.34	50.4	-	-	10.49	10	9.54	4
84	13.51	53.0	-	-	9.80	11	8.83	4
85	9.66	47.4	-	-	7.21	10	6.55	3
86	9.55	55.0	-	-	6.90	12	6.16	2
87	13.90	55.2	-	-	9.94	11	8.95	3
88	13.20	55.7	-	-	9.58	13	8.48	4
89	13.22	49.4	-	-	10.00	13	8.85	3
90	10.93	47.8	-	-	8.21	11	7.40	2
91	13.06	54.5	-	-	9.47	12	8.46	4
92	12.87	51.2	-	-	9.45	11	8.51	4
93	13.25	53.1	-	-	9.69	12	8.65	4
94	13.61	45.0	-	-	10.37	10.5	9.38	4
95	12.13	38.5	-	-	9.59	9.5	8.76	4
96	11.23	46.3	-	-	8.56	11.5	7.68	4
97	14.06	46.9	-	-	10.53	10	9.57	4
98	15.20	49.5	-	-	11.39	12	10.17	4
99	12.40	53.0	-	-	9.20	13.5	8.11	4
100	14.07	56.7	-	-	10.01	11.5	8.98	4
101	13.82	55.9	-	-	9.97	12.5	8.86	4
102	13.40	50.5	-	-	9.97	12	8.90	4
103	13.95	50.1	-	-	10.41	12	9.29	4
104	14.16	48.2	-	-	10.70	12	9.55	4
105	13.52	47.3	-	-	10.28	12	9.18	4
106	13.18	52.5	-	-	9.68	12	8.64	3
107	11.08	62.6	-	-	7.60	11.5	6.82	4
108	10.11	43.5	-	-	7.82	11	7.05	3
109	9.67	47.2	-	-	7.29	11	6.57	3
110	11.77	57.4	-	-	8.45	13	7.48	4
111	10.64	28.5	-	-	9.40	13.5	8.28	4
112	12.44	56.4	-	-	9.07	14	7.96	4
113	11.15	61.2	-	-	7.78	12.5	6.92	4
114	11.17	56.3	-	-	7.97	11.5	7.15	4
115	10.72	59.2	-	-	7.54	12	6.73	4
116	8.91	45.7	-	-	6.79	11	6.12	3
117	9.10	46.8	-	-	6.82	10	6.20	3
118	10.56	62.7	-	-	7.17	10.5	6.49	4
119	10.93	63.1	-	-	7.37	10	6.70	4
120	11.20	60.1	-	-	7.80	11.5	7.00	4
121	11.07	47.2	-	-	8.27	10	7.52	3
122	12.26	50.2	-	-	9.14	12	8.16	3
123	12.62	56.0	-	-	8.98	11	8.09	3
124	17.32	47.1	-	-	13.07	11	11.77	1
125	16.03	41.1	-	-	12.61	11	11.36	1
126	12.05	57.0	-	-	8.44	10	7.67	3
127	13.22	44.1	-	-	10.09	10	9.17	1
128	14.32	40.9	-	-	11.38	12	10.16	1
129	12.88	52.1	-	-	9.57	13	8.47	2
130	11.12	47.2	-	-	8.46	12	7.55	3
131	11.94	57.8	-	-	8.40	11	7.57	4
132	11.03	53.4	-	-	8.09	12.5	7.19	4
133	11.26	47.4	-	-	8.48	11	7.64	4
134	11.30	58.2	-	-	7.93	11	7.14	4
135	10.40	59.6	-	-	7.17	10	6.52	4
136	10.90	49.6	-	-	8.16	12	7.29	4
137	10.82	53.4	-	-	7.76	10	7.05	3
138	13.64	56.4	-	-	9.64	10.5	8.72	3
139	13.81	49.6	-	-	10.25	11	9.23	2

140	10.73	58.6	-	-	7.44	10	6.76	4
141	18.92	56.2	-	-	13.57	12	12.12	2
142	19.27	54.4	-	-	13.73	10	12.48	2
143	20.99	46.1	-	-	15.52	8	14.37	2
144	11.25	52.0	-	-	8.14	10	7.40	2
145	10.86	47.2	-	-	8.19	11	7.38	4
146	11.46	57.2	-	-	8.02	10	7.29	3
147	11.38	46.3	-	-	8.71	12	7.78	3
148	12.58	70.3	-	-	8.20	11	7.39	2
149	10.80	54.1	-	-	7.78	11	7.01	4
150	10.70	50.7	-	-	7.81	10	7.10	4
151	14.08	68.5	-	-	9.36	12	8.36	3
152	11.40	58.9	-	-	7.89	10	7.17	3
153	10.55	52.1	-	-	7.77	12	6.94	2
154	19.66	54.3	-	-	14.02	10	12.75	2
155	17.73	56.2	-	-	12.54	10.5	11.35	2
156	19.57	61.0	-	-	13.37	10	12.15	2
159	17.57	60.5	-	-	12.04	10	10.95	2
160	10.10	50.9	-	-	7.43	11	6.69	4
161	9.44	57.8	-	-	6.64	11	5.98	3
162	10.61	48.9	-	-	7.98	12	7.13	2
163	14.24	55.8	-	-	10.24	12	9.14	3
164	13.38	54.0	-	-	9.82	13	8.69	2
165	11.85	56.0	-	-	8.51	12	7.60	4
166	10.35	48.6	-	-	7.73	11	6.96	3
167	10.53	48.2	-	-	7.96	12	7.11	3
168	10.87	42.8	-	-	8.45	11	7.61	2
169	13.13	58.5	-	-	9.28	12	8.29	3
170	18.83	52.6	-	-	13.57	10	12.34	2
173	18.08	54.9	-	-	13.07	12	11.67	2
174	13.60	56.5	-	-	9.82	13	8.69	4
175	10.76	58.1	-	-	7.69	13	6.81	4
176	11.02	62.0	-	-	7.55	11	6.80	4
177	10.99	56.3	-	-	7.84	11.5	7.03	4
178	10.14	51.6	-	-	7.49	12	6.69	2
179	13.79	62.4	-	-	9.47	11.5	8.49	3
180	14.25	57.5	-	-	10.04	11	9.05	3
181	10.36	55.8	-	-	7.38	11	6.65	4
182	13.24	48.4	-	-	10.04	12.5	8.92	2
183	10.75	53.3	-	-	7.75	10.5	7.01	3
184	10.92	51.3	-	-	8.01	11	7.22	3
185	9.34	52.9	-	-	6.78	11	6.11	4
186	11.15	49.4	-	-	8.21	10	7.46	3
187	10.28	45.6	-	-	7.91	12	7.06	3
188	21.13	62.7	-	-	14.74	13.5	12.99	2
189	18.40	62.3	-	-	12.70	12	11.34	4
190	11.23	59.7	-	-	7.77	10.5	7.03	4
191	11.40	47.9	-	-	8.48	10	7.71	4
192	11.64	54.2	-	-	8.38	11	7.55	4
193	9.64	57.8	-	-	6.75	10.5	6.11	4
194	11.22	50.0	-	-	8.38	12	7.48	2
195	11.63	59.5	-	-	8.02	10	7.29	3
196	12.90	65.6	-	-	8.57	10	7.79	3
197	10.56	54.1	-	-	7.71	12.5	6.85	4
198	10.64	58.6	-	-	7.38	10	6.71	4
199	10.77	56.7	-	-	7.63	11	6.87	3
200	11.55	53.5	-	-	8.43	12	7.53	4
201	10.00	55.3	-	-	7.21	12	6.44	4
202	15.33	52.1	-	-	11.09	10	10.08	4
203	19.00	52.8	-	-	13.68	10	12.44	2
204	19.15	52.6	-	-	13.80	10	12.55	2
205	17.87	49.5	-	-	13.63	14	11.96	3
206	19.56	41.2	-	-	15.51	12	13.85	3
207	9.12	65.5	-	-	6.17	12	5.51	2
208	10.44	60.0	-	-	7.31	12	6.53	2
209	18.41	64.2	-	-	12.78	14	11.21	2
210	17.78	77.5	-	-	11.02	10	10.02	3
211	13.87	57.5	-	-	9.73	10.5	8.81	2
212	13.73	54.7	-	-	9.85	11	8.87	2
213	9.98	53.3	-	-	7.16	10	6.51	4
214	15.76	56.6	-	-	11.07	10	10.06	4
215	11.38	62.4	-	-	7.71	10	7.01	4
216	9.50	52.6	-	-	6.85	10	6.23	4

A.2.1.

217	13.15	52.9	-	-	9.46	10	8.60	2
218	10.08	69.5	-	-	6.78	14	5.95	2
219	11.42	57.3	-	-	8.06	11	7.26	2
220	10.27	64.4	-	-	7.06	13	6.25	2
221	11.47	62.4	-	-	7.77	10	7.06	2
222	18.26	58.0	-	-	12.94	12	11.55	2
223	19.60	58.0	-	-	13.89	12	12.40	2
224	20.56	61.8	-	-	14.23	12	12.71	2
225	9.50	65.5	-	-	6.43	12	5.74	2
226	11.64	57.3	-	-	8.14	10	7.40	4
227	10.09	62.6	-	-	6.89	11	6.21	2
228	9.67	58.3	-	-	6.75	10.5	6.11	4
229	9.09	72.9	-	-	5.81	10.5	5.26	2
230	9.99	52.2	-	-	7.32	11.5	6.57	4
231	13.54	54.4	-	-	9.69	10.5	8.77	2
232	10.38	85.8	-	-	6.20	11	5.59	2
233	9.26	43.0	-	-	7.19	11	6.48	2
234	15.63	48.1	-	-	11.82	12	10.55	2
235	14.75	54.9	-	-	10.57	11	9.52	3
236	19.12	53.2	-	-	14.10	13	12.48	3
237	15.85	56.6	-	-	11.13	10	10.12	2
238	18.30	52.8	-	-	13.17	10	11.97	2
239	18.96	64.0	-	-	12.66	9.5	11.56	4
240	14.49	49.5	-	-	10.66	10	9.69	2
241	18.63	49.6	-	-	13.95	12	12.46	2
242	18.53	55.0	-	-	13.15	10	11.95	2
243	16.26	49.4	-	-	12.19	12	10.88	4
244	8.98	61.1	-	-	6.13	10	5.57	2
245	12.20	63.3	-	-	8.22	10	7.47	4
246	10.30	68.2	-	-	6.86	12	6.13	2
247	11.71	57.3	-	-	8.41	13	7.44	2
248	15.33	49.7	-	-	11.21	9.5	10.24	2
249	10.53	53.0	-	-	7.57	10	6.88	2
250	15.22	48.0	-	-	11.21	9	10.28	2
251	14.73	65.0	-	-	9.73	9	8.93	4
252	22.10	58.7	-	-	15.32	10	13.93	2
253	9.18	53.0	-	-	6.63	10.5	6.00	4
254	10.05	68.0	-	-	6.61	10.5	5.98	2
255	11.78	57.9	-	-	8.28	11	7.46	2
256	20.36	62.1	-	-	14.26	13.5	12.56	2
257	20.21	58.3	-	-	14.30	12	12.77	2
258	21.40	55.2	-	-	15.44	12	13.79	2
259	15.79	62.2	-	-	10.61	9	9.73	4
260	14.67	53.4	-	-	10.52	10	9.56	2
261	11.34	56.9	-	-	7.95	10	7.23	2
262	11.59	58.6	-	-	8.15	11.5	7.31	2
263	11.18	58.9	-	-	7.88	12	7.04	2
264	12.10	60.7	-	-	8.28	10	7.53	2
265	10.05	61.9	-	-	6.83	10	6.21	2
266	13.25	55.1	-	-	9.48	11	8.54	2
267	10.05	52.1	-	-	7.27	10	6.61	4
268	12.03	69.7	-	-	7.87	11	7.09	4
269	10.96	62.4	-	-	7.39	9.5	6.75	2
270	14.43	59.6	-	-	10.08	11.5	9.04	2
271	14.32	58.1	-	-	10.10	11.5	9.06	2
272	13.61	56.2	-	-	9.76	12	8.71	2
273	19.51	55.4	-	-	13.81	10	12.55	2
274	18.21	44.0	-	-	13.91	10	12.65	3
275	19.97	58.9	-	-	14.08	12	12.57	4
276	13.91	50.4	-	-	10.31	11.5	9.25	2
277	11.48	57.1	-	-	8.11	11	7.31	2
278	13.37	54.4	-	-	9.70	12	8.66	2
279	10.78	53.8	-	-	7.71	10	7.01	2
280	13.71	54.0	-	-	9.97	12	8.90	2
281	8.19	45.6	-	-	6.16	9.5	5.63	4
282	11.62	54.2	-	-	8.48	12.5	7.54	2
283	14.13	51.8	-	-	10.24	10	9.31	2
284	9.89	56.9	-	-	7.06	12	6.30	2
285	17.51	56.5	-	-	12.36	10.5	11.19	2
286	19.44	54.1	-	-	13.94	10.5	12.62	2
287	19.02	53.2	-	-	13.72	10.5	12.42	2
288	21.80	60.2	-	-	15.04	10.5	13.61	4
289	15.72	48.9	-	-	11.56	9.5	10.56	2

A.2.2.

A.2.3.

290	18.92	46.2			14.49	12	12.94	3
291	17.47	43.1	-		13.67	12	12.21	2
292	14.34	49.5	-		10.55	10	9.59	4
293	11.97	58.3			8.47	12	7.56	2
294	10.75	48.5			8.00	10.5	7.24	2
295	15.85	48.1	-		11.72	9.5	10.70	2
296	20.79	55.0	-		15.10	12.56	13.42	2
297	14.28	62.7			9.74	11	8.77	4
298	18.31	49.2			13.50	10	12.27	2
299	15.89	45.3	-		12.14	11	10.94	2
300	9.59	44.5	-		7.30	10	6.64	2
301	20.29	47.0	-		15.46	12	13.80	2
302	13.80	50.4			10.09	10	9.17	4
303	14.09	52.6	-		10.34	12	9.23	4
304	15.55	51.5	-		11.29	10	10.26	2
305	17.76	45.9	-		13.39	10	12.17	2
488	19.12	34.5	$=$		P3, 683	14	12.46	2
467	19:94	54.4	$=$		13:72	14	P2, 42	3
488	78:2]	492.3	$=$	$=$	15:89	9.5	18.68	\%
438	13.68	49.9	$=$		P0, 40	14.8	8:35	2
440	15:98	58,9			P8,5 52	13	9:93	4
447	18.68	62, 6			$70.3{ }^{2}$	78.5	8,62	2
442	76.68	49:3	$=$		77.86	18	770.601	2
443	73:98	49:3	=	$=$	10.35	$1{ }^{1} 25$	9:30	2
444	14:38	49.6	$=$		80.416	9.5	9.58	${ }^{3}$
443	18.46	49.8	=	=	62920	12	60439	2
448	17.94	88:7	$=$	$=$	88.2	1365	12.303	4
447	75:38	49:3	=	$=$	9r. 62	12	18.888	2
448	14:888	39, 8	$=$	$=$	9.32	10	9:82	4
449	19:04	59.2	$=$		94884	1005	82966	3
\$520	18.388	55.2	$=$		88486	14	12.56	3
461	18.64	34.5	=	$=$	14.23	14	14.98	2
452	18:43	582. 2	$=$	=	13:08	1905	10.93	$\underline{2}$
423	12.38	43, 4	=	=	182740	11	P9.78	2
454	18.46	35.4	$=$	$=$	1/34/2	10	60. 63	2
455	13:98	532.8	=	$=$	9,82	18	8:68	4
458	73.95	48.8	$=$	$=$	P0, 28	1635		3
457	14.83	39.3	$=$	=	19:86	13	9.68	3
458	18.44	49:8	=	=	193.611	19	88, 824	2
459	76.52	$48: 4$	$=$	$=$	12.84	1605	11:69	2
436	14.67	39.6	$=$	$=$	13.48	g. 5	19.40	4
431	713.49	59:5	$=$	=	P2. 288	12	18.96	3
432	18:49	35:8	$=$	$=$	12.83	10	69.868	2
4363	18.64	48.89	=		18.73	14	9.9	2
434	18:30	44:8	$=$	$=$	P3.142	14	189.182	?
4335	18.04	39.3	$=$	$=$	12.46	13	10.83	2
436	19:88	37.4	$=$	$=$	8.28	11.15	7:44	4
437	19:34	48.4	$=$	=	84.183	18	12.835	4
3698	72.38	39.4	$=$	$=$	843393	1365	$12.3{ }^{3} 8$	2
439	19:45	40:4	$=$	$=$	156	12	1888	\%
440	19:06	59:0	$=$	$=$	14950	11	12.109	$\underline{4}$
447	19.58	39.7	=	$=$	178\%	19	13.199	3
342	19:45	35.8	$=$		15343	10	63694	2
443	78:38	48,8	$=$	=	88.38	11	77,5\%	3
444	10.38	49.4	$=$	$=$	9.58	10	6:88	2
443	10.32	48.6	$=$	=	q. 98	18	7.69	2
448	15:68	38:0	$=$		77.628	19	60.92	2
447	29:48	48.5	=	$=$	16.40	18	64939	2
448	77.88	39.9	$=$	$=$	88.632	14	17.64	2
449	78.62	35.0	$=$	$=$	13.35	180.5	62928	2
489	19.86	48.8.	$=$	$=$	P4827	12	12.83	2
489	19:78	50: 5	$=$	$=$	73354	11	6.584	4
489	74508	66.9	=	$=$	9.54	18	8.68	4
$4{ }^{3} 8$	73.62	45.8	$=$		8.323	11	9.23	2
484	14.28	67:8	$=$	$=$	10305	11	9.65	4
385	19.88	50.3	$=$	=	77.988	13	10.03	4
$43^{3} 8$	182404	68.8.8	$=$	$=$	8.23	14	7:27	4
487	18.64	46.9	$=$	$=$	9.49	14	8.888	4
488	94.354	48:8	$=$	$=$	80.85	18	9:6]	\%
4898	9.43	49.6	$=$	$=$	7.86	12	6.43	2
488	190.23	44.5	$=$	$=$	7.88	10.5	6:39	2
481	19, 2×3	45:3	$=$	=	9:93	10	6:48	?
$4{ }^{4} 8$	19.888	69.9	$=$	$=$	7.84	11	6:89	2
493	10.62	42.1	-		8.52	14	7.47	2
4844	9.18	53.5	-	-	6.70	12	5.98	2
495	10.64	56.2	-	-	7.63	12	6.81	3
496	10.79	54.5	-	-	7.82	12	6.98	3
497	10.23	65.2	-	-	6.81	10	6.19	4
498	9.36	37.5	-	-	7.49	10	6.81	2
499	11.35	53.2	-	-	8.15	10	7.41	4
500	9.18	54.8	-		6.64	12	5.93	4
501	9.51	57.8	-	-	6.63	10	6.03	4
502	9.08	48.0	-	-	6.81	11	6.14	3
503	12.27	58.2	-	-	8.65	11.5	7.76	4
504	11.17	49.1	-		8.54	14	7.49	2
505	11.49	48.6	-		8.66	12	7.73	2
506	10.44	43.1	-		8.21	12.5	7.30	2
507	11.03	47.2	-		8.28	10.5	7.49	2
508	10.36	58.5			7.19	10	6.54	

363	9.00	43.1	-	-	6.92	10	6.29	2
364	9.80	42.4	-	-	7.64	11	6.88	2
365	9.47	46.3	-	-	7.25	12	6.47	2
366	8.96	48.4	-		6.73	11.5	6.04	2
367	8.76	49.1	-	-	6.52	11	5.87	2
368	9.85	49.1	-	-	7.30	10.5	6.61	3
369	8.68	44.4	-	-	6.64	10.5	6.01	2
370	10.01	45.2	-	-	7.65	11	6.89	3
371	11.32	48.6	-	-	8.38	10	7.62	2
372	10.32	50.1	-	-	7.77	13	6.88	3
373	10.84	62.2	-	-	7.35	10	6.68	4
374	11.25	54.5	-	-	8.01	10	7.28	4
375	12.98	49.1	-	-	9.84	13	8.71	3
376	11.18	59.9	-	-	7.97	14	6.99	4
377	11.41	53.7	-		8.39	13	7.42	4
378	11.60	62.0	-	-	8.02	12	7.16	4
369	13.98	588.5	$=$	$=$	8.82	18	7:43	4
$3{ }^{3} 8$	P3,988	49,8	$=$	$=$	10.03	13	8:94	\%
$5{ }^{5} \mathbf{8} 1$	19:99	64:9	$=$	$=$	7.78	12	8.95	4
382	13:48	36:9	$=$	$=$	8.48	13	7.38	4
5] ${ }^{\text {B }}$	13:09	55\% ${ }^{\text {¢ }}$	$=$	$=$	8.88	1225	7.93	\%
$5{ }^{5} 84$	10:62	60:9	$=$	$=$	9.48	12	6:6]	2
363	13.48	39, 2	$=$	$=$	9.88	1.25	8.89	3
388	19:44	55:9	$=$	$=$	7.57	18	9.25	${ }^{2}$
387	13:18	65:3	$=$	=	9.85	1315	9.97	2
3688	5. 453	532.85	=	=	8.48	12	7.55	2
$3{ }^{3} \overline{6} 9$	97, 34	48.9	$=$	$=$	8.83	12	6.90	-
539	12.49	44.5	$=$	$=$	9:43	12	8:49	,
327	F2980	86.4	$=$	$=$	8.43	12	7.89	3
352	17.54	48. $\overline{2}$	$=$	$=$	88.36	19	12.483	4
3293	18.84	68.3	$=$	$=$	32:08	13	12.48	4
$3{ }^{3} 5$	18.62	48.8	$=$	$=$	12:48	12	11.44	4
	46:32	40:3	$=$	$=$	13:74	$1{ }^{1}$	15:86	${ }^{2}$
328	14.23		$=$	=	189.603	1105	9:38	4
359	1-5:183	49, 3	$=$	$=$	9.43	11705	8.68	3
358	14.68	44:1	$=$	$=$	8.35	1025	Q. 54	${ }^{2}$
339	12:60	49,4	=	=	9.43	12	8:44	4
483	13.52	45:2	$=$	$=$	183384	13	8:88	3
483	17,5\%	41:3	$=$	=	88563	12	12667	4
483	76? ${ }^{\text {a }}$	69.8	$=$	$=$	12.93	14	74.53	4
483	18.62	49.9	$=$	$=$	1292	12	17.105	4
483	19.5S	46,9	$=$	$=$	82.33	12	17.306	4
435	12.5\%	39:3	$=$	=	8.82	14	7.938	4
488	26.36	49.5	$=$	=	17560	1625	63.57	4
489	P0\% 38	49,4	$=$	=	7.85	12	6:53	2
448	12.40	44.5	$=$	$=$	8:43	12	8:42	3
469	18.29	(44. ${ }^{\text {¢ }}$	$=$	$=$	8.86	18	7.87	3
448	1z.84	48:8	$=$	$=$	88.36	18	72.588	$\underline{3}$
445	78:62	68.4	$=$	$=$	73.28	12	10.69	2
446	18:64	45:0	$=$	$=$	13:0]	11	18.86	4
543	10.48	30:9	$=$	$=$	7.34	14	8:37	$\underline{4}$
544	18.928	58.8	$=$	$=$	9.83	14	8.22	4
448	79.38	49.8	$=$	=	84236	18	1/3324	4
$45 \overline{8}$	955.50	47:8	$=$	$=$	12.3	18	90.488	\%
457	9.7P8	43:3	$=$	$=$	8.66	19	6.68	4
458	13.59	44:4	$=$	$=$	10.635	16	6.4\%	2
459	190\% 91	47.9	$=$	$=$	8.58	12	6.64	2
458	10.48	60.6	$=$	$=$	8.38	12	6.84	4
455	13:59	44:8	$=$	$=$	8:44	18	7.69	4
525	19:36	68:7	$=$	$=$	7.9]	13	6.89	4
423	19:63	58.: ${ }^{\text {5 }}$	$=$	$=$	8.54	12	7.84	2
558	19:64	49,8	$=$	$=$	8.95	12		2
459	14:68	44:0	$=$	$=$	10399	1205	9.62	3
428	9.594	6¢: ${ }^{\text {a }}$	$=$	$=$	8.88	1125	6.61	3
$46^{6} 7$	19:47	49:8	$=$	$=$	8.47	11	7:69	$\underline{3}$
428	28885	48:5	$=$	$=$	75.45	10.5	18.65	\%
429	9.4\%	(84.0	$=$	$=$	6.48	12	5.36	4
45^{36}	18.30	35:8	$=$	$=$	12.35	16	60.50	4
$4{ }^{5} 5$	19:56	58:8	$=$	$=$	7.96	18	6.95	4
456	19:84	49.8	$=$	$=$	8.53	12	6.88	3
$4{ }^{4} 3$	42:39	49:2	$=$	$=$	86.53	1305	17.5.53	2
$4{ }^{4} 9$	16:58	54:3	$=$	$=$	770.081	1605	8:48	4
$4{ }^{4} 5$	16.53	63:3	$=$	$=$	77.288	11115	$61.58{ }^{4}$	4
570	11.71	45.7	-	-	8.84	10	8.04	1
571	11.86	47.6	-	-	8.96	11.5	8.04	1
572	9.94	44.6	-	-	7.70	12	6.88	3
573	11.14	41.2	-	-	8.76	11	7.89	3
574	12.38	43.3	-	-	9.50	10	8.64	1
575	13.48	49.3	-	-	10.11	12	9.03	2
576	11.89	45.3	-	-	9.00	10	8.18	1
577	12.78	49.1	-	-	9.60	12	8.57	2
578	13.15	51.2	-	-	9.74	12	8.70	4
579	13.05	54.2	-	-	9.27	9.5	8.47	3
580	12.89	53.3	-	-	9.25	10	8.41	3
581	11.96	53.4	-	-	8.54	9.5	7.80	3
582	18.35	58.1	-	-	12.77	10	11.61	4
583	22.79	47.8	-	-	17.19	11.5	15.42	2
584	12.50	50.1	-	-	9.16	10	8.33	3
585	11.55	58.5	-	-	8.16	12	7.29	4

586	13.76	44.7	-	-	10.46	10	9.51	2
587	11.45	56.5	-	-	8.27	13	7.32	4
588	9.66	72.9	-	-	6.37	14	5.59	2
589	10.96	44.7	-	-	8.41	11	7.58	2
590	10.12	41.3	-	-	7.88	10	7.16	2
591	13.25	44.0	-	-	10.12	10	9.20	2
592	11.46	46.9	-	-	8.58	10	7.80	1
593	11.52	57.2	-	-	8.06	10	7.33	4
594	12.34	46.3	-	-	9.36	11	8.43	1
595	12.15	46.4	-	-	9.13	10	8.30	1
596	23.41	47.5	-	-	17.78	12	15.88	2
597	18.63	59.7	-	-	12.83	10	11.66	4
598	20.19	57.2	-	-	14.00	9	12.84	2
599	23.50	55.2	-	-	17.11	13	15.14	2
600	21.22	54.9	-	-	15.07	10	13.70	2
601	14.24	52.5	-	-	10.55	13	9.34	2
602	13.93	49.5	-	-	10.34	11	9.32	2
603	13.27	46.3	-	-	9.89	9	9.07	3
604	11.71	41.0	-	-	9.22	11	8.31	3
605	14.78	48.7	-	-	10.93	10	9.94	4
606	11.97	53.8	-	-	8.56	10	7.78	3
607	12.59	56.7	-	-	9.08	13	8.04	4
608	12.83	56.5	-	-	9.18	12	8.20	3
609	13.12	53.4	-	-	9.58	12	8.55	2
610	11.33	47.4	-	-	8.61	12	7.69	3
611	12.71	51.7	-	-	9.30	11	8.38	4
612	12.93	56.3	-	-	9.10	10	8.27	3
613	17.86	53.5	-	-	13.15	13	11.64	4
614	21.12	50.0	-	-	15.77	12	14.08	2
615	24.54	47.7	-	-	18.86	13.5	16.62	2
616	21.95	49.6	-	-	16.14	10	14.67	2
617	12.16	51.1	-	-	8.85	10	8.05	3
618	14.64	52.8	-	-	10.73	12	9.58	2
619	12.07	48.7	-	-	8.93	10	8.12	2
620	10.41	51.9	-	-	7.54	10	6.85	4
621	17.84	48.8	-	-	13.31	11	11.99	2
622	17.73	45.0	-	-	13.39	9.5	12.23	2
623	15.94	45.6	-	-	12.04	10	10.95	2
624	10.75	46.8	-	-	8.02	9.5	7.32	1
625	12.79	45.5	-	-	9.76	11	8.79	2
626	12.13	53.2	-	-	8.79	11	7.92	3
627	11.18	40.1	-	-	8.86	11	7.98	3
628	12.91	54.0	-	-	9.64	15	8.38	4
629	20.81	48.1	-	-	15.60	11	14.05	2
630	21.24	44.2	-	-	16.06	9	14.73	2
631	20.48	50.2	-	-	15.00	10	13.64	4
632	18.38	51.5	-	-	13.71	13	12.13	4
633	13.92	48.9	-	-	10.38	11	9.35	2
634	13.22	52.9	-	-	9.77	13	8.65	2
635	13.56	54.8	-	-	9.90	13	8.76	4
636	13.30	55.2	-	-	9.60	12	8.57	3
637	8.81	48.8	-	-	6.57	11	5.92	4
638	8.00	49.5	-	-	5.94	11	5.35	2
639	13.04	49.2	-	-	9.79	12	8.74	2
640	12.73	45.0	-	-	9.66	10	8.78	2
641	11.45	45.9	-	-	8.71	11	7.85	1
642	19.75	57.9	-	-	13.88	11	12.50	2
643	19.23	47.8	-	-	14.57	12	13.01	2
644	17.33	48.9	-	-	12.80	10	11.64	2
645	21.23	49.7	-	-	15.88	12	14.18	2
646	17.85	58.7	-	-	12.82	14	11.25	2
647	18.38	51.6	-	-	13.34	10	12.13	4
648	20.17	63.8	-	-	14.04	14	12.32	4
649	18.80	55.1	-	-	13.58	12	12.13	4
650	13.02	57.4	-	-	9.35	13	8.27	2
651	11.98	41.8	-	-	9.42	11.5	8.45	3
652	13.03	53.0	-	-	9.54	12	8.52	4
653	10.71	50.5	-	-	8.04	13	7.12	3
654	10.72	44.3	-	-	8.32	12	7.43	3
655	12.79	55.8	-	-	9.03	10	8.21	3
656	18.06	57.3	-	-	12.97	13	11.48	3
657	13.70	47.7	-	-	10.20	10	9.27	4
658	17.93	56.7	-	-	12.93	13	11.44	4

659	17.93	53.7	-	-	12.83	10	11.66	4
660	17.16	44.0	-	-	13.11	10	11.92	2
661	16.84	52.6	-	-	12.58	14	11.04	4
662	16.98	46.4	-	-	12.76	10	11.60	4
663	21.59	52.9	-	-	15.53	10	14.12	2
664	23.79	49.0	-	-	17.88	12	15.96	2
665	21.92	44.8	-	-	16.96	12	15.14	2
666	14.77	48.1	-	-	11.07	11	9.97	2
667	13.74	44.8	-	-	10.53	11	9.49	2
668	12.62	44.3	-	-	9.71	11	8.75	1
669	11.24	47.2	-	-	8.40	10	7.64	2
670	12.13	56.2	-	-	8.62	11	7.77	2
671	11.84	49.5	-	-	8.71	10	7.92	1
672	13.38	51.9	-	-	9.69	10	8.81	3
673	10.57	57.3	-	-	7.46	11	6.72	3
674	11.37	42.4	-	-	8.94	12	7.98	3
675	9.30	51.3	-	-	6.76	10	6.15	4
676	13.49	51.4	-	-	9.89	11	8.91	4
677	21.56	54.7	-	-	15.33	10	13.94	2
678	21.78	45.0	-	-	16.82	12	15.02	2
679	17.17	55.3	-	-	12.60	14	11.05	4
680	16.15	49.7	-	-	12.08	12	10.79	2
681	17.79	56.4	-	-	12.97	14	11.38	4
682	13.23	53.5	-	-	9.48	10	8.62	4
683	13.91	51.1	-	-	10.31	12	9.21	2
684	14.93	48.1	-	-	11.29	12	10.08	2
685	11.80	47.8	-	-	8.86	11	7.98	2
686	12.57	45.9	-	-	9.48	10	8.62	1
687	11.76	53.4	-	-	8.51	11	7.67	4
688	12.46	58.5	-	-	8.65	10	7.86	3
689	11.34	44.0	-	-	8.82	12	7.88	3
690	13.69	57.4	-	-	9.83	13	8.70	4
691	18.62	60.6	-	-	12.87	11	11.59	4
692	18.66	53.6	-	-	13.73	13	12.15	4
693	16.78	50.9	-	-	12.68	14	11.12	4
694	18.62	49.2	-	-	14.10	13	12.48	4
695	13.68	53.7	-	-	9.97	12	8.90	3
696	12.06	49.9	-	-	9.01	12	8.04	4
697	18.58	54.9	-	-	13.67	14	11.99	4
698	19.13	42.2	16.71	24.19	15.07	12	13.46	3
699	19.55	55.3	15.98	26.91	14.48	15	12.59	2
700	15.07	52.7	12.20	23.66	11.05	12	9.87	3
701	15.77	53.5	12.63	22.90	11.51	12	10.28	3
702	13.58	50.6	10.88	20.65	9.92	10	9.02	3
703	15.09	55.6	11.95	23.20	10.67	10	9.70	3
704	14.92	55.5	11.95	24.55	10.65	11	9.59	3
705	14.98	56.0	11.80	22.92	10.56	10	9.60	3
706	14.35	71.7	10.55	26.24	9.36	12	8.36	3
707	14.58	52.4	11.79	23.23	10.62	11	9.57	3
708	16.94	57.7	13.07	21.71	11.92	11	10.74	4
709	18.61	48.1	15.46	23.06	14.07	12	12.56	4
710	14.72	63.7	11.00	22.35	9.89	10	8.99	3
711	15.23	59.6	11.84	24.05	10.69	12	9.54	3
712	14.74	54.4	11.69	22.48	10.69	12	9.54	3
713	19.86	51.1	16.01	21.83	14.85	13	13.14	4
714	12.09	47.1	9.86	19.99	9.08	10.5	8.22	1
715	11.98	40.8	10.15	19.32	9.40	10.5	8.51	1
716	11.85	46.5	9.86	21.89	9.06	12	8.09	1
717	12.23	42.1	10.38	20.65	9.55	11	8.60	1
718	12.44	45.8	10.51	23.20	9.64	13	8.53	1
719	17.89	42.6	15.13	20.63	13.86	10.5	12.54	2
720	19.00	45.4	15.79	20.87	14.37	10	13.06	2
721	13.03	39.8	11.12	19.34	10.25	10	9.32	3
722	4.80	35.8	4.32	22.18	3.96	12	3.54	3
723	14.46	67.8	10.59	22.88	9.48	10	8.62	3
724	12.00	55.5	9.46	22.57	8.49	10	7.72	3
725	14.84	58.9	11.71	25.38	10.46	12	9.34	3
726	15.81	51.0	12.59	20.22	11.52	10	10.47	4
727	10.98	39.9	9.42	20.06	8.67	10.5	7.85	1
728	9.10	56.1	7.08	21.47	6.47	11	5.83	4
729	18.88	55.8	14.78	21.98	13.45	11	12.12	2
730	18.62	57.1	14.79	24.79	12.80	8	11.85	2
731	15.92	60.7	12.15	22.61	10.90	10	9.91	3

732	8.94	57.8	6.89	21.62	6.26	10.5	5.67	3
733	13.39	52.0	10.53	19.54	9.69	10	8.81	2
734	18.07	51.3	14.50	21.38	13.26	11	11.95	4
735	12.64	48.4	10.46	22.80	9.54	12	8.52	1
736	10.31	55.4	8.02	20.85	7.30	10	6.64	4
737	9.35	54.9	7.39	22.43	6.67	10.5	6.04	4
738	18.36	49.0	14.91	21.04	13.55	10	12.32	2
739	14.93	57.4	11.69	23.26	10.48	10.5	9.48	3
740	15.56	54.8	12.30	22.34	11.11	10.5	10.05	3
741	9.70	60.5	7.51	24.23	6.71	11	6.05	4
742	15.85	52.4	12.48	20.00	11.44	10	10.40	4
743	12.16	45.3	10.21	22.04	9.37	12	8.37	1
744	12.76	43.5	10.77	21.11	9.96	12	8.89	1
745	20.02	49.5	16.35	22.13	14.86	11	13.39	2
746	19.98	59.3	15.55	24.00	14.17	13	12.54	2
747	19.13	49.9	15.57	21.97	14.17	11	12.77	2
748	17.32	53.0	13.57	19.90	12.45	10	11.32	4
749	14.99	60.7	11.59	24.22	10.45	12	9.33	3
750	15.67	51.9	12.59	22.02	11.35	10	10.32	3
751	19.10	52.8	15.46	23.68	14.00	12	12.50	2
752	17.07	52.6	13.54	21.05	12.36	10.5	11.19	4
753	17.69	50.8	14.19	21.00	12.90	10	11.73	4
754	9.13	59.9	6.93	21.39	6.28	10	5.71	4
755	9.96	52.1	8.04	22.76	7.27	11	6.55	4
756	11.32	63.1	8.65	24.61	7.74	11.5	6.94	3
757	14.64	60.1	11.20	22.47	10.06	10	9.15	3
758	9.22	58.5	7.08	21.69	6.40	10	5.82	4
759	16.24	47.5	13.21	19.99	12.11	10	11.01	2
760	14.72	59.7	11.31	22.69	10.14	10	9.22	3
761	15.00	54.7	12.04	24.15	10.91	12.5	9.70	3
762	13.40	52.9	10.51	19.93	9.64	10	8.76	4
763	12.73	44.5	10.63	20.62	9.87	12	8.81	3
764	16.31	48.2	13.04	18.45	12.22	11	11.01	2
765	17.96	43.5	14.99	19.75	13.77	10	12.52	2
766	9.31	59.2	7.27	24.28	6.61	13	5.85	4
767	9.42	53.7	7.39	20.61	6.74	10	6.13	4
768	17.58	49.7	14.37	22.40	13.09	11.5	11.74	4
769	20.04	46.4	16.51	20.59	15.06	10	13.69	2
770	21.27	49.7	17.70	24.54	16.06	13	14.21	2
771	17.55	49.9	14.22	21.44	12.88	10	11.71	2
772	19.89	49.7	16.55	24.59	15.01	13	13.28	2
773	11.00	49.9	8.82	20.22	8.07	10	7.34	1
774	10.64	51.7	8.53	21.62	7.75	10.5	7.01	1
775	11.15	45.6	9.26	20.95	8.46	10.5	7.66	1
776	10.61	50.2	8.55	21.04	7.77	10	7.06	1
777	12.17	66.7	8.96	22.74	8.03	10	7.30	4
778	16.98	44.3	14.07	19.61	12.94	10	11.76	1
779	13.33	54.0	10.36	19.71	9.52	10	8.65	4
780	10.37	46.4	8.54	20.59	7.79	10	7.08	1
781	12.79	69.3	9.17	21.38	8.31	10	7.55	4
782	12.38	70.2	8.83	21.41	8.00	10	7.27	4
783	13.37	64.3	10.08	23.91	9.03	11	8.14	4
784	10.87	45.6	8.88	18.98	8.21	10	7.46	1
785	9.07	41.4	7.74	20.67	7.12	11	6.41	1
786	19.22	53.8	15.08	20.64	13.75	10	12.50	1
787	19.83	45.3	16.76	22.77	15.29	12	13.65	1
788	20.99	44.0	17.90	22.79	16.40	12.5	14.58	1
789	13.05	65.5	10.00	26.84	8.83	12	7.88	4
790	13.82	61.1	10.79	25.75	9.61	12	8.58	4
791	21.42	50.5	17.55	23.31	15.94	12	14.23	1
792	20.45	48.3	16.95	22.95	15.44	12	13.79	1
793	19.89	45.9	16.60	21.76	15.27	12	13.63	1
794	9.82	47.6	8.00	20.22	7.32	10	6.65	1
795	10.85	51.2	8.73	21.65	7.93	10.5	7.18	1
796	10.62	49.0	8.67	21.66	7.91	11	7.13	1
797	13.80	73.7	9.83	23.72	8.74	10	7.95	4
798	13.64	66.2	10.15	23.64	9.03	10	8.21	4
799	13.42	69.5	9.74	23.01	8.71	10	7.92	4
800	12.86	59.9	9.92	23.31	9.01	12	8.04	4
801	19.86	51.1	15.80	20.19	14.46	10	13.15	1
802	20.25	44.3	16.94	20.69	15.51	10.5	14.04	1
803	10.91	47.1	9.05	22.06	8.23	11	7.41	1
804	10.16	48.2	8.35	21.79	7.61	11	6.86	1

805	10.61	49.3	8.72	22.69	7.96	12	7.11	1
806	10.85	50.4	8.91	23.50	8.08	12	7.21	1
807	11.38	47.1	9.36	20.99	8.51	10	7.74	1
808	12.31	68.7	9.13	25.11	8.10	11	7.30	4
809	13.69	63.5	10.59	26.50	9.46	13	8.37	4
810	14.01	62.5	10.90	26.46	9.74	13	8.62	4
811	10.94	51.0	8.80	21.46	7.97	10	7.25	1
812	11.56	47.7	9.54	21.86	8.69	11	7.83	1
813	10.85	74.7	7.67	23.53	6.83	10	6.21	4
814	12.85	65.8	9.78	26.19	8.68	12	7.75	4
815	13.57	61.5	10.44	24.26	9.41	12	8.40	4
816	12.86	55.0	10.02	20.74	9.17	10.5	8.30	4
817	11.09	49.1	8.91	19.82	8.18	10	7.44	1
818	19.85	51.2	15.75	20.00	14.70	12	13.13	1
819	18.23	51.9	14.69	22.42	13.44	12	12.00	2
820	21.46	58.3	16.53	21.96	15.18	12	13.55	2
821	20.58	60.4	16.09	25.39	14.50	13	12.83	2
822	11.38	44.2	9.55	21.01	8.76	11	7.89	2
823	12.20	43.2	10.26	20.45	9.37	10	8.52	2
824	19.81	54.9	15.68	22.64	14.32	12	12.79	2
825	11.95	41.5	10.14	20.06	9.29	10	8.45	2
826	12.05	50.3	9.88	23.22	8.98	12	8.02	2
827	11.55	48.3	9.60	23.27	8.80	13	7.79	2
828	11.88	40.0	10.47	23.37	9.59	13	8.49	2
829	9.71	50.0	7.73	19.42	7.12	10	6.47	4
830	19.22	52.1	15.31	21.19	13.96	10.5	12.63	1
831	20.68	54.3	16.50	23.12	15.01	12	13.40	1
832	21.22	46.1	17.61	21.26	16.12	11	14.52	1
833	20.90	43.3	17.38	19.19	16.04	10	14.58	1
834	16.09	64.7	12.15	24.36	11.04	13	9.77	2
835	20.35	43.7	16.94	19.60	15.58	10	14.16	1
836	22.99	45.5	19.17	21.30	17.70	12	15.80	1
837	9.66	49.7	7.78	20.54	7.10	10	6.45	1
838	9.88	47.1	8.09	20.42	7.39	10	6.72	1
839	12.70	57.7	10.00	24.17	9.02	12	8.05	4
840	13.11	64.8	9.85	23.83	8.75	10	7.95	4
841	13.38	63.1	10.46	27.53	9.35	14	8.20	4
842	12.60	68.0	9.27	23.60	8.25	10	7.50	4
843	10.59	51.7	8.56	22.60	7.75	11	6.98	1
844	8.04	60.5	6.19	23.58	5.56	11	5.01	2
845	19.43	58.4	15.04	22.57	13.62	11	12.27	2
846	10.85	48.3	8.95	22.35	8.12	11	7.32	2
847	19.88	48.4	16.12	20.30	14.74	10	13.40	1
848	19.00	60.9	14.84	25.69	13.46	14	11.81	2
849	13.29	65.6	9.92	23.58	8.83	10	8.03	4
850	14.65	63.1	11.56	28.69	10.33	15	8.98	4
851	18.10	47.7	14.74	20.28	13.48	10	12.25	1
852	12.45	63.2	9.38	22.93	8.47	11	7.63	4
853	20.13	45.9	16.75	21.42	15.45	12	13.79	3
854	20.23	48.1	16.70	22.25	15.30	12	13.66	1
855	18.19	42.0	15.50	20.99	14.22	11	12.81	1
856	14.28	63.0	11.04	26.04	9.81	12	8.76	4
857	11.30	49.6	9.28	22.86	8.46	12	7.55	1
858	13.30	64.9	10.00	24.01	8.87	10	8.06	4
859	13.55	65.0	10.48	27.64	9.36	14	8.21	4
860	13.26	58.2	10.49	25.12	9.39	12	8.38	4
861	10.55	53.7	8.32	21.22	7.55	10	6.86	1
862	11.80	45.5	9.79	20.73	8.92	10	8.11	2
863	11.36	49.4	9.22	21.26	8.44	11	7.60	2
864	10.21	49.0	8.18	19.34	7.54	10	6.85	2
865	11.46	49.7	9.25	20.82	8.46	10.5	7.66	2
866	20.88	53.4	16.80	23.43	15.38	13	13.61	2
867	20.81	58.0	16.35	24.16	14.88	13	13.17	2
868	21.00	42.1	17.79	20.39	16.55	12	14.78	4
871	9.08	50.9	7.21	19.80	6.62	10	6.02	4
872	9.34	49.8	7.51	20.42	6.86	10	6.24	4
873	8.98	43.6	7.49	19.75	6.88	10	6.25	4
874	9.52	47.7	7.74	20.08	7.09	10	6.45	4
875	11.50	43.4	9.65	20.35	8.90	11	8.02	2
877	11.63	40.1	9.96	20.00	9.13	10	8.30	2
878	12.08	52.5	9.63	21.60	8.87	12	7.92	2
879	12.09	48.3	9.98	22.43	9.13	12	8.15	2
880	11.40	47.1	9.40	21.33	8.60	11	7.75	2

881	15.39	53.2	12.15	20.96	11.15	11	10.05	2
882	11.44	42.0	9.66	19.93	8.86	10	8.05	2
883	10.77	46.2	8.87	20.41	8.14	10.5	7.37	2
884	11.16	38.6	9.64	19.68	8.86	10	8.05	2
887	19.78	43.8	16.68	21.25	15.27	11	13.76	2
888	14.96	51.5	11.86	20.13	10.86	10	9.87	2
889	17.44	40.7	15.09	21.76	13.88	12	12.39	2
890	11.55	45.4	9.68	21.82	8.82	11	7.95	2
891	12.10	43.7	9.94	18.02	9.18	9	8.42	2
892	10.86	40.9	9.25	19.99	8.48	10	7.71	2
893	11.74	41.3	9.95	19.75	9.14	10	8.31	2
894	10.00	48.2	8.09	19.93	7.42	10	6.75	3
895	11.58	51.7	9.01	18.03	8.55	12	7.63	2
896	11.06	41.0	9.34	19.07	8.55	9	7.84	2
897	12.52	43.5	10.67	22.32	9.77	12	8.72	2
898	13.23	45.4	11.05	21.45	10.19	12	9.10	2
899	12.04	46.2	9.90	20.20	9.06	10	8.24	2
900	12.43	41.7	10.60	20.80	9.74	11	8.77	2
901	20.51	51.4	16.50	21.78	15.04	11	13.55	2
902	21.19	49.2	16.80	18.31	15.62	10	14.20	2
903	12.40	57.7	9.46	20.30	8.65	10	7.86	3
904	12.26	42.6	10.42	21.19	9.63	12	8.60	2
905	19.41	53.3	15.36	21.32	13.99	10.5	12.66	2
906	18.55	48.6	15.10	21.00	13.79	10.5	12.48	2
907	16.94	62.2	13.00	24.44	11.70	12	10.45	3
908	17.47	60.1	13.36	22.40	12.17	11.5	10.91	3
909	16.40	65.3	12.33	24.30	11.11	12	9.92	3
910	19.80	53.8	15.36	19.32	14.16	10	12.87	2
911	19.61	48.2	16.09	21.58	14.69	11	13.23	2
912	11.61	53.9	9.30	23.27	8.45	12	7.54	2
913	13.78	58.9	10.54	21.53	9.54	10	8.67	3
914	9.15	66.0	6.71	21.70	6.12	11	5.51	2
915	9.59	60.6	7.27	21.72	6.57	10	5.97	2
916	17.95	43.6	15.27	22.16	14.00	12	12.50	2
917	9.46	63.4	6.97	20.36	6.37	10	5.79	2
918	9.94	59.4	7.50	20.26	6.86	10	6.24	2
919	16.99	43.1	14.40	21.26	13.30	12	11.88	2
920	9.46	57.7	7.19	19.83	6.66	11	6.00	2
921	6.99	53.2	5.42	18.76	5.02	10	4.56	2
922	12.89	64.9	9.45	20.87	8.60	10	7.82	3
923	9.70	61.2	7.38	22.64	6.74	12	6.02	2
924	9.15	65.3	6.83	23.38	6.20	12	5.54	2
925	15.79	41.1	13.46	20.24	12.37	10.5	11.19	2
926	14.20	61.7	10.46	19.11	9.66	10	8.78	4
927	13.03	54.9	10.10	20.08	9.21	9.5	8.41	2
928	17.90	45.5	14.84	20.59	13.66	11	12.31	2
929	12.73	46.1	10.34	18.64	9.50	9	8.72	2
930	11.73	49.5	9.54	21.56	8.79	12	7.85	2
931	18.36	49.2	14.90	21.05	13.54	10	12.31	2
932	20.29	50.1	16.76	24.03	15.27	13	13.51	2
933	13.20	64.8	9.78	22.11	8.81	10	8.01	4
934	12.03	53.7	9.39	19.97	8.61	10	7.83	4
935	16.02	40.6	13.63	19.66	12.53	10	11.39	2
936	9.69	46.0	7.93	19.49	7.30	10	6.64	3
937	12.59	48.9	10.01	18.40	9.30	10	8.45	2
938	19.73	52.7	15.58	20.60	14.34	11	12.92	2
939	20.29	50.8	16.56	23.05	15.14	12.5	13.46	2
940	21.98	48.6	18.25	23.41	16.71	13	14.79	2
941	14.71	56.2	11.64	23.57	10.55	12	9.42	4
942	18.40	43.8	15.38	20.22	14.20	11	12.79	2
943	15.22	56.9	11.84	22.03	10.77	11	9.70	4
944	20.36	48.7	16.66	21.72	15.33	12	13.69	2
945	19.82	44.5	16.64	21.36	15.22	11	13.71	2
946	11.13	47.5	9.03	19.64	8.34	10.5	7.55	2
947	11.86	53.5	9.30	20.35	8.50	10	7.73	4
948	17.41	42.4	14.96	22.39	13.69	12	12.22	2
949	9.80	45.7	8.04	19.51	7.40	10	6.73	3
950	12.29	42.6	10.37	20.33	9.48	10	8.62	3
951	17.91	43.1	14.96	19.51	13.77	10	12.52	2
952	16.57	55.3	12.85	20.40	11.74	10	10.67	3
953	12.03	42.1	10.13	19.69	9.31	10	8.46	3
954	16.61	42.1	13.90	18.90	12.86	10	11.69	3
955	11.07	61.2	8.61	25.38	7.76	13	6.87	4

956	11.84	43.3	9.97	20.70	9.21	11.5	8.26	3
957	18.50	41.3	15.90	21.47	14.66	12	13.09	3
958	10.22	56.4	7.85	20.10	7.19	10	6.54	4
959	9.50	54.3	7.35	19.41	6.74	9.5	6.16	4
960	12.75	52.9	10.22	22.55	9.34	12	8.34	2
961	12.15	56.0	9.29	19.24	8.57	10	7.79	2
962	13.19	52.1	10.64	22.73	9.71	12	8.67	2
963	13.11	52.0	10.60	22.90	9.66	12	8.63	2
964	12.74	52.4	10.25	22.65	9.36	12	8.36	2
965	13.40	52.6	10.74	22.32	9.79	11.5	8.78	2
966	12.26	50.9	9.86	21.34	9.02	11	8.13	2
967	18.80	50.0	15.16	20.93	13.79	10	12.54	3
968	13.09	48.4	10.63	20.47	9.75	10.5	8.82	2
969	17.43	45.6	14.29	19.35	13.17	10	11.97	2
970	18.50	57.2	14.34	21.86	13.18	12	11.77	2
971	16.82	53.5	13.40	22.31	12.27	12	10.96	2
972	12.72	47.0	10.36	19.71	9.52	10	8.65	3
973	10.37	48.5	8.48	21.45	7.82	12	6.98	2
974	10.21	55.4	8.12	23.57	7.36	12	6.57	4
975	10.03	59.7	7.68	22.26	6.91	10	6.28	4
976	10.60	57.2	8.20	21.62	7.45	10.5	6.74	4
977	9.95	64.4	7.40	22.24	6.75	11.5	6.05	2
978	17.20	54.3	13.60	22.04	12.37	11	11.14	2
979	9.85	63.9	7.30	21.48	6.58	9.5	6.01	4
980	10.68	51.0	8.61	21.76	7.92	12	7.07	2
981	10.01	59.0	7.80	23.91	7.05	12	6.29	
982	10.63	62.9	8.00	22.56	7.18	10	6.53	4
983	19.08	46.3	15.70	20.35	14.35	10	13.05	3
984	16.70	54.6	13.23	22.46	12.10	12	10.80	3
985	17.18	54.1	13.53	21.35	12.32	10.5	11.15	3
986	20.05	51.2	16.42	23.86	14.98	13	13.26	3
987	20.25	43.7	16.85	19.58	15.50	10	14.09	2
988	18.38	46.8	15.09	20.50	13.90	11	12.52	2
989	18.81	45.5	15.46	19.59	14.22	10	12.93	2
990	16.19	47.1	13.34	21.17	12.33	12	11.01	3
991	10.98	59.1	8.51	23.32	7.66	11	6.90	4
992	10.59	53.4	8.16	18.23	7.73	12	6.90	4
993	10.24	54.4	7.85	18.35	7.23	9	6.63	4
994	9.87	54.3	7.78	21.66	7.13	11.5	6.39	2
995	9.96	49.9	8.07	21.48	7.44	12	6.64	2
996	9.97	57.3	7.55	19.12	6.94	9.5	6.34	4
997	10.73	57.6	8.30	21.90	7.49	10	6.81	4
998	11.39	59.5	8.92	24.90	8.07	13	7.14	4
999	12.30	47.5	10.00	19.91	9.09	9	8.34	3
1000	13.60	49.0	10.97	20.19	10.04	10	9.13	4
1001	13.08	47.6	10.40	17.37	9.57	8	8.86	2
1002	10.34	56.5	7.97	20.59	7.27	10	6.61	4
1003	10.56	46.3	8.64	19.70	7.94	10	7.22	2
1004	9.63	54.2	7.50	20.09	6.87	10	6.25	2
1005	10.21	60.9	7.80	22.92	6.98	10	6.35	4
1006	10.20	60.6	7.85	23.60	7.05	11	6.35	4
1007	9.73	57.4	7.37	19.20	6.77	9.5	6.18	4
1008	18.28	50.2	14.87	22.19	13.63	12	12.17	2
1009	17.93	63.7	13.18	20.33	12.00	9.56	10.95	3
1010	20.20	60.1	15.20	20.46	13.88	10	12.62	3
1011	11.92	47.5	9.68	19.78	8.89	10	8.08	2
1012	12.71	38.6	11.03	20.27	10.18	11	9.17	3
1013	10.12	70.5	7.26	22.30	6.53	10	5.94	4
1014	12.90	51.3	10.21	19.73	9.38	10	8.53	4
1015	12.20	52.2	9.68	20.73	8.82	10	8.02	2
1016	9.91	60.4	7.65	23.78	6.86	11	6.18	4
1017	17.47	48.7	14.09	19.96	12.92	10	11.75	3
1018	18.64	55.8	14.50	21.20	13.16	10	11.96	3
1019	17.73	41.4	15.05	20.05	13.79	10	12.54	2
1020	17.37	43.4	14.48	19.58	13.32	10	12.11	1
1021	22.34	43.1	19.11	22.44	17.48	12	15.61	1
1022	17.80	48.7	14.30	19.44	13.17	10	11.97	1
1023	18.52	46.7	15.11	19.66	13.89	10	12.63	2
1024	20.50	48.8	16.92	22.80	15.57	13	13.78	1
1025	19.53	53.4	15.49	21.68	14.13	11	12.73	1
1026	16.84	54.6	13.13	20.54	12.20	12	10.89	2
1027	17.88	47.5	14.61	20.56	13.33	10	12.12	1
1028	16.76	52.5	13.07	18.92	12.09	10	10.99	2

1029	15.34	46.4	12.61	20.35	11.63	11	10.48	2	1102	11.64	61.3	8.81	22.05	7.94	10	7.22	4	
1030	18.75	49.1	15.01	19.39	13.83	10	12.57	1	1103	21.41	43.2	18.20	21.77	16.74	12	14.95	2	
1031	19.04	40.1	16.28	19.79	14.95	10	13.59	2	1104	18.47	55.9	14.55	22.82	13.15	11	11.85	3	
1032	20.83	51.8	16.75	22.08	15.23	11	13.72	1	1105	19.32	48.3	15.87	21.82	14.33	10	13.03	3	
1033	18.82	49.4	15.14	20.16	13.86	10	12.60	2	1106	17.13	52.0	13.80	22.47	12.62	12	11.27	2	
1034	16.89	48.4	13.98	22.84	12.86	13	11.38	2	1107	9.54	51.2	7.80	23.63	6.94	10	6.31	1	
1035	17.64	48.3	14.25	19.84	13.08	10	11.89	2	1108	9.79	53.3	7.60	19.02	7.12	11.5	6.39	1	
1036	14.47	50.4	11.45	19.05	10.58	10	9.62	2	1109	20.57	63.7	15.70	24.92	13.95	11	12.57	3	
1037	15.77	52.2	12.43	19.94	11.40	10	10.36	3	1110	16.25	44.7	13.66	21.67	12.35	10	11.23	2	
1038	17.33	50.8	13.85	20.53	12.64	10	11.49	3	1111	18.95	59.7	14.40	21.38	13.05	10	11.86	3	
1039	14.19	53.7	10.91	18.21	10.06	9	9.23	3	1112	19.38	47.4	15.80	20.19	14.46	10	13.15	2	
1040	15.27	45.1	12.38	17.65	11.47	9	10.52	1	1113	18.38	46.3	15.03	19.63	13.82	10	12.56	2	
1041	17.23	44.9	14.06	18.24	13.08	10	11.89	1	1114	17.55	40.7	14.77	18.42	13.72	10	12.47	2	
1042	16.35	42.7	13.66	19.25	12.60	10	11.45	1	1115	17.25	62.3	12.92	21.54	11.80	11	10.63	3	
1043	14.22	43.2	11.76	18.46	10.92	10	9.93	1	1116	15.50	50.3	12.51	21.29	11.50	11.5	10.31	3	
1044	17.44	44.5	14.52	20.28	13.40	11	12.07	1	1117	14.79	46.1	12.13	19.79	11.24	11	10.13	3	
1045	18.46	46.8	15.30	21.68	14.02	11.5	12.57	1	1118	15.37	47.6	12.50	20.03	11.56	11	10.41	2	
1076	18．78	46.8	15.39	21．65	14．18	12	12．59	\＄	1119	112551	120.3	195．9 d	2326	211465	9．36	112.88	8.48	
1046	18.98	58.8	14．88	20.88	13．58	18	12，35	¢	1120	118589	156.9	45.84	2324	204504	0.38	112.54	9.32	
1048	19.08	54．3	15.06	29.40	13.88	10	12.58	P	1121	28524	12．8．11	57.9	8228	211538	9．332	113.95	8.48	
1048	18．38	50.8	13.83	29．40	13．30	1005	12，09	2	1122	118568	12．8．5	55．52	81109	2826	9．117	7136	8.28	
1050	18.06	57.0	15.78	28.46	13.30	13	12.60	2	1123	11353	10.47	69.00	28.7	28．62	7．96	5086	6.42	
1080	19.02	58.8	14.50	29.30	12.48	10	11，98	＋	1124	11253	9．0．8	57.8	7.82	223884	7.1185	112	6.37	
1082	18.76	48.6	14.20	22.35	13.63	12	19，68	3	1125	29584	90666	$4{ }^{4} .5$	29.4	204400	7.33	112.80	6.59	
1082	19.68	52.8	15.88	22.09	14．86	$1{ }^{1}$	19，90	3	1126	1115539	94634	98.82	23.26	281204	6．762	110.48	6.15	
1083	18.50	69.9	15.08	20.58	12.87	1025	13.40	2	1127	11260	129.9	469．a	800	21259	9．116	111.77	8.25	
1085	90.58	48.9	16.13	99.98	14．59	10	12．99	3	1128	118689	195．0．3	99． 9	\＄1856	212800	13.10	110.9	1.24	
1086	18.40	63，2	10．28	20.60	198.6	10	181．882	，	1129	112602	94500	505．96	26．4	214380	7．am	12.8	6.29	
1088	13.98	59.0	10.68	28.98	19862	10	181．684	2	1130	118689	1298．3	93.7	1008	21295	9．23	12.06	8.24	
1088	19.39	50．0	15．59	20.48	19.30	18	12820	2	1131	113644	18．5．6．	641．O6	21468	1900木18	12．42	9009	1.38	
1088	12.83	50.3	194889	29，95	198.208	12	181.885	2	1132	11265	17.5	63． 0	3226	230010	12.18	19.02	10.36	
1080	18．04	69.5	13.56	\＄9．48	12.38	10	12.10	B	1133	112684	19.2 .4	950．3	5909	20.78	3.86	8261	2.38	
1000	18.08	60.8	15.90	22，48	12.88	18	12．72	B	1134	112608	1万\％． 8	5B． 90	12132	19．829	12．23	6051	1.42	
1002	19.87	58.8	18.60	25.68	14.59	18	12.88	B	1135	12958	1 万． 0.9	59.43	13018	28.88	121015	6218	0.42	
1008	19．89	59.2	10.20	28，75	19.62	12	18.978	2	1136	118690	18．298	65． 74	139590	204554	12.58	113.13	1.23	
1003	20318	85.8	16.475	20.28	1658	1015	18382	2	1137	1238	1318.8	57．80	0.565	2ct． 288	9．70	6130	8.74	
1005	18.88	58.2	16.90	25.44	19854	12	181.588	2	1138	11278	129.8	59.88	2735	2（8，\％20）	8.96	5091	8.09	
1006	18.85	50.0	155826	20.58	198082	16	18.008	2	1139	1288	95590	67.73	22.2	27．62	6．54	6032	5.95	
1008	16.30	52.8	10.68	20.86	192878	10	181.664	2	1140	1988	1657.8	57．8	20.4	28.20	7．27	6230	6.45	
1008	18.89	60.9	13.00	25.89	12.94	1225	10.86	B	1141	11789	105．¢．31	64．8	20.4	24068.	7.19	19.85	6.45	
1008	20.84	58.5	18.55	22.69	18．48	13	13.63	B	1142	112764	12.5 .5	30.3	1240N3	29． 8.87	9．22．5	8131	8.311	
1000	18.80	48.0	15.73	20.48	13.82	10	12.56	2	1143	11878	129.3	50.66	9.9 .52	27.055	8.97	6241	8.04	
1002	28.70	46.8	10.28	20.53	15797	10	181734	B	1144	12.48	85836	59.37	28．73	28.76	6．116		5．56	
1002	18.36	58.9	184.438	29.28	128010	1025	17．552	4	1145	11788	17.7 .0	48.9	14876	212488	1359	112.76	12．23	
1008	18.79	50.8	16.20	23.57	194201	11125	1823	B	1146	112797	10.2 .5	Q 5.0	8.52	253283	7．2025	12.60	6.88	
1005	10.59	58.0	183.185	20.87	12.423	12	16.818	2	1147	112880	10．7．B	58.51	8．8．6．	2383	7.412	10.48	6.71	
1006	10.13	49.1	181.103	29.08	10542	12	0．b9	B	1148	111883	129.8	48． 80	105585	200981	9．55	9085	8.68	
1006	183739	48.9	77.802	29.98	10.181	10	0.52	B	1149	19.85	18.82	57.66	17438	27.98	13.00		11.82	
1008	13.48	40.6	10300	28.38	8.98	12	8.88	2	1150	18．83	18.86 .6	48.64	15839	2（6）．4a	4.18	5158	2.47	
1009	10.66	56.6	18083	28.98	9.83	10	8.68	2	1151	112834	158.8	98.44	8.920	1927．2．	7．925	110.96	7.24	
1070	10.21	62．b	18.448	24.80	9.88	12	8.55	2	1152	12859	189．5．5	928．81	120074	－807． 3	12.85	0304	11.37	
1080	197215	68.1	7.88	20.98	7.84	10	6.89	4	1153	113864	185.5	act． 6	1720276	241584	12．741	16.13	11.37	
1082	197635	\＄8．6	18.160	20.13	12485	10	68	B	1154	112888	18．5．9	59.95	12198	28.655	12.82		11.49	
1082	18.87	50.0	183512	21.08	174636	12	12885	B	1155	112888	11319	59.80	12278	18.85	9．413	088	8.63	
1088	18.26	22.3	1836	28.88	12826	12	61920	2	1156	20880	120．8	44.70	109260	215738	9．38	18.96	8.38	
1087	12.36	55.0	15885	20.98	B4838	10	B2CEG7	3	1157	12900	158.4	911．26	28.31	2R002	7．9＠	Q228	6.834	
1088	10.48	58.0	1838	20.98	9．67	1015	8.94	2	1158	112989	13.2 .6	950．8s	120588	EB06Od	9．68	0301	8．511	
1088	77.58	62.0	9．77	29.95	8.24	10	7.68	2	1159	11292	130.3	54.00	22.8	$18195{ }^{\text {a }}$	8.58	10.39	7．88	
1080	100621	56.9	8.08	20.08	6.46	10	6.78	4	1160	112980	198．8．0	40.55	120574	19.680	14.38	8073	13.03	
1088	10.66	48.3	8.85	28.66	8.50	12	6.30	4	1161	112996	18.8 .3	90.03	159288	28.33	13.90	8237	12.49	
1089	191892	46.8	8.50	20.96	7.88	1015	6.08	4	1162	118954	18.8 .9	54.40	1721281	2R3124	12.98	12.40	11.69	
1090	9.88	53.5	7.86	20.87	6．88	12	6.94	2	1163	112960	178.9	494.84	14848	213036	13.20	12.15	11.25	
1084	10.00	48.2	8.24	29.30	8.89	10	6.86	2	1164	118974	17．9．8	385.24	15848	194508	14．88	12.80	12.25	
1028	10.00	46.8	9.21	20.28	8.89	1015	6.92	2	1165	11298	177.5	Q53．56	120829	2327．${ }^{\text {d }}$	11.40	11.27	10.35	
1098	10.88	50.9	1838	20.68	9.68	10	6.97	2	1166	2 Z 934	12：3．7	95．94	1179190	206496	12.96	14.63	11.28	
1097	198415	69.2	7.84	29.95	7.09	10	6.36	4	1167	118008	189.9	994．88	1721028	1834 6	13.02	10.86	11.85	
1098	10.78	68.9	8.39	22.98	6.84	11105	6.03	4	1168	133096	1185.54	48.97	154092	20295	13.95	18.99	12.46	
1098	18.80	48.2	18.32	29.98	12.28	18	13.15	3	1169	113802	1783	964．73	1181893	283859	12.78	18.08	11.21	
1096	18.40	88.9	18.40	22.28	12.06	11105	10.89	2	1170	113036	1310.51	45.26	120987	184810	1011.5	18.65	9．13	
1098	17.39	56.4	18．153	20.80	1230	102	7157	2	1171	183045	150.8	Q54．2c	7， 7.8 .64	213188	6.782	111.65	6.08	
1099	18.26	62．3	18550	28.98	12739	10	61926	3	1172	113058	158.0	93．40	22.44	－1256	7.29	111.19	6.58	
1200	18.58	50.8	19463	28.58	183751	11	71881	，	1173	113086	168．${ }^{\text {a }}$	93.3	174183	242680	12.82	16.71	11.26	
1204	10.96	53.8	185881	29.30	12883	1625	71088	B	1174	23078	150.2	576.44	122384	$19530 \$$	9.512	18.44	8.78	
1235	12.70	60.0	9.46	19.20	8.73	10	7.94	4	37	1308	9.77	58.3	7.41	20.04	6.79	10	6.17	
1236	13.29	47.5	10.86	20.55	10.00	11	9.01	2		1309	9.90	65.5	7.19	20.20	6.58	10	5.98	
1237	13.44	49.9	10.93	21.87	10.00	11.5	8.97	2		1310	9.85	52.8	7.78	20.71	7.09	10	6.45	
1238	10.73	45.4	8.88	20.30	8.12	10	7.38	3		1311	9.61	62.9	7.14	21.02	6.49	10	5.90	
1239	12.60	47.8	10.34	21.33	9.46	11	8.52	3		1312	18.62	53.5	14.47	19.31	13.22	9	12.13	
1240	10.09	50.8	7.99	19.42	7.36	10	6.69	2		1313	18.10	59.7	13.49	19.00	12.47	10	11.34	
1241	10.77	51.7	8.51	19.87	7.88	11	7.10	2		1314	17.72	60.8	13.36	21.25	12.12	10	11.02	
1242	16.10	53.8	12.62	20.58	11.46	9.5	10.47	3		1315	16.90	54.1	13.16	20.03	12.06	10	10.96	
1243	15.85	58.4	12.05	20.39	11.01	10	10.01	2		1316	16.53	59.9	12.48	20.74	11.37	10	10.34	
1244	18.09	58.1	14.04	22.71	12.70	11	11.44	2		1317	19.96	53.0	15.87	21.66	14.61	12	13.04	
1245	13.74	57.9	10.27	18.05	9.57	10	8.70	4		1318	18.28	47.5	15.19	22.57	13.88	12	12.39	
1246	17.50	60.4	13.17	20.73	12.00	10	10.91	3		1319	12.40	48.3	9.89	18.25	9.20	10	8.36	
1247	18.15	52.5	14.55	22.25	13.33	12	11.90	2		1320	10.54	57.3	8.21	22.49	7.44	11	6.70	
1248	20.19	59.2	15.29	20.59	13.82	9	12.68	3		1321	13.00	51.0	10.29	19.52	9.47	10	8.61	
1249	18.57	56.4	14.40	21.26	13.30	12	11.88	3		1322	11.13	56.6	8.58	20.72	7.96	12	7.11	
1250	18.46	62.1	13.73	20.57	12.64	11	11.39	3		1323	9.18	57.5	7.08	21.43	6.53	12	5.83	
1251	13.53	66.9	9.72	19.88	00	11	8.11	4		1324	11.12	49	93	19.86	8.27	11	7.45	

1325	10.06	46.9	8.32	21.49	7.67	12	6.85	2
1326	9.46	47.4	7.76	20.88	7.19	12	6.42	2
1327	10.15	56.4	7.99	23.09	7.27	12	6.49	4
1328	15.63	53.4	12.28	20.50	11.21	10	10.19	3
1329	17.10	44.7	14.28	20.83	13.00	10	11.82	3
1330	11.50	49.7	9.11	18.59	8.45	10	7.68	3
1331	20.81	53.5	16.74	23.51	15.18	12	13.55	2
1332	17.92	50.9	14.60	22.95	13.30	12	11.88	4
1333	20.99	60.3	16.71	27.64	14.99	14.5	13.09	4
1334	18.72	44.5	15.34	18.41	14.25	10	12.95	2
1335	18.57	42.0	15.49	18.42	14.52	11	13.08	2
1336	17.13	46.2	14.53	23.99	13.24	13	11.72	2
1337	17.49	45.8	14.36	19.67	13.20	10	12.00	4
1338	20.91	48.5	17.28	22.72	15.77	12	14.08	2
1339	22.77	47.8	18.67	21.15	17.26	12	15.41	2
1340	17.01	43.9	14.13	19.56	13.00	10	11.82	2
1341	19.63	45.3	16.04	18.70	15.54	15	13.51	4
1342	22.09	40.8	18.69	19.11	17.26	10	15.69	2
1343	17.68	46.2	14.80	22.42	13.54	12	12.09	2
1344	18.56	44.2	15.75	22.33	14.42	12	12.88	2
1345	17.93	47.6	14.98	23.29	13.73	13	12.15	2
1346	17.34	49.0	14.24	22.40	13.03	12	11.63	2
1347	18.59	51.9	15.23	24.46	13.95	14	12.24	4
1348	17.11	48.1	14.38	24.47	13.17	14	11.55	4
1349	12.45	56.5	9.71	22.06	8.83	11	7.95	3
1350	14.28	49.7	11.75	23.17	10.78	13	9.54	2
1351	11.70	44.3	9.65	19.02	9.00	11	8.11	2

A.2. Kiln Data
B.2.1. Air Flow

	Distance From End (m)						
Gap \#	$\mathbf{0 . 5 0}$	$\mathbf{1 . 0 0}$	$\mathbf{2 . 0 0}$	$\mathbf{3 . 0 0}$	$\mathbf{4 . 0 0}$	$\mathbf{5 . 0 0}$	$\mathbf{5 . 5 0}$
1	1.8	2.2	2.0	1.3	1.6	1.3	2.3
2	1.5	2.0	1.5	2.0	1.9	1.5	2.3
5	1.8	1.5	1.8	1.8	1.9	1.7	2.1
	10	1.4	1.8	1.7	1.6	1.8	1.7

B．2．2．Temperature

		$\bar{\top}$	$\stackrel{N}{\Gamma}$	$\bar{\sim}$	N	$\overline{\dot{m}}$	ल్ల	$\overline{7}$	$\underset{\sim}{N}$	0／5	8：00	56.1	56.1	56.1	56.	55.6	55.2	55.2	7
\pm	$\stackrel{0}{*}$	등	등	등	등	믕	등	등	¢	30／5	8：15	57.4	57.2	58.1	57.9	57.5	57.2	57.6	57.1
ถ๐	F									30／5	8：30	57.7	57.1	57.9	57.8	57.8	57.3	57.5	57.3
29／5	14：30	18.7	18.3	18.9	19.2	17.3	19.1	17.6	17.4	30／5	8：45	57.6	57.1	58.1	57.7	57.6	57.4	57.7	57.3
29／5	14：45	23.1	23.8	23.7	23.6	23.1	24.4	21.0	21.8	30／5	9：00	57.3	56.9	57.8	57.4	57.6	57.1	57.5	57.3
29／5	15：00	21.6	22.1	22.2	21.3	20.4	21.8	19.4	14.6	30／5	9：15	62.5	62.9	61.4	62.6	60.8	62.6	61.4	61.5
29／5	15：15	24.1	23.8	23.8	24.1	22.8	22.6	23.0	22.2	30／5	9：30	64.0	64.8	62.8	64.0	62.0	64.6	62.7	63.3
29／5	15：30	25.2	25.1	25.9	25.6	24.7	24.	24.7	23.8	30／5	9：45	64.4	65.2	62.9	64.4	62.4	64.4	63.2	63.2
29／5	15：45	26.7	27.3	27.8	28.2	26.4	25.7	26.5	25.5	30／5	10：00	62.5	58.9	61.3	59.2	60.7	58.5	60.4	59.0
29／5	16：00	27.2	29.0	27.2	26.4	26.8	26.7	27.2	27.0	30／5	10：15	64.6	65.4	63.6	65.0	62.9	65.3	64.0	64.1
29／5	16：15	29.3	29.7	30.0	29.8	29.8	29.8	29.9	30.3	30／5	10：30	60.3	63.1	60.8	62.8	60.4	62.6	60.6	61.2
29／5	16：30	30.0	29.6	30.4	30.0	29.6	29.3	29.0	29.8	30／5	10：45	65.4	66.0	64.4	65.6	63.6	65.3	64.5	64.5
29／5	16：45	29.7	29.7	30.2	30.2	29.7	29.9	29.8	30.1	30／5	11：00	63.4	63.4	63.1	64.3	62.4	63.4	63.1	63.0
29／5	17：00	29.9	30.2	30.4	30.7	30.0	30.2	30.2	30.0	30／5	11：15	66.0	65.9	64.9	65.9	63.8	65.8	64.8	65.0
29／5	12．155	38．${ }^{\text {d }}$	3द． 3	35．］．	34． 6	3－3：－4	34.9	329	क2．${ }^{\text {b }}$	$3 \mathrm{~d} / \mathrm{T} /$	24：38	87.9	88.7	68.9	$8{ }^{6}$ \％ 9	878 ${ }^{3}$	659	G9． 7.4	669
？ $29 / 5$	स 3	39.3	42．9	34.8	48： 4	36．5	40.6	37.5	37.8	30／3	24：438	62．${ }^{\text {\％}}$	67．3	62．7	62．${ }^{\text {¢ }}$	62．${ }^{2}$	66%	$6{ }^{2}$	66.8
29 $9 / 5$	23：45	¢ 8.4	¢ 4.2	68.5	¢T．${ }^{\text {P }}$	37.5	41.8	32.8	320	30／3	42：89	81： 2	66.9	67． 3	67：	67.3	636.6	60.2	66.5
29／6	F3006	33.	3द．${ }^{\text {a }}$	38.8	37.4	32， 4	$33^{3} .3$	$3{ }^{3} 5$	32	30／3	22：313	61．${ }^{\text {a }}$	$6{ }^{6} .8$	62.0	62．${ }^{4}$	6\％．d		$6{ }^{6} 1.1$	$66^{6} 5$
$3 \mathrm{~d} / \mathrm{/}$	P		等． 4	¢ ${ }^{2}$ ． 9	［ 43.3	$6{ }^{3} 5^{4}$	C＋ 9	${ }^{3} 2{ }^{2} 4$	$6^{9} 26$	30／3	42：38	81． 7	66.3	67．6	6r．${ }^{\text {a }}$	60.7	66．${ }^{\text {d }}$	65.3	66\％．7
399／3	18.336	\＄5．5	¢ ${ }^{4}$.	¢44．f	43.9	¢93．8．	43．9	Q3．2	Q2． 6^{4}	30／3	42：45	81． 6	86：\％	67．6	（07．${ }^{\text {b }}$	60.60	66.5	60.70	$66.3{ }^{3}$
39／1／5	＋3945	${ }^{48} 8.3$	598．8	\＄6．9		56．8．	3980	398	$3{ }^{3} 5$	30／3	23：60	62．6	69.8	6z． 2	62.11	（67．5）	66：	69.6	66．${ }^{4}$
398／3	F6\％6		\＄2． 3	4 4.3		62．${ }^{3}$	62 \square^{2} D	¢P2．p	\＄1．${ }^{\text {a }}$	30／3	43：15	62． 5	66．8	62．6	62．p	6r．t）	66．	65． 70	66：3
39／3	F9：55	88.4	¢ 8.6	¢ 63.2	40．5	64． 6	68.1	${ }^{42}{ }^{2} .6$	429］	30／5	42：330	62． 6	6¢． 6	62．${ }^{\text {a }}$	62.11	67．0	65.8	67．70	66．${ }^{\text {a }}$
39／1／	＋6336	\＄9．5	\＄2． 4	¢ 4.8	Q2．${ }^{\text {a }}$－		¢9． 8		¢ ${ }^{-1} 5$	30／3	43：439	62． 4	66.8	62.3	66.2	65.8	$66^{2} \cdot{ }^{2}$	65.8	656
39／3	44445	Q2a．${ }^{\text {a }}$	\＄23．8	\＄4．5	67.9	$6{ }^{6} 4$	6097		4237	30／5	42：00	60．8	6¢．$\overline{\text { b }}$	67． 8	65.8	65.3	66.7	65.3	66.4
89／3	20.68	\＄5．4	65．9	\＄4．${ }^{\text {¢ }}$	$4{ }^{4} 2.4$	42．${ }^{1}$	49.5	$4{ }^{4} 3.6$	63.70	\％ $80 / 5$	43：15	67.8	60．6	67． 2	65.8	6.9	66.5	65 ． 7	66．6
Q $29 / 3$	20：155	34．6	67.9	¢9．7	67.3	Q8． 0	W1．3	808．7	49.5	30／5	42：380	67．4	$66^{2} 9$	67.6	67．2	66．9	66.3	65．p	66.4
29／3	$20 \cdot 30$	63：3	59， 6	90．4	56.9	69． 2	50， 5	49．8	50.8	\％ $80 / 5$	24：45	67.5	66． 5	67.7	65.8	60． 6	60.4	65．6．	686
Q $29 / 1 / 3$	20445	532．4	33.6	32． 4	623．5	69．9．	59.8	50.4	591．34	366	16500	6¢． 6	O6．${ }^{\text {a }}$	60．4	65.4	65.4	68.5	65.4	695.7
2 $3 / 3$	20：68	¢ 23.3	67.4	\＄2． 6	所，白	49．4	60.9	49.3	80．3	366	16.175	60．8	80.8	69.5	69.4	$68 . \overline{4}$	69.8	69.8	6890
29 $9 / 3$	20：795	33.9	39， 5	32.8	S4．$\overline{\text { P }}$	50．P8	54．2）	50，	56， 8^{8}	3685	165380	68.8	68.5	08.5	68.1	68．9）	68.54	68.0	68.36
2 $29 / 3$	20：30	36．4	35.8	94．2	69.8	56． 6	599．1	5ib ${ }^{\text {b }}$	5f． 1	3665	16.445	67.8	67．8	68.8	67.7	67.3	60.4	60.9	68.78
B2g／5	20： 245	66．8	56．9	35.8	50．：0	\＄56． 8	559.8	54.5	54.2	36 b 5	16000	69．9	69.3	68.3	58.6	58.4	58.5	58.0	588.02
289／5	22.60	67.2	59．6	65.6	50.8	94．p	50.6	50.4	599.2	3606	16：1155	68.8	68.4	68．8	68.5	67.6	（80． 3	68.6	$68 . \mathrm{R}$
B69／5	22k：175	59：2	69.4	68．8	59．6	63．9	58.6	50.85	550． 8	3065	16380	82.4	$\overline{68.2}$	$\overline{81.4}$	82.8	80.8	8R． 7	61．3	67． 6
289／5	22.380	54．${ }^{\text {8 }}$	69．4	64.2	64.6	59.6	590．3	50.3	59.4	3065	16445	68.2	68.8	08.8	68.5	68.4	（67． 8	888	688．61
B89／5	22.445	59．4	58.7	59.9	59.6	56.8	5\％3．${ }^{\text {a }}$	FRD． 2	58．0．0	30105	127．000	68.7	67.6	68．6	68.0	688.7	©87．${ }^{\text {\％}}$	888.2	687.77
889／5	28800	54．5	58.8	59．0	54.3	56． 7	57.3	58.3	58.3	3065	127：115	68.8	68.5	68.4	68.8	68.8	67.93	688	68.56
Begh／5	$288: 115$	64.2	63.8	64．2	63.6	53.5	52．${ }^{\text {d }}$	\＄27．8	58.2	3065	127：380	68.8	62.4	68.9	62.5	（68．5）	©87．8	888.0	687．6
898／5	28830	36．4	69.8	95．5．	S6． 6	54．8	\＄9．9	56.5	क¢ 5.5	3065	12：455	68.8	67.3	68.4	62.8	68.4	67．8	6884	667.5
2089／5	288445	53.8	53.6	53.4	63．3	52.4	52.3	52.3	52.78	3015	18800	68.8	67.4	68．5	62.3	68．8	67.8	¢8．9	687.6
30／5	0：00	$64 . \overline{8}$	64．6	64．7	64.3	\＄3．7	\＄4．A	50.5	55，20	3065	181115	68.3	67.4	68.5	62.8	68．1	67.5	688	687.3
30／5	0：15	54．5	54.5	54.0	64． 8	526．6	\＄8．9	588.2	588.65	3065	131380	8．8	67.8	68.7	2.5	68．${ }^{\text {B }}$	67.	62	667.6
\％ $30 / 5$	0：30	56．8	62.7	60．9	62.3	62．${ }^{\text {c }}$	\＄7．0	5b．${ }^{\text {a }}$	566．0	3065	13845	68.2	67.3	68．8	67.8	67.0	67．6	627.2	687.33
30／5	0：45	65．6	64．4	54.8	32.2	\＄3．9	58．వ．	\＄8．9	58.6	3065	18.000	68.9	62.5	68.0	68.4	67.4	67\％．8	627.6	668
30／5	110000	62，2	52.0	68．0	$6 R .7$	52．6	68.5	56R64	5R2	3106	15	8．2	2.7	68.4	67.8	7.	627.0	62.6	2.21
30／5	110.165	64．2	68.5	54.2	53.4	53．0	S8．2	58.5	52.8	3065	18.310	68.9	67.2	62.9	62.3	67.3	66.7	62.5	
30／5	110330	54，${ }^{\text {a }}$	53．\％	54．5	54.8	53.9	55.5	534.6	56.8	3065	129．45	62.9	67.4	67.8	67.8	67.8	\％emb	67.5	66.16
30／5	110445	64，0	53.8	64．8	64．6	53．9	53．3	54.9	5336	306	20.00	60.8	66.9	67.7	60.8	60.7	6	59.9	56
30／5	12000	64．8	54.6	54.8	65.2	S5．0	54.3	\＄2． 0	564.6	0／5	20.1115	62.6	66.9	67.8	$\nabla .4$	67.0	Ciche	Cor	6×674
30／5	2021．155	65.6	54．7	65.8	64．${ }^{\text {a }}$	654．8	54．5）	63t．$\%$	564.54	3065	20.30	67.8	66.8	67.5	67.3	¢6\％${ }^{\text {¢ }}$	6	607.4	666.4
30／5	121330	66.4	68.7	68．9	68.7	56.74	456.8	565．14	56	$310 / 5$	20：45	64.4	66.7	67.5	67． 4	65.4	\％ 3	66.7	6888
30／5	201．445	60．8	69．5	58．0	58.5	58.8	58.2	58.9	588.8	30\％	21000	67．5	66.8	67.5	67.6	66.4	65.8	687.0	6163
30／5	13000	69.8	59.8	55.8	55.8	5z．0	$5 \overline{5} .5$	66918	53343	30\％	261115	67.4	66.8	67.8	${ }^{6} 7.4$	（6）．${ }^{\text {c }}$	\％ 6	656.9	6868
30／5	12115	59.7	56.6	58．B	57.5	55.7	56.1	565．9	5055.4	30\％	20130	67.3	66.8	67.5	60.9	66． 9	\％ 6	66	686
30／5	132300	67.9	56.8	57.8	57.8	56.94	466.12	6.5	536	30\％	220145	67.4	66.8	60.5	60.3	（6） 3	58.7	609.0	886.4
30／5	12345	68.9	56.6	57.4	55.8	56.9	566.6	56684	565 ${ }^{2}$	30\％5	22.00	69.8	66.8	69.8	07.9	（66）	06		68654
30／5	138000	58.0	56.8	58.0	58.9	56.31	56.7	5	56.0	3065	22：115	67.4	66.3	60.8	（09．8	（66． 4	58	683	5888
30／5	131	62.8	． 8	67．8	67.9	56.5	6.4	\％em	$\omega 6$	3065	22：30	64.4	66.8	67.3	67.9	66.9	\％ 6.6	8867	866.3
30／5	133300	62.6	66.6	67．3	63.11	6.3	66． 11	\％ 8	6\％\％ 4	30\％5	22：45	64.3	66.9	67.3	（67． 9	66.5	86.1	86.9	866.2
30／5	13455	66.8	66.4	60.8	66.5	59.31	625.2	\％ 5	¢ 6	3015	28.00	68.8	66.6	68．9	66.8	655．9	¢ 6.5	885	865.1
30／5	154000	58.9	58．4	58.9	58.8	6． 4	5 5 ． 2	\％83	56.9	3015	28.115	62． 3	80.8	ब11．0	QR． 0	80．a	G0．L．	69.4	59.9
30／5	154115	63.0	66.9	67.0	63.8	66．6	66.4	65 \％${ }^{6}$	662	3065	28.30	68.3	69.5	68.4	Cb． 4	64． 8	5	689.8	597.9
30／5	154330	58.9	58.5	58.0	58.8	58.5	566.9	58	5%	3015	88.45	68.9	69.5	68． 2	69.8	64.3	59	69\％ 0^{6}	59
30／5	154456	59.3	58.3	59.3	59.9	58.5	58.0	5\％	5	31／1／5	9：00	88\％．7	58． 6	58.4	58．8	88． 0	58.5	5888	587.4
30／5	165000	58.9	58.9	59．11	59.8	58.4	5\％6．	\％ 6	58.4	31／5	9：115	89．9	83： 2	88.8	88.8	（87． B_{5}	637.3	683.4	687.9
30／5	165185	62.5	68.9	67.3	63.9	66.6	56	65.3	66.31	31／5	9：30	60． 2	60.5	89.8	（8） 5.4	88.5	685．8	6883	6883
30／5	165350	64.2	66.9	67.4	67.7	56.5	63.2	68.8	6669	31／5	9：45	67．4	86．9	67． 6	68． 5	887．2	C6C3	687.	6896.0
30／5	165445	68．0	56.6	57.8	58.9	56.1	55.3	556.5	556.31	31／6	10606	888．8	（89．0	88．3．	85 5.8	68， 1	6889	688.5	6896
30／5	186000	66.7	68.8	66.3	66.4	58.8	（65． 4	595	20532	31／6	16175	84．4	69．6	637.8	64．5	63.3	683，${ }^{3}$	683.5	68373
30／5	176185	62.4	63.8	69.6	62． 3	590．34	62.5	69.6	671.8	31／6	1633	63.4	68．5	G90．${ }^{4}$	69.0	839	628．3	64.8	67.5
$30 / 5$	176300	68．9	58． 3	58．0	58.6	58.6	5	58.9	507.73	31／6	10445	89.8	（83．4	839．6	$8{ }^{8} 9.8$	883.9	68.3	683.0	6834
3Q／5	176445	58.5	58.4	50．4	50.2	50.0	50．5	5	59	31／6	1246\％	63．${ }^{\text {a }}$	86：8	639．8	63．${ }^{5}$	63.9	的它家	83.8	6373
31／5	17：00	68.2	67.4	68.2	67.8	67.8	67.2	67.8	67.5	1／6	11：15	70.7	71.5	70.4	71.6	69.7	71.1	70.4	70.7
31／5	17：15	67.9	67.1	67.9	67.4	67.4	66.8	67.4	67.0	1／6	11：30	67.5	67.0	67.9	67.6	67.4	67.1	67.4	67.3
31／5	17：30	72.9	72.9	71.9	72.3	71.3	72.4	72.0	71.9	1／6	11：45	67.2	67.1	67.6	67.6	67.0	67.1	67.1	67.1
31／5	17：45	68.4	67.7	68.4	68.0	68.0	67.4	68.0	67.7	1／6	12：00	67.3	66.9	67.4	67.3	66.8	66.8	66.3	66.2
31／5	18：00	68.2	67.4	68.3	67.8	67.9	67.3	67.9	67.5	1／6	12：15	67.4	67.2	67.7	67.7	67.0	67.0	67.1	67.0
31／5	18：15	68.1	67.3	68.4	67.9	67.9	67.3	67.9	67.5	1／6	12：30	67.4	67.0	67.4	67.5	66.9	66.7	66.9	66.8
31／5	18：30	67.9	67.0	68.1	67.6	67.6	67.0	67.6	67.2	1／6	12：45	67.5	67.3	67.7	67.6	66.9	66.8	67.1	66.7
31／5	18：45	69.4	67.3	68.9	67.6	68.2	67.1	68.3	67.4	1／6	13：00	67.2	66.9	67.3	67.2	66.7	66.4	66.8	66.5
31／5	19：00	72.8	73.1	71.5	72.7	70.9	72.8	71.9	72.3	1／6	13：15	67.0	66.6	67.2	67.1	66.6	66.4	66.7	66.4
31／5	19：15	69.0	68.2	68.8	68.7	68.2	68.0	68.4	68.0	1／6	13：30	67.2	66.8	67.3	67.2	66.7	66.4	66.7	66.4
31／5	19：30	68.2	67.3	68.3	67.8	67.8	67.1	67.8	67.3	1／6	13：45	67.1	66.7	67.2	67.0	66.6	66.3	66.7	66.3
31／5	19：45	68.0	67.1	68.2	67.6	67.7	67.0	67.7	67.2	1／6	14：00	67.1	66.7	67.1	67.0	66.6	66.2	66.7	66.3
31／5	20：00	67.9	67.2	67.7	67.6	67.2	66.9	66.9	66.4	1／6	14：15	67.0	66.8	67.2	67.1	66.6	66.2	66.7	66.3
31／5	20：15	68.	67.4	68.1	67.8	67.4	67.1	67.5	67.	1／6	14：30	66.9	66	67．1	66.9	66.5	66	66.6	66.2

1/6	14:45	66.9	66.6	67.1	66.9	66.	66.	66.6	66.2
1/6	15:00	67.0	66.6	67.1	66.9	66.6	66.2	66.7	66.2
1/6	15:15	67.2	66.9	67.3	67.1	66.7	66.3	66.8	66
1/6	15:30	67.2	66.8	67.2	66.4	66.7	66.3	66.8	66
1/6	15:45	67.2	66.7	67.2	67.0	66.7	66.2	66.7	66.3
1/6	16:00	66.7	66.2	66.6	66.5	66.1	65.7	65.6	59.4
1/6	16:15	68.1	67.6	68.3	68.2	67.7	67.5	67.8	67.
1/6	16:30	67.7	67.1	67.8	67.6	67.3	67.0	67.4	67.
1/6	16:45	68.4	67.8	68.5	68.4	68.0	67.7	68.0	67.8
1/6	17:00	68.1	67.3	68.1	67.7	67.7	67.1	67.7	67.3
1/6	17:15	68.0	67.2	68.0	67.6	67.5	67.0	67.5	67.2
1/6	17:30	67.9	67.1	67.9	67.4	67.3	66.8	67.4	67.0
1/6	17:45	72.8	73.2	71.2	72.2	70.6	72.6	71.7	71.6
1/6	18:00	70.9	71	69.8	70	69.0	70.5	69.4	9
1/6	18:15	69.2	68.4	69.1	69.0	68.6	68.2	68.7	68.4
1/6	18:30	68.6	67.	68.7	68.4	68.2	67.8	68.2	67.9
1/6	18:45	68.	67	68.6	68	68.	67.5	68.0	67.7
1/6	19:00	68.	67	68	68	68	67	68.0	67
1/6	19:15	68.2	67.	68.3	67	67.	67	67	67
1/6	19:30	68.2	67.2	68.	67	67.	67.0	67.8	67
1/6	19:45	69.5	69.0	69.4	69.6	68.8	68.8	69.0	68
1/6	20:00	67.6	67.1	67.5	67.4	67.0	66.8	66.6	66.2
1/6	20:15	68.0	67.4	68.0	67.7	67.4	67.0	67.4	67.0
1/6	20:30	67.9	67.2	68.0	67.7	67.	66.9	67.	67.0
1/6	20:45	67.	67.1	67.	67.5	67.3	66.8	67.3	66.9
1/6	21:00	67.6	67.0	67.6	67.3	67.1	66.6	67.2	66.
1/6	21:15	67	67	67	67	67.1	66	67	66.6
1/6	21:30	67.5	66.9	67	67.2	67.0	66	67.0	66.6
1/6	21:45	67.5	66.9	67	67	67	66	67	66.6
1/6	22:00	67.	66.9	67	67	66.9	66	67.0	66.5
1/6	22:15	67.3	66.8	67	67	66.9	66	66.9	66.5
1/6	22:30	67.	66.8	67	67	66	66	66.9	66.4
1/6	22:45	67.	66.8	67	67	66.	66	66	66.3
1/6	23:00	67.3	66.7	67.3	67	66.8	66.3	66.8	66.
1/6	23:15	67.3	66.7	67.3	67.0	66.8	66.3	66.8	66
1/6	23:30	67.	66.7	67	67	66.	66	66	66
1/6	23:45	67.4	66.9	67.5	67.3	66	66	66	66.4
2/6	0:00	67.1	66.5	67	66.8	66	66.2	66.	65.8
2/6	0:15	67	67.1	67	67	67	66	67	. 0
2/6	0:30	68.1	67.3	68.2	67.	67.7	67.3	67.8	67.5
2/6	0:45	67.9	67.2	68.0	67.6	67.6	67	67.6	67.3
2/6	1:00	67.8	67.0	67.	67.	67.	66.8	67	67.0
2/6	1:15	73.1	73.5	71.8	72.5	70.9	72.9	71.8	72.0
2/6	1:30	72.6	73.1	71.6	72.3	70.9	72.5	71.8	71.9
2/6	1:45	70.5	70.3	69.7	69.	68.6	69.5	69.0	68.
2/6	2:00	69.7	70.4	69.	69.7	68.2	69.4	68.3	68.1
2/6	2:15	71.8	71.6	70.5	70.6	69.7	70.9	70.2	69.7
2/6	2:30	68.0	67.2	68.0	67.5	67	67.0	67.5	67
2/6	2:45	68.0	67.	68.1	67	67	67.0	67.6	67.2
2/6	3:00	68.	67	68	67	67	67.2	67.7	67.4
2/6	3:15	68	67	68	67	67	67.1	67	67.3
2/6	3:30	68.2	67	68	67	67	67	67.8	67.3
2/6	3:45	68.3	67	68	67.8	67	67.2	67.9	67.4
2/6	4:00	68.4	67.8	68	68.3	67	67.5	66.7	67.0
2/6	4:15	67.9	67.3	67	67.7	67	67.0	67.4	67.1
2/6	4:30	67.9	67.2	67	67.5	67.3	66.9	67.4	67.0
2/6	4:45	67.8	67.1	67.8	67.	67.2	66.7	67.3	66.8
2/6	5:00	67.7	67.0	67.8	67.4	67.3	66.7	67.3	66.8
2/6	5:15	67.6	67.1	67.7	67.3	67.2	66.6	67.3	66.7
2/6	5:30	67.6	67.0	67.7	67.3	67.2	66.6	67.2	66.7
2/6	5:45	67.6	67.0	67.7	67.3	67.2	66.5	67.2	66.7
2/6	6:00	67.6	66.9	67.7	67.3	67.2	66.5	67.2	66.6
2/6	6:15	67.6	66.9	67.7	67	67.	66	67.2	66.6
2/6	6:30	67.5	66.9	67.7	67.2	67.1	66.5	67.1	66.6
2/6	6:45	67.6	66.9	67.7	67.2	67.2	66.5	67.2	66.6
2/6	7:00	67.6	66.9	67.6	67.2	67.1	66.4	67.1	66.6
2/6	7:15	67.5	67.0	67.7	67.2	67.1	66.5	67.2	66.6
$2 / 6$	7:30	67.6	67.0	67.6	67.2	67.1	66.4	67.1	66.6
2/6	7:45	67.6	66.9	67.6	67.2	67.1	66.4	67.2	66.6
2/6	8:00	71.5	72.3	71.0	70.1	70.0	71.2	69.7	68.1
2/6	8:15	67.7	66.9	67.9	67.4	67.4	66.8	67.5	67.0
2/6	8:30	69.2	68.5	69.2	69.2	68.7	68.5	68.9	68.6
2/6	8:45	68.3	67.3	68.4	67.8	67.9	67.2	68.0	67.4

2/6	9:00	68.2	67.2	68.4	67.8	68.0	67.1	68.0	67.4
2/6	9:15	68.3	67.4	68.6	68.0	68.1	67.4	68.1	67.6
2/6	9:30	68.3	67.4	68.5	67.9	68.1	67.4	68.1	67.6
2/6	9:45	68.9	67.6	68.9	68.0	68.2	67.5	68.3	67.6
2/6	10:00	68.8	67.6	68.7	67.9	68.1	67.4	68.1	67.5
2/6	10:15	69.2	68.1	69.1	68.2	68.5	67.7	68.5	67.6
2/6	10:30	68.4	67.5	68.7	68.0	68.1	67.4	68.2	67.6
2/6	10:45	68.3	67.3	68.5	68.0	68.0	67.3	68.0	67.5
2/6	11:00	68.3	67.3	68.6	67.9	68.1	67.3	68.1	67.5
2/6	11:15	68.3	67.4	68.5	67.9	68.1	67.3	68.1	67.5
2/6	11:30	68.4	67.4	68.7	68.0	68.2	67.4	68.2	67.6
2/6	11:45	68.3	67.3	68.4	67	68.0	67.2	68.0	67.4
2/6	12:00	68.2	67.5	67	68.0	67	67.3	66.9	66.7
2/6	12:15	68.3	67.4	68.3	67	67	67.1	67.7	67.2
2/6	12:30	68.1	67.3	68.1	67	67	67.0	67.6	67.0
2/6	12:45	68.0	67.1	68.0	67	67	66.9	67.6	67.0
2/6	13:00	67.9	67.1	67.	67	67	66.7	67.5	66.9
2/6	13:15	67.8	67.0	67.9	67.3	67.4	66.7	67.4	66.8
2/6	13:30	67.7	66.9	67.8	67.3	67.4	66.6	67.4	66.8
2/6	13:45	67.7	66.9	67.9	67.3	67.4	66.7	67.4	66.8
2/6	14:00	67.7	66.8	67.8	67.2	67.4	66.5	67.3	66.7
2/6	14:15	67.7	66.9	68.0	67	67.5	66.7	67.5	66.8
2/6	14:30	67.7	66.8	67.8	67.2	67.3	66.5	67.3	66.6
2/6	14:45	67.6	66.9	67.7	67.2	67.3	66.5	67.2	66.6
2/6	15:00	67.7	67.0	67.8	67.2	67.3	66.5	67.3	66.7
2/6	15:15	67.6	66.9	67.7	67.2	67.2	66.5	67.2	66.6
2/6	15:30	67.6	66.9	67.7	67.2	67.3	66.5	67.3	66.7
2/6	15:45	67.6	67.0	67.8	67.3	67.3	66.6	67.3	66.7
2/6	16:00	71.8	72.9	70.9	70	70.0	71	70.3	68.8
2/6	16:15	68.2	67.3	68.5	67.9	68.0	67.3	68.0	67.5
2/6	16:30	71.2	70.3	70.9	70.9	70.5	70.3	70.8	70.3
2/6	16:45	68.1	67.3	68.3	67.8	67.8	67.2	67.8	67.4
2/6	17:00	69.0	68.9	68.9	68.8	68.2	68.3	68.3	67.9
2/6	17:15	68.2	67.3	68.3	67	67.8	67.2	67.9	67.4
2/6	17:30	68.	67.2	68.4	67	67.9	67	67.9	67.4
2/6	17:45	68.1	67.3	68.4	67.8	68.0	67.3	68.0	67.5
2/6	18:00	68.2	67	68	67	68	67.2	67.9	67.4
2/6	18:15	68.3	67.4	68.5	67.8	68.0	67.3	68.0	67.5
2/6	18:30	68.5	67.5	68.7	68.0	68.2	67.4	68.2	67.6
2/6	18:45	70.7	70.5	70.3	70.5	69.5	70.0	69.8	69.2
2/6	19:00	68.2	67.3	68.	67.	67	67	67.9	67.4
2/6	19:15	68.2	67.2	68.5	67.7	67	67.2	67.9	67.3
2/6	19:30	68.	67.	68.	67	68	67	68.1	67.5
2/6	19:45	68.7	67.7	68.9	68.3	68.5	67.7	68.5	67.9
2/6	20:00	67.8	67.3	67.8	67.7	67.4	67.1	66.8	66.5
2/6	20:15	68.6	67.8	68.7	68.2	68.2	67.5	68.2	67.6
2/6	20:30	68.5	67.7	68.6	68.1	68.1	67.4	68.1	67.5
2/6	20:45	68.3	67	68.4	67.9	67.9	67.2	67.9	67.3
2/6	21:00	68.	67	88	67	67.7	67.0	67.7	67.2
2/6	21:15	68	67.3	68.1	67.7	67.7	67.0	67.6	67.1
2/6	21:30	67.8	67.1	68.	67	67	66.9	67.5	67.0
2/6	21:45	67.8	67.1	67.9	67.5	67.5	66.8	67.5	66.9
2/6	22:00	67.8	67.0	68.0	67.5	67.5	66.8	67.5	67.0
2/6	22:15	67.6	66.8	67.7	67.3	67.3	66.6	67.2	66.7
2/6	22:30	67.8	67.0	67.9	67.3	67.4	66.6	67.3	66.8
2/6	22:45	67.6	66.9	67.8	67.3	67.3	66.6	67.3	66.7
2/6	23:00	67.6	66.8	67.8	67.3	67.3	66.6	67.3	66.7
2/6	23:15	67.6	66.9	67.9	67.3	67.4	66.6	67.3	66.8
2/6	23:30	67.7	67.0	67.9	67.4	67.4	66.7	67.4	66.8
2/6	23:45	67.8	67.1	68.0	67.5	67.5	66.7	67.5	66.9
3/6	0:00	67.5	66.8	67.7	67.1	67.2	66.7	67.1	66.6
3/6	0:15	68.1	67.2	68.3	67.6	67.8	67.1	67.8	67.3
3/6	0:30	72.2	72.1	71.6	71.9	71.0	72.0	71.6	71.4
3/6	0:45	68.8	67.7	68.9	68.3	68.3	67.6	68.3	67.8
3/6	1:00	68.4	67.5	68.6	67.9	68.1	67.3	68.1	67.5
3/6	1:15	68.5	67.5	68.6	67.9	68.2	67.3	68.2	67.5
3/6	1:30	68.7	67.6	68.9	68.2	68.4	67.6	68.4	67.8
3/6	1:45	69.1	67.9	69.2	68.6	68.7	67.9	68.7	68.1
3/6	2:00	68.3	67.3	68.5	67.8	68.1	67.3	68.0	67.4
3/6	2:15	68.4	67.4	68.6	67.8	68.2	67.3	68.1	67.5
3/6	2:30	68.3	67.3	68.5	67.8	68.1	67.3	68.1	67.4
3/6	2:45	68.3	67.3	68.5	67.8	68.0	67.2	68.0	67.4
3/6	3:00	68.3	67.3	68.5	67.8	68.1	67.3	68.1	67.5

3	3.15	68.4	67.3	68	67.	68	67.3	68.1	67.5
3/6	3:30	68.4	67.3	68.6	67.	68.2	67.3	68.2	67
3/6	3:45	68.5	67.4	68.7	67.8	68.2	67.3	68.2	67.
3/6	4:00	68.0	67.5	67.8	68.0	67.5	67.2	67.2	66.
3/6	4:15	68.5	67.6	68.	67	68	67	68.0	67.4
3/6	4:30	68.4	67.	68.	67	67	67	67.9	67.4
3/6	4:45	68	67.3	68	67	67	67.0	67.7	67.1
3/6	5:00	68	67.	68	67	67	67	67	67.1
3/6	5:15	68.	67.	68	67	67	66	67	67.1
3/6	5:30	67	67.1	68	67	67	66	67.6	67.0
3/6	5:45	67	67.	67	67	67	66	67	66.9
3/6	6:00	67.	66.	67	66	67	66	66.8	66.2
3/6	6:15	66.6	66.3	67.	67.0	66.9	66.2	66.7	66
3/6	6:30	66.7	66.1	67.3	66.9	66.8	66.1	66.5	66
3/6	6:45	66.4	66.0	67.1	66.6	66.7	66.1	66.7	66
3/6	7:00	65.3	65.1	66.0	65.6	65.5	64.9	65.0	64.8
3/6	7:15	66.9	66.4	67.6	67.3	66.8	66.1	66.8	66
3/6	7:30	66.7	66.3	67.3	66.9	66.9	66.1	66.6	66.
3/6	7:45	67.5	66.7	67	67.4	67.2	66.5	67.2	66.6
3/6	8:00	66.9	66.3	67	66.9	67.0	66.4	66.8	66
3/6	8:15	67	66.	67	67	67	66	67	
3/6	8:30	67.	66.	67	67	67	66.7	67.2	66.7
3/6	8:45	68.0	67.1	68.	67	67	67	67	
3/6	9:00	68.	67.1	68	67	67	67	67	
3/6	9:15	68.	67	68	68	68	67	68	67.8
3/6	9:30	68.	67	68	67	67	67	67	67.4
3/6	9:45	68.	67.	68	67	68	67	68	67.4
3/6	10:00	68.2	67.	68.	67	68	67	68.0	67
3/6	10:15	67.	66.7	67.	67.2	67.6	66.7	67.4	66
3/6	10:30	67.	66.4	67	66.9	67.	66.6	67.	66.8
3/6	10:45	67.	66.8	68.0	67	67	66.6	67.3	66.
3/6	11:00	68.0	66.9	68.0	67	67	66.	67.	67.1
3/6	11:1	68.	67	68.	67	67	67	68.	67
3/6	11:30	67.8	66	68	67	67	66	67	66.9
3/6	11:45	67.	66	68	67	67	66	67	66.8
3/6	12:00	67	66	67	67	67	66	67.3	66.6
3/6	12:15	67	66	67	67.	67.	66	67.5	66
3/6	12:30	67.	66	67	67	67	66	67.5	66
3/6	12:45	67.	66	67	67	67	66	67	66.6
3/6	13:00	67.0	66.	67	66	67	66	67	66.6
3/6	13:15	67.8	66.9	68.0	67.5	67.5	66	67	66.9
3/6	13:30	67.	66.	67	67	67	66	67.0	66.6
3/6	13:45	67.5	66.5	67.5	67.2	67.1	66	67.	66.
3/6	14:00	67.	66.	67.	66.8	66.8	66	66.8	66
3/6	14:15	67.	66.	67.	66	66	66	66	66.4
3/6	14:30	67.	66	67	67	67	66	66	66.3
3/6	14:4	67	66.6	67	67	66	66	66	66.2
3/6	15:00	67.	66	67	67	67	66	67	66.8
3/6	15:15	67	66.8	67	67	67		67	
3/6	15:30	67	66.8	67	67	67	66.4	67	
3/6	15:45	67.1	66	67	66	66.7	66	66	66.2
3/6	16:00	67.0	66.4	67	66	66	66.3	66.	66.5
3/6	16:15	67.4	66	67	67	6	66	67	66.7
3/6	16:30	67.5	66.	67	67	67	66	67.2	66.9
3/6	16:45	67.6	66.7	67.8	67.	67	66.8	67.3	67.0
3/6	17:00	67.7	67.0	67.7	67.4	67.5	66.8	67.4	67.1
3/6	17:15	68.1	67.3	68.1	67.8	67.6	67	67.9	67.2
3/6	17:30	68.1	67.	68.3	67.5	67.6	67.0	67.5	67.1
3/6	17:45	68.3	67	68.	67	67	67	68.0	6
3/6	18:00	67.7	66	67.8	67.2	67.3	66.8	67.3	66.8
3/6	18:15	67.6	66.	67.8	67.5	67.6	66.8	67.5	67.1
3/6	18:30	71.2	70	70	70	69	70.6	70.1	70.1
3/6	18:45	67.8	66.9	68.1	67.3	67.4	66.7	67.4	66.8
3/6	19:00	68.4	67.5	68.7	68.1	68.2	67.5	68.1	67.7
3/6	19:15	68.3	67.	68.5	67.8	68.0	67.3	67.9	67.5
3/6	19:30	67.6	66.9	67.	67.3	67	67.0	67.7	67.2
3/6	19:45	67.6	66.8	67.8	67.1	67.2	66.6	67.3	66.8
3/6	20:00	68.1	67.2	68.1	67.5	67.4	66.7	67.2	66.6
3/6	20:15	67.4	66.6	67.7	67.3	67.3	66.7	67.1	66.7
3/6	20:30	67.6	66.7	67.6	67.2	67.0	66.3	66.8	66.4
3/6	20:45	67.5	66.7	67.5	67.1	67.0	66.1	66.8	66.3
3/6	21:00	67.7	66.9	67.7	67.3	67.2	66.6	67.2	66.7
3/6	21:15	67.3	66.4	67.4	66.9	66.8	66.1	66.7	66.3

3/6	21:30	67.1	66.3	67.3	66.9	66.8	66.1	66.9	66.5
3/6	21:45	68.4	67.4	68.3	67.8	67.8	66.9	67.7	67.1
3/6	22:00	68.0	67.5	68.2	67.7	67.8	67.0	67.7	67.1
3/6	22:15	68.7	67.8	68.6	68.2	68.2	67.4	68.0	67.5
3/6	22:30	68.8	67.9	68.8	68.2	68.4	67.6	68.3	67.7
3/6	22:45	69.6	68.6	69.6	68.8	69.0	68.0	69.0	68.1
3/6	23:00	69.8	68.7	69.8	69.0	69.3	68.3	69.1	68.5
3/6	23:15	69.2	68.2	69.4	68.3	68.7	67.8	68.5	67.7
3/6	23:30	69.2	67.9	69.3	68.5	68.9	67.9	68.6	67.8
3/6	23:45	69.3	68.2	69.3	68.6	69.1	68.2	69.0	68.1
4/6	0:00	68.4	67.1	68.3	67.5	68.0	66.3	68.1	67.1
4/6	0:15	69.9	68.6	70.1	68.8	69.6	68.4	69.5	68.6
4/6	0:30	69.9	68.2	69.8	68.5	69.3	67.5	68.9	67.9
4/6	0:45	70.8	69.0	70.7	69.3	70.3	68.6	70.1	68.8
4/6	1:00	69.9	68.6	69.8	69.0	69.8	68.1	69.9	68.6
4/6	1:15	71.7	70.0	71.9	70.3	71.4	69.8	71.3	70.0
4/6	1:30	71.2	69.8	71.4	70.2	70.9	69.1	70.9	69.8
4/6	1:45	71.8	70.1	72.2	70.7	71.7	69.9	71.5	70.1
4/6	2:00	72.5	70.6	72.4	71.2	72.3	70.4	72.1	70.8
4/6	2:15	73.0	71.4	73.1	71.8	72.7	71.1	72.5	71.5
4/6	2:30	72.7	71.2	72.6	71.7	72.3	70.9	72.4	71.3
4/6	2:45	73.4	71.6	73.6	72.1	73.1	71.3	73.0	71.6
4/6	3:00	73.3	71.9	73.5	72.5	73.0	71.6	72.9	72.0
4/6	3:15	73.5	71.8	73.3	72.2	73.0	71.4	72.9	71.8
4/6	3:30	74.0	72.3	74.3	72.8	73.7	72.0	73.6	72.2
4/6	3:45	73.8	72.3	73.6	72.8	73.3	71.9	73.2	72.3
4/6	4:00	74.0	72.6	74.0	73.1	73.7	72.4	73.5	72.5
4/6	4:15	73.2	71.9	73.1	72.2	72.7	71.6	72.6	71.7
4/6	4:30	73.0	71.8	72.9	72.2	72.7	71.6	72.6	71.8
4/6	4:45	72.5	71.3	72.5	71.7	72.1	71.2	72.0	71.3
4/6	5:00	72.2	71.1	72.4	71.5	72.0	71.0	71.8	71.1
4/6	5:15	72.2	71.1	72.2	71.3	71.8	70.8	71.6	71.0
4/6	5:30	72.1	71.0	72.1	71.3	71.8	70.8	71.7	71.0
4/6	5:45	71.5	70.6	71.7	70.8	71.3	70.3	71.1	70.3
4/6	6:00	70.5	69.6	71.1	70.2	70.8	69.8	70.4	69.8
4/6	6:15	69.9	69.5	70.8	70.0	70.4	69.6	70.3	69.7
4/6	6:30	70.6	69.6	70.7	69.8	70.2	69.2	70.0	69.6
4/6	6:45	70.5	69.4	70.7	70.1	70.6	69.6	70.3	69.7
4/6	7:00	69.5	68.5	68.9	68.8	68.9	68.2	68.0	67.7
4/6	7:15	69.6	68.8	69.8	69.1	69.3	68.3	68.8	68.5
4/6	7:30	67.5	66.7	67.5	66.9	66.9	66.6	66.1	65.6
4/6	7:45	68.2	67.5	68.5	67.8	68.1	67.5	68.1	67.6
4/6	8:00	67.3	66.6	67.6	67.0	67.2	66.5	67.3	66.7
4/6	8:15	68.2	67.1	68.5	67.7	67.9	67.2	68.0	67.3
4/6	8:30	67.4	66.7	67.5	67.1	67.1	66.5	66.8	66.6
4/6	8:45	67.5	66.7	67.7	66.9	67.1	66.4	67.1	66.3
4/6	9:00	67.5	66.3	67.4	66.5	66.9	66.2	66.6	66.4
4/6	9:15	67.3	66.3	67.4	66.8	66.8	66.1	66.7	66.3
4/6	9:30	67.3	66.3	67.5	66.9	67.2	66.3	67.0	66.6
4/6	9:45	67.6	66.6	67.9	67.2	67.3	66.7	67.4	66.9
4/6	10:00	65.7	65.0	65.7	65.5	65.1	65.0	65.1	64.3
4/6	10:15	69.2	67.5	69.1	68.3	68.6	67.4	68.8	67.4
4/6	10:30	67.7	66.4	67.9	66.9	67.3	66.3	67.3	66.2
4/6	10:45	67.2	65.9	67.4	66.2	66.9	65.7	66.9	66.0
4/6	11:00	67.9	66.6	68.1	67.5	67.5	66.7	67.5	67.0
4/6	11:15	68.1	66.5	68.1	67.2	67.9	66.2	67.8	66.4
4/6	11:30	68.6	67.2	68.7	67.9	68.3	67.3	68.2	67.4
4/6	11:45	67.9	66.5	68.2	67.4	67.8	66.1	68.0	66.4
4/6	12:00	68.4	67.2	68.6	67.9	68.3	67.1	68.2	67.3
4/6	12:15	68.7	67.6	69.1	68.1	68.4	67.4	68.6	67.7
4/6	12:30	69.2	68.0	69.5	68.7	69.0	68.0	68.8	68.1
4/6	12:45	68.9	68.0	69.3	68.5	68.9	67.5	68.8	67.9
4/6	13:00	68.9	67.8	69.3	68.5	68.9	67.7	68.4	67.7
4/6	13:15	69.5	68.5	69.8	68.9	69.4	68.3	69.1	68.4
4/6	13:30	69.5	68.4	69.8	68.9	69.3	68.3	69.1	68.4
4/6	13:45	69.4	68.5	69.8	68.9	69.4	68.4	69.1	68.4
4/6	14:00	68.8	67.7	69.4	68.4	68.7	67.9	68.7	68.0
4/6	14:15	69.6	67.9	70.2	68.4	69.6	68.0	69.4	68.2
4/6	14:30	68.5	67.6	69.2	68.7	69.1	67.6	68.9	67.7
4/6	14:45	69.7	68.3	70.1	69.0	69.6	68.3	69.6	68.6
4/6	15:00	69.4	68.2	70.1	68.9	69.3	68.1	69.3	68.4
4/6	15:15	69.8	68.5	70.7	69.3	70.4	68.8	70.0	69.0
4/6	15:30	69.7	68.4	69.9	69.1	69.7	68.6	69.7	68.7

4/6	15:45	70.3	68.7	70.9	69.5	70.2	68.5	70.0	68.5
4/6	16:00	70.6	69.2	70.9	69.9	70.6	69.5	70.5	69.7
4/6	16:15	70.3	68.9	70.5	69.3	70.1	68.7	69.5	69.0
4/6	16:30	69.4	68.4	70.1	69.4	69.7	68.7	69.5	68.8
4/6	16:45	70.1	69.0	70.5	69.6	69.8	69.0	69.8	68.8
4/6	17:00	69.8	68.8	70.4	69.8	70.0	69.0	69.8	68.9
4/6	17:15	69.5	68.5	70.1	69.3	69.8	68.5	69.7	69.1
4/6	17:30	69.8	68.6	69.8	69.3	69.5	68.4	69.2	68.4
4/6	17:45	69.8	68.7	70.0	69.3	69.6	68.5	69.2	68.4
4/6	18:00	69.7	68.3	69.9	69.3	69.3	68.3	69.5	68.6
4/6	18:15	69.1	68.0	69.8	68.8	69.4	68.3	69.5	68.6
4/6	18:30	69.8	68.2	70.0	68.7	69.7	68.0	69.3	68.4
4/6	18:45	69.6	68.6	70.1	69.1	69.4	68.0	69.3	68.3
4/6	19:00	70.4	68.9	70.8	69.6	70.2	68.6	70.2	69.1
4/6	19:15	70.3	69.2	70.8	69.8	70.3	69.4	70.2	69.5
4/6	19:30	69.8	68.3	70.2	68.7	69.3	67.9	69.4	68.3
4/6	19:45	69.8	68.8	70.4	69.3	69.9	69.0	69.7	68.8
4/6	20:00	69.5	68.5	70.3	69.0	69.7	68.6	69.6	68.9
4/6	20:15	69.8	68.6	70.4	69.3	69.6	68.5	69.4	68.7
4/6	20:30	69.3	68.5	69.6	68.7	69.5	68.4	69.2	68.7
4/6	20:45	69.9	68.7	70.2	69.2	69.4	68.5	69.2	68.5
4/6	21:00	68.8	68.0	69.6	68.6	69.5	68.7	69.2	68.7
4/6	21:15	69.9	68.9	70.3	69.5	69.9	68.8	69.7	69.0
4/6	21:30	69.4	68.4	69.8	68.8	69.3	68.3	69.0	68.7
4/6	21:45	69.7	68.7	70.0	69.3	69.4	68.4	69.1	68.6
4/6	22:00	69.3	68.3	70.0	69.5	69.4	68.7	69.2	68.7
4/6	22:15	69.7	68.7	70.1	69.3	69.5	68.4	69.3	68.7
4/6	22:30	70.3	68.8	70.6	69.6	70.3	68.7	70.1	69.1
4/6	22:45	70.3	69.3	70.8	69.9	70.3	69.4	70.2	69.6
4/6	23:00	70.2	68.8	70.5	69.5	70.2	68.6	70.1	68.9
4/6	23:15	69.5	68.6	70.2	69.4	69.9	68.9	69.5	69.2
4/6	23:30	69.7	68.2	69.9	68.9	69.6	68.0	69.7	68.6
4/6	23:45	70.1	68.8	70.5	69.2	69.7	68.8	69.7	69.0
5/6	0:00	69.3	68.4	70.1	69.2	69.9	68.9	69.6	68.9
5/6	0:15	70.0	68.7	70.3	69.2	69.5	68.7	69.4	68.6
5/6	0:30	69.7	68.8	70.3	69.6	69.8	68.9	69.9	69.1
5/6	0:45	69.0	68.4	70.0	69.0	69.5	68.4	69.0	68.3
5/6	1:00	69.0	68.1	69.7	69.1	69.4	68.7	69.2	68.7
5/6	1:15	69.8	69.0	70.4	69.7	69.9	69.1	69.9	69.2
5/6	1:30	69.9	69.0	70.4	69.8	70.0	69.2	69.9	69.3
5/6	1:45	69.8	69.0	70.4	69.6	69.8	69.0	69.7	69.1
5/6	2:00	69.6	68.5	70.0	69.3	69.4	68.4	69.5	68.7
5/6	2:15	69.9	68.7	70.2	69.5	69.6	68.5	69.8	68.8
5/6	2:30	70.3	69.0	70.9	69.7	70.4	69.1	70.2	69.2
5/6	2:45	70.0	69.0	70.5	69.8	69.9	68.9	69.9	69.1
5/6	3:00	70.4	68.9	71.0	69.6	70.4	69.0	70.2	69.1
5/6	3:15	70.1	69.1	70.8	69.9	70.2	69.4	70.2	69.4
5/6	3:30	70.1	68.7	70.6	69.5	70.1	68.6	69.9	68.9
5/6	3:45	70.1	69.1	70.7	69.8	70.3	69.3	70.2	69.5
5/6	4:00	70.2	69.0	70.6	69.8	70.3	69.2	70.1	69.2
5/6	4:15	70.0	69.0	70.6	69.8	70.2	69.1	69.9	69.1
5/6	4:30	69.8	68.8	70.4	69.6	69.9	68.9	69.7	69.0
5/6	4:45	69.7	68.9	70.3	69.6	69.9	69.0	69.8	69.1
5/6	5:00	69.7	68.9	70.4	69.6	69.9	69.0	69.8	69.1
5/6	5:15	69.9	69.0	70.5	69.8	69.9	69.1	69.8	69.1
5/6	5:30	69.8	68.9	70.4	69.7	69.9	69.1	69.8	69.2
5/6	5:45	69.6	68.8	70.2	69.6	69.6	68.7	69.5	68.8
5/6	6:00	73.6	74.4	73.9	74.1	73.8	74.5	74.1	74.1
5/6	6:15	70.0	69.0	70.5	69.7	70.1	69.1	70.0	69.5
5/6	6:30	69.9	68.5	70.4	69.4	69.9	68.3	69.6	68.7
5/6	6:45	70.1	68.9	70.8	69.7	70.2	69.2	69.9	69.1
5/6	7:00	69.6	68.4	70.1	69.3	69.7	68.5	69.8	68.8
5/6	7:15	60.7	59.4	61.0	63.2	62.5	62.4	59.6	57.8
5/6	7:30	54.0	56.0	59.9	61.2	59.3	60.3	61.1	59.0
5/6	7:45	51.2	51.2	57.4	58.0	55.1	55.5	58.3	53.4
5/6	8:00	42.2	46.1	48.0	54.5	47.5	53.9	50.2	50.7
5/6	8:15	40.1	29.8	41.9	36.0	38.4	34.6	44.8	37.4
5/6	8:30	36.4	25.2	40.2	32.5	40.3	22.2	38.1	24.4
5/6	8:45	33.9	24.8	40.4	33.6	39.1	24.4	35.6	25.0
5/6	9:00	33.9	23.0	38.1	32.3	36.5	22.0	37.1	23.7
5/6	9:15	19.4	19.0	21.0	20.6	20.3	19.1	25.1	18.6

A.3. Selected material testing data

B.3.1 Moisture Content

25mm MC Sections				500mm Boards Sections				
		$\begin{aligned} & 0 \\ & 0 \\ & \sum_{0}^{0} \\ & 0 \end{aligned}$	Oi				Max MC Values	
020A	71.75	66.15	8.5	20A	9.4			
020B	80.1	72.63	10.3	20B	10.6			
020C	77.01	69.46	10.9	20C	10.8	10.3	10.8	9.4
020D	79.96	72.16	10.8					
023A	74.08	66.71	11.0	23A	11.0			
023B	72.37	65.25	10.9	23B	10.8			
023C	70.45	63.63	10.7	23C	10.8	10.9	11.0	10.8
023D	73.84	66.64	10.8					
027A	75.01	67.65	10.9	27A	10.8			
027B	69.93	63.17	10.7	27B	10.5			
027C	67.27	60.99	10.3	27C	10.7			
027D	65.23	58.67	11.2	27D	11.5			
027E	66.9	59.8	11.9	27E	11.7			
027F	65.92	59.15	11.4	27F	11.4	11.1	11.7	10.5
027G	74	66.4	11.4					
029A	45.3	41.99	7.9	29A	8.5			
029B	65.21	59.75	9.1	29B	10.3			
029C	76.71	68.81	11.5	29C	11.6	10.1	11.6	8.5
029D	87.31	78.14	11.7					
030A	71.05	64.5	10.2	30A	11.3			
030B	60.55	53.86	12.4	30B	11.7			
030C	48.22	43.42	11.1	30C	10.5	11.2	11.7	10.5
030D	59.86	54.44	10.0					
068A	69.77	64.2	8.7	68A	9.3			
068B	73.72	67.05	9.9	68B	10.3			
068C	71.89	64.94	10.7	68C	10.7	10.1	10.7	9.3
068D	75.17	67.95	10.6					
076A	61.23	55.85	9.6	76A	9.7			
076B	60.98	55.55	9.8	76B	9.8			
076C	51.86	47.22	9.8	76C	9.8			
076D	63.95	58.21	9.9	76D	9.6	9.7	9.8	9.6
076E	68.16	62.32	9.4					
077A	78.26	70.47	11.1	77A	11.0			
077B	73.05	65.84	11.0	77B	11.2			
077C	61.25	54.98	11.4	77C	10.8	11.0	11.2	10.8
077D	74.22	67.3	10.3					
095A	66.11	60.14	9.9	95A	10.3			
095B	73.11	66.11	10.6	95B	10.6	10.5	10.6	10.3
095C	67.33	60.82	10.7					
099A	73.05	65.68	11.2	99A	11.1			
099B	65.39	58.89	11.0	99B	10.8			
099C	65.08	58.88	10.5	99C	10.6	10.8	11.1	10.6
099D	66.89	60.43	10.7					
1001A	65.4	59.85	9.3	1001A	9.4			
1001B	65.18	59.5	9.5	1001B	9.6			
1001C	65.55	59.75	9.7	1001C	9.7			
1001D	63.27	57.73	9.6	1001D	9.6	9.6	9.7	9.4
1001E	65.07	59.37	9.6					
1006A	59.2	53.67	10.3	1006A	10.1			
1006B	61.04	55.57	9.8	1006B	9.9			
1006C	61.93	56.35	9.9	1006C	9.9	10.0	10.1	9.9
1006D	59.15	53.81	9.9					
1007A	63.16	57.66	9.5	1007A	9.6			
1007B	52.32	47.71	9.7	1007B	9.7			
1007C	56.42	51.42	9.7	1007C	9.6	9.6	9.7	9.6
1007D	61.35	56.06	9.4					
1009A	46.95	42.87	9.5	1009A	9.4			
1009B	49.62	45.41	9.3	1009B	9.3			
1009C	62.25	56.92	9.4	1009C	9.5			
1009D	56.78	51.83	9.6	1009D	9.7			
1009E	59.6	54.27	9.8	1009E	9.6			
1009F	59.62	54.48	9.4	1009F	9.5			
1009G	48.45	44.2	9.6	1009G	9.6	9.5	9.7	9.3
1009H	58.2	53.11	9.6					

747A	67.46	61.54	9.6	747A	9.6			
747B	63.62	58.02	9.7	747B	9.6			
747C	40.42	36.89	9.6	747C	9.4			
747D	67.74	62.03	9.2	747D	10.1			
747E	61.32	55.29	10.9	747E	10.6			
747F	38.95	35.33	10.2	747F	10.3			
747G	69.61	63.04	10.4	747G	10.3	10.0	10.6	9.4
747H	70.34	63.83	10.2					
759A	74.63	68.64	8.7	759A	9.0			
759B	72.1	65.97	9.3	759B	9.5			
759 C	62.24	56.69	9.8	759 C	9.7			
759D	74.77	68.27	9.5	759D	9.6			
759E	63.36	57.75	9.7	759E	9.6	9.5	9.7	9.0
759F	60.93	55.63	9.5					
764A	76.77	70.65	8.7	764A	9.1			
764B	65.29	59.62	9.5	764B	9.4			
764C	66.68	61.01	9.3	764C	9.2			
764D	70.17	64.3	9.1	764D	9.8			
764E	62.83	56.91	10.4	764E	10.0			
764F	68.86	62.82	9.6	764F	9.7	9.5	10.0	9.1
764G	66.36	60.46	9.8					
783A	52.93	48.22	9.8	783A	9.7			
783B	62.42	56.93	9.6	783B	9.7			
783C	61.36	55.9	9.8	783C	9.9			
783D	61.09	55.54	10.0	783D	10.1	9.8	10.1	9.7
783E	67.48	61.27	10.1					
796A	70.68	63.77	10.8	796A	10.8			
796B	66.79	60.33	10.7	796B	10.8			
796C	70.25	63.39	10.8	796C	10.8	10.8	10.8	10.8
796D	62.07	56.01	10.8					
812A	74.16	67.21	10.3	812A	10.5			
812B	68.9	62.3	10.6	812B	10.4			
812C	71.07	64.48	10.2	812C	10.3	10.4	10.5	10.3
812D	74.39	67.41	10.4					
822A	72.19	65.07	10.9	822A	10.9			
822B	71.09	64.13	10.9	822B	11.0			
822C	76.98	69.3	11.1	822C	10.9	10.9	11.0	10.9
822D	77.92	70.35	10.8					
832A	72.94	66.81	9.2	832A	9.9			
832B	61.52	55.66	10.5	832B	10.2			
832C	79.64	72.43	10.0	832C	10.0			
832D	78.85	71.62	10.1	832D	10.4			
832E	78.29	70.74	10.7	832E	10.5			
832F	78.53	71.15	10.4	832F	10.5			
832G	68.58	61.99	10.6	832G	10.3	10.3	10.5	9.9
832H	74.21	67.48	10.0					
841A	62.27	56.33	10.5	841A	10.8			
841B	65.36	58.86	11.0	841B	11.0			
841C	67.59	60.91	11.0	841C	11.1			
841D	67.14	60.39	11.2	841D	11.0	11.0	11.1	10.8
841E	77.46	69.95	10.7					
845A	51.74	46.98	10.1	845A	10.3			
845B	66.37	60.12	10.4	845B	10.5			
845C	66.29	59.89	10.7	845C	10.4			
845D	65.33	59.28	10.2	845D	10.2			
845E	62.76	56.92	10.3	845E	10.6			
845F	73.54	66.31	10.9	845F	11.2			
845G	65.57	58.79	11.5	845G	11.7	10.7	11.7	10.2
845H	66.57	59.51	11.9					
848A	56.87	51.09	11.3	848A	11.2			
848B	63.17	56.82	11.2	848B	11.4			
848C	71.55	64.09	11.6	848C	12.1			
848D	59.2	52.61	12.5	848D	12.9			
848E	71.49	63.16	13.2	848E	13.0			
848F	74.76	66.31	12.7	848F	12.8	12.2	13.0	11.2
848G	73.56	65.23	12.8					
850A	74.34	67.36	10.4	850A	10.9			
850B	73.98	66.35	11.5	850B	11.3			
850C	79.09	71.24	11.0	850C	11.5			
850D	68.11	60.87	11.9	850D	11.9	11.4	11.9	10.9
850E	77.01	68.81	11.9					

B.3.2 Sample length, sawn orientation and template reference.

		Template Ref. (Centre)		Orientation
Sample \#	Length (mm)	Butt (@)	Top (^)	Q, B, or T
648	5100	-	-	T
661	4900	-	-	B
693	4800	-	-	B
615	6100	-	-	B
504	2700	-	-	T
387	3700	-	-	B
598	6100	-	-	B
468	3100	-	-	B
646	4900	-	-	B
669	3700	-	-	T
628	3400	-	-	B
603	3600	-	-	B
697	4800	-	-	B
624	3300	-	-	B
681	4900	-	-	B
581	3700	-	-	T
250	3800	-	-	B
446	3100	-	-	T
382	3100	-	-	T
630	6100	-	-	B
622	4900	-	-	B
679	4800	-	-	B
579	3700	-	-	B
447	3000	-	-	T
445	3100	-	-	B
314	3900	-	-	T
330	3900	-	-	T
475	3100	-	-	B
438	5200	-	-	T
413	3600	-	-	T
433	3000	-	-	T
357	3400	-	-	T
356	3300	-	-	B
269	3000	-	-	B
328	3700	-	-	B
281	2800	-	-	B
218	2800	-	-	T
259	5100	-	-	B
295	4900	-	-	T
248	4800	-	-	T
209	4900	-	-	B
251	5100	-	-	B
289	4900	-	-	B
99	3300	-	-	T
111	3000	-	-	Q
112	3000	-	-	B
143	5200	-	-	B
205	4900	-	-	B
308	5200	-	-	T
95	2400	-	-	B
76	3700	-	-	B
77	3000	-	-	T
68	3400	-	-	B
20	3300	-	-	B
29	3300	-	-	T
27	4800	-	-	T
30	3400	-	-	T
23	3400	-	-	B
848	4900	-	-	T
929	3400	-	-	B
927	3700	-	-	T
852	3700	130	14	B
666	3300	A26	E12	B
741	2700	B21	D14	B
850	3600	L8.5	L26.5	B
796	3100	H5.5	G29.5	B
728	2700	F34	F2	Q
1040	5200	H16.5	H20.5	B
966	3300	H31	G31.5	T
1001	3700	ILLEGIBLE	J32.5	B
1039	2800	H5.5	131.5	T
979	3000	E9	127.5	B

1007	3000	H22	E14.5	B
1032	5200	H34	G3	B
1025	5200	F33	F5	B
1009	5400	B33	E4	Q
901	5400	-	-	B
845	5400	-	-	B
896	3100	-	-	B
764	4800	O16	?	B
729	5500	B1	A1	T
745	5500	H25.5	G9.5	T
978	4900	13	H32.5	T
747	5500	H31	H4.5	T
759	3900	L30	ILLEGIBLE	T
832	5500	H13	125.5	B
734	5100	E16	B24	B
708	5100	A17	A35	B
812	3100	H1	F35	T
993	3000	H27	H9	T
1016	3000	E3.5	H31	Q
707	4300	H13	J23	B
704	4300	F2	G32	B
783	3700	G18	H17	T
841	3600	K12	K23	B
991	3000	H33	1.5	B
1012	3300	133	15	B
1347	4900	-	-	T
1348	4900	-	-	B
1341	5100	-	-	T
1006	3000	G2	132	T
966	3000	K9	M26	B
1196	3300	L5	J28	T
1049	4800	H16	H19.5	B
1242	4800	B2	A1	B
1248	5500	H3	G33	B
1189	5500	C11	A28	B
1145	5500	J13	122.5	T
1168	3700	E21	E15	T
1153	4300	O23.5	J11	Q
1142	3400	B15	D21	B
1158	3400	D5	D29	B
1133	3400	127	111	B
1141	4400	133.5	12	B
1100	3700	119	J15	B
1046	5100	J34.5	11	B
1172	4900	J8	J25	B
1048	5200	D6	ILLEGIBLE	B
1118	4800	133.5	11	T
1159	4300	19	K26.5	B
1160	3400	G16	H20.5	B
822	3200	-	-	B
1123	3000	-	-	T
1122	3000	-	-	T
1104	5500	-	-	B
1333	5100	-	-	B
1115	5500	-	-	B
1109	5500	-	-	B
1117	5500	-	-	T
1044	5200	C27	A12	B
1053	4900	A3	A30	Q
1058	4800	130	H4.5	B
1061	5200	F6	A28	B
1063	5200	J2	G34	T
1074	4800	C22	G14	B
1312	5500	K6	K29	B
730	4800	K2	K0	B
988	4800	E5	F30	T
855	5200	ILLEGIBLE	H15	B
1083	2800	126	H11	T

Appendix C. Dry Stock Appraisal Data

A.4. Site 1

A.2.5. Species 1

Species 1	Uncorrected MC (\%)			Corrected MC (\%)				Individual Qaulity Classes Assuming Target MC of 12\%	
25mm	Average	Gradient		Average	Gradient				
Sample \#	$\mathrm{MC}_{1 / 3}$	$M^{\prime} C_{1 / 6}$	$\mathrm{MC}_{1 / 2}$	MC ${ }_{1 / 3}$	$\mathrm{MC}_{1 / 6}$	$\mathrm{MC}_{1 / 2}$	Difference	Average	Gradient
1	10	9.5	10.5	11	10.5	11.5	1	A	A
2	14	13.5	16	15	14.5	17	2.5	B	B
3	13	13	14	14	14	15	1	A	A
4	15	14.5	16	16	15.5	17	1.5	C	A
5	11	11	11	12	12	12	0	A	A
6	14	13	14	15	14	15	1	B	A
7	17	16	19	18	17	20	3	E	B
8	13	13	14	14	14	15	1	A	A
9	14	13.5	15	15	14.5	16	1.5	B	A
10	15	15	17	16	16	18	2	C	A
11	10.5	10	11	11.5	11	12	1	A	A
12	11	11	12	12	12	13	1	A	A
13	11.5	11	12.5	12.5	12	13.5	1.5	A	A
14	10.5	10.5	11	11.5	11.5	12	0.5	A	A
15	10.5	10	11	11.5	11	12	1	A	A
16	9.5	9.5	10	10.5	10.5	11	0.5	A	A
17	13	13	13.5	14	14	14.5	0.5	A	A
18	12	11.5	12	13	12.5	13	0.5	A	A
19	13	12.5	13.5	14	13.5	14.5	1	A	A
20	11	10	11	12	11	12	1	A	A
21	13	13	15	14	14	16	2	A	A
22	12	11.5	12.5	13	12.5	13.5	1	A	A
23	9.5	9	10	10.5	10	11	1	A	A
24	11	11	11.5	12	12	12.5	0.5	A	A
25	12.5	12	13	13.5	13	14	1	A	A
26	9.5	9	10	10.5	10	11	1	A	A
27	9.5	9	9.5	10.5	10	10.5	0.5	A	A
28	10	10	10.5	11	11	11.5	0.5	A	A
29	11	11	12	12	12	13	1	A	A
30	9.5	9	9.75	10.5	10	10.75	0.75	A	A
31	11	10.5	12	12	11.5	13	1.5	A	A
32	9	8.5	9	10	9.5	10	0.5	A	A
33	10.5	10	11	11.5	11	12	1	A	A
34	10	10	10.5	11	11	11.5	0.5	A	A
35	10	9	10	11	10	11	1	A	A
36	9	8	9.5	10	9	10.5	1.5	A	A
37	12	11.5	12.5	13	12.5	13.5	1	A	A
38	9	8.5	9	10	9.5	10	0.5	A	A
39	8	8	8.5	9	9	9.5	0.5	B	A
40	9	8.5	9.5	10	9.5	10.5	1	A	A

A.2.6. Species 2

Species 2	Uncorrected MC (\%)			Corrected MC (\%)				Individual Qaulity Classes Assuming Target MC of 10\%	
25mm	Average	Gra		Average		adient			
Sample \#	$\mathrm{MC}_{1 / 3}$	$M^{\text {c/6 }}$	$\mathrm{MC}_{1 / 2}$	$\mathrm{MC}_{1 / 3}$	$\mathrm{MC}_{1 / 6}$	MC ${ }_{1 / 2}$	Difference	Average	Gradient
1	7.5	7.5	8	8	8	8	0	B	A
2	10	9.5	10	9	9	9	0	A	A
3	9	9	10	9	9	9	0	A	A
4	8	7.5	10	8	8	9	1	B	A
5	8	8	9	8	8	9	1	B	A
6	10.5	10.5	12.5	9.5	9.5	10.5	1	A	A
7	10	10	11	9	9	10	1	A	A
8	9.5	9	10	9	9	9	0	A	A
9	11	11	13	10	10	11	1	A	A
10	11	11	12.5	10	10	10.5	0.5	A	A
11	9	8.5	10	9	8.5	9	0.5	A	A
12	9	9	10	9	9	9	0	A	A
13	10	10	11	9	9	10	1	A	A
14	9	9	10	9	9	9	0	A	A
15	8.5	8.5	10	8.5	8.5	9	0.5	A	A
16	10	9.5	11.5	9	9	10	1	A	A
17	7	7	8	8	8	8	0	B	A
18	9	8.5	10.5	9	8.5	9.5	1	A	A
19	10.5	10.5	13	9.5	9.5	11	1.5	A	B
20	11.5	11.5	15	10	10	12	2	A	B
21	10	10	11.5	9	9	10	1	A	A
22	9.5	9.5	10	9	9	9	0	A	A
23	10	10	11.5	9	9	10	1	A	A
24	10.5	10.5	12	9.5	9.5	10	0.5	A	A
25	12	11.5	13	10	10	11	1	A	A
26	11.5	11.5	13	10	10	11	1	A	A
27	10.5	10.5	12.5	9.5	9.5	10.5	1	A	A
28	10	10	12	9	10	10	0	A	A
29	11	11	12	10	10	10	0	A	A
30	9	8.5	9.5	9	8.5	9	0.5	A	A
31	9.5	9.5	11	9	9	10	1	A	A
32	10.5	10.5	12	9.5	9.5	10	0.5	A	A
33	10	10	11.5	9	9	10	1	A	A
34	10	10	11	9	9	10	1	A	A
35	9.5	9.5	11	9	9	10	1	A	A
36	11	11	12	10	10	10	0	A	A
37	11	11	12.5	10	10	10.5	0.5	A	A
38	10	9.5	10.5	9	9	9.5	0.5	A	A
39	12	11.5	13	10	10	11	1	A	A
40	12	12	13.5	10	10	11.5	1.5	A	B

A.5. Site 2

B.2.3. Species 1

Species 1	Uncorrected MC (\%)			Corrected MC (\%)				Individual Qaulity Classes Assuming Target MC of 12\%	
25mm	Average	Gradient		Average	Gradient				
Sample \#	$\mathrm{MC}_{1 / 3}$	MC ${ }_{1 / 6}$	MC ${ }_{1 / 2}$	MC ${ }_{1 / 3}$	$\mathrm{MC}_{1 / 6}$	MC ${ }_{1 / 2}$	Difference	Average	Gradient
1	9.2	9	9.5	11.2	11	11.5	0.5	A	A
2	18	15	20	20	18	22	4	F	C
3	10.4	9.8	11	13.4	11.8	14	2.2	A	B
4	10.2	9.6	11	13.2	11.6	14	2.4	A	B
5	11	10	12	14	13	15	2	A	A
6	8.8	8.6	9	10.8	10.6	11	0.4	A	A
7	9.6	9.4	9.4	11.6	11.4	11.4	0	A	A
8	10.2	9.8	10.4	13.2	11.8	13.4	1.6	A	A
9	10	9.8	9.6	13	11.8	11.6	-0.2	A	A
10	9	8.6	9.2	11	10.6	11.2	0.6	A	A
11	15	14.2	16	18	17.2	18	0.8	E	A
12	11.6	11	12.4	14.6	14	15.4	1.4	B	A
13	13	12.2	14	16	15.2	17	1.8	C	A
14	12.4	11	13.2	15.4	14	16.2	2.2	B	B
15	12.2	11.4	13.2	15.2	14.4	16.2	1.8	B	A
16	10.6	9.4	11.2	13.6	11.4	14.2	2.8	A	B
17	10	9.4	10.2	13	11.4	13.2	1.8	A	A
18	14.2	12.2	15	17.2	15.2	18	2.8	E	B
19	9.8	9.4	10	11.8	11.4	13	1.6	A	A
20	11.2	10.2	12.4	14.2	13.2	15.4	2.2	B	B
21	13	11.6	13.8	16	14.6	16.8	2.2	C	B
22	11.2	10.4	12	14.2	13.4	15	1.6	B	A
23	12.2	11.6	12.2	15.2	14.6	15.2	0.6	C	A
24	10.2	9.2	11	13.2	11.2	14	2.8	A	B
25	13	12	13.8	16	15	16.8	1.8	C	A
26	11	10.4	11	14	13.4	14	0.6	B	A
27	12.2	10.8	14	15.2	13.8	17	3.2	C	C
28	10.4	9	11.6	13.4	11	14.6	3.6	A	C
29	12.2	11.6	13.4	15.2	14.6	16.4	1.8	C	A
30	12.2	11.6	12.8	15.2	14.6	15.8	1.2	C	A
31	12.8	11.8	13.6	15.8	14.8	16.6	1.8	C	A
32	10.8	9.6	12	13.8	11.6	15	3.4	A	C
33	12.4	11.4	13.4	15.4	14.4	16.4	2	C	A
34	11.2	10.4	12	14.2	13.4	15	1.6	B	A
35	10.4	10	10.4	13.4	13	13.4	0.4	A	A
36	9.8	9.4	10	11.8	11.4	13	1.6	A	A
37	11.4	10.4	12	14.4	13.4	15	1.6	C	A
38	9.6	9.2	9.8	11.6	11.2	11.8	0.6	A	A
39	11.2	10.8	11.8	14.2	13.8	14.8	1	C	A
40	9.8	8.8	10.6	11.8	10.8	13.6	2.8	A	B

Overall 90\% Class	C	B

B.2.4. Species 2

Species 2	Uncorrected MC (\%)			Corrected MC (\%)				Individual Qaulity Classes Assuming Target MC of 12\%	
25mm	Average	Gradient		Average	Gradient				
Sample \#	MC ${ }_{1 / 3}$	$\mathrm{MC}_{1 / 6}$	MC ${ }_{1 / 2}$	MC ${ }_{1 / 3}$	$\mathrm{MC}_{1 / 6}$	MC ${ }_{1 / 2}$	Difference	Average	Gradient
1	14.4	13	14.6	17.4	16	17.6	1.6	E	A
2	13.2	11.8	14	16.2	14.8	17	2.2	D	B
3	15.4	12.8	17	18.4	15.8	19	3.2	F	C
4	14.4	12.6	15.4	17.4	15.6	18.4	2.8	E	B
5	16.2	13.6	17.6	18.2	16.6	19.6	3	F	B
6	14.6	13.2	14.8	17.6	16.2	17.8	1.6	E	A
7	14	11.8	15.2	17	14.8	18.2	3.4	E	C
8	15.4	13.2	16.2	18.4	16.2	18.2	2	F	A
9	16.2	13	17.6	18.2	16	19.6	3.6	F	C
10	14.2	12.2	15.2	17.2	15.2	18.2	3	E	B
11	15	13.4	15.2	18	16.4	18.2	1.8	E	A
12	15.2	12.4	16.4	18.2	15.4	18.4	3	F	B
13	14.6	12.6	16	17.6	15.6	18	2.4	E	B
14	16	13.2	17.2	18	16.2	19.2	3	E	B
15	16	14.2	16.2	18	17.2	18.2	1	E	A
16	16	16	15	18	18	18	0	E	A
17	16	14.8	16.2	18	17.8	18.2	0.4	E	A
18	15.6	14.2	16	18.6	17.2	18	0.8	F	A
19	18	16	18	20	18	20	2	F	A
20	16	13	16	18	16	18	2	E	A
21	18	16	18.2	20	18	20.2	2.2	F	B
22	14.2	12.6	14.4	17.2	15.6	17.4	1.8	E	A
23	17.4	14.6	18	19.4	17.6	20	2.4	F	B
24	17	15	14.4	19	18	17.4	-0.6	F	A
25	16.2	13.2	16.8	18.2	16.2	18.8	2.6	F	B
26	16.2	12.6	17.6	18.2	15.6	19.6	4	F	C
27	17.2	13.6	18.2	19.2	16.6	20.2	3.6	F	C
28	15	12.4	16	18	15.4	18	2.6	E	B
29	17.8	13	20	19.8	16	22	6	F	E
30	15	12.6	17	18	15.6	19	3.4	E	C
31	14.2	12.8	14.2	17.2	15.8	17.2	1.4	E	A
32	15	13.2	16	18	16.2	18	1.8	E	A
33	14.2	13.2	14.4	17.2	16.2	17.4	1.2	E	A
34	14.8	14	15.8	17.8	17	18.8	1.8	E	A
35	15.6	14	16	18.6	17	18	1	F	A
36	16	15	16	18	18	18	0	E	A
37	15.6	14.2	16	18.6	17.2	18	0.8	F	A
38	15.2	14.2	15	18.2	17.2	18	0.8	F	A
39	16.2	15.6	16	18.2	18.6	18	-0.6	F	A
40	15.2	14	16	18.2	17	18	1	F	A

A.6. Site 3
C.3.1. Species1

Species 1	Uncorrected MC (\%)			Corrected MC (\%)				Individual Qaulity Classes Assuming Target MC of 10\%	
25mm	Average	Gra		Average		adient			
Sample \#	$M_{\text {M }}^{1 / 3}$	$\mathrm{MC}_{1 / 6}$	MC ${ }_{1 / 2}$	MC ${ }_{1 / 3}$	$\mathrm{MC}_{1 / 6}$	MC ${ }_{1 / 2}$	Difference	Average	Gradient
1	7.5	7	7.5	8.5	8	8.5	0.5	B	A
2	8	7.5	8	9	8.5	9	0.5	A	A
3	7.5	7	8	8.5	8	9	1	B	A
4	7.5	7.5	8	8.5	8.5	9	0.5	B	A
5	8	8	9	9	9	10	1	A	A
6	8.5	8.5	9	9.5	9.5	10	0.5	A	A
7	7.5	7	7.5	8.5	8	8.5	0.5	B	A
8	8	7.5	8	9	8.5	9	0.5	A	A
9	8	7.5	8	9	8.5	9	0.5	A	A
10	7.5	7	8	8.5	8	9	1	B	A
11	7.5	7.5	8	8.5	8.5	9	0.5	B	A
12	7	7	7	8	8	8	0	B	A
13	7.5	7.5	8.5	8.5	8.5	9.5	1	B	A
14	7.5	7	8.5	8.5	8	9.5	1.5	B	A
15	7	7	9	8	8	10	2	B	B
16	7	6.5	7.5	8	7.5	8.5	1	B	A
17	7	7	9.5	8	8	10.5	2.5	B	C
18	8	7.5	8.5	9	8.5	9.5	1	A	A
19	7.5	7.5	9	8.5	8.5	10	1.5	B	B
20	7.5	7	9	8.5	8	10	2	B	B
21	7	7	8	8	8	9	1	B	A
22	6.5	6.5	7.5	7.5	7.5	8.5	1	C	A
23	7	6.5	7.5	8	7.5	8.5	1	B	A
24	7	7	7.5	8	8	8.5	0.5	B	A
25	8	8	9	9	9	10	1	A	A
26	7	6.5	7.5	8	7.5	8.5	1	B	A
27	7.5	7.5	8.5	8.5	8.5	9.5	1	B	A
28	7.5	7.5	10	8.5	8.5	11	2.5	B	C
29	9	9	10.5	10	10	11.5	1.5	A	A
30	8	8	9.5	9	9	10.5	1.5	A	A
31	9	8.5	10	10	9.5	11	1.5	A	A
32	7	7	8	8	8	9	1	B	A
33	7.5	7.5	10	8.5	8.5	11	2.5	B	C
34	8.5	8	10	9.5	9	11	2	A	B
35	7	7	8	8	8	9	1	B	A
36	7.5	7	9	8.5	8	10	2	B	B
37	8	8	10	9	9	11	2	A	A
38	7	6.5	7	8	7.5	8	0.5	B	A
39	7	7	8	8	8	9	1	B	A
40	11.5	11	12	12.5	12	13	1	B	A

C.3.2. Species 2

Species 2	Uncorrected MC (\%)			Corrected MC (\%)				Individual Qaulity Classes Assuming Target MC of 10\%	
25mm	Average	Gra		Average		adient			
Sample \#	MC ${ }_{1 / 3}$	MC ${ }_{1 / 6}$	$M_{1 / 2}$	$\mathrm{MC}_{1 / 3}$	$\mathrm{MC}_{1 / 6}$	MC ${ }_{1 / 2}$	Difference	Average	Gradient
1	7.5	7	8	8	8	8	0	B	A
2	7	6.5	9	8	7.5	9	1.5	B	B
3	7	7	8.5	8	8	8.5	0.5	B	A
4	8	7.5	10	8	8	9	1	B	A
5	8	8	12	8	8	10	2	B	B
6	8	7.5	9.5	8	8	9	1	B	A
7	7	6.5	8	8	7.5	8	0.5	B	A
8	8	8	12	8	8	10	2	B	B
9	6.5	6	7	7.5	7	8	1	C	A
10	13	12.5	14	11	10.5	12	1.5	A	B
11	7	6.5	7	8	7.5	8	0.5	B	A
12	8	8	12	8	8	10	2	B	B
13	8	7.5	9	8	8	9	1	B	A
14	7	6.5	7.5	8	7.5	8	0.5	B	A
15	11	11	13	10	10	11	1	A	A
16	7.5	7	9	8	8	9	1	B	A
17	8.5	8.5	14	8.5	8.5	12	3.5	B	D
18	8	8	12	8	8	10	2	B	B
19	16	15	16	13	12	13	1	B	A
20	14	13.5	15	12	12	12	0	A	A
21	16	15	17	13	12	13	1	B	A
22	8.5	8.5	13	8.5	8.5	11	2.5	B	C
23	7	6.5	7	8	7.5	8	0.5	B	A
24	7	7	10	8	8	9	1	B	A
25	8	7.5	10	8	8	9	1	B	A
26	11	11	14	10	10	12	2	A	B
27	14	13.5	14.5	12	12	12	0	A	A
28	13	13	14.5	11	11	12	1	A	A
29	14	13.5	14.5	12	12	12	0	A	A
30	13	13	15	11	11	12	1	A	A
31	10	9	11	9	9	10	1	A	A
32	14.5	14	16	12	12	13	1	A	A
33	8	8	12	8	8	10	2	B	B
34	7	6.5	8.5	8	7.5	8	0.5	B	A
35	9	9	13	9	9	11	2	A	B
36	12.5	12	13	10	10	11	1	A	A
37	8	8	11.5	8	8	10	2	B	B
38	10.5	10	12.5	9	9	10.5	1.5	A	B
39	13	12.5	15	11	10.5	12	1.5	A	B
40	12	11	13	10	10	11	1	A	A

A.7. Site 4

C.4.1. Species 1

Species 1	Uncorrected MC (\%)			Corrected MC (\%)				Individual Qaulity Classes Assuming Target MC of 10\%	
25mm	Average	Gradient		Average	Gradient				
Sample \#	$\mathrm{MC}_{1 / 3}$	MC ${ }_{1 / 6}$	MC ${ }_{1 / 2}$	MC ${ }_{1 / 3}$	MC ${ }_{1 / 6}$	MC ${ }_{1 / 2}$	Difference	Average	Gradient
1	9	8.5	9.5	10	9.5	10.5	1	A	A
2	8.5	8.5	9	9.5	9.5	10	0.5	A	A
3	9	8.5	9	10	9.5	10	0.5	A	A
4	9	8.5	9	10	9.5	10	0.5	A	A
5	9	9	9.5	10	10	10.5	0.5	A	A
6	8	7.5	8.5	9	8.5	9.5	1	A	A
7	8.5	8	9	9.5	9	10	1	A	A
8	9.5	9.5	10	10.5	10.5	11	0.5	A	A
9	8	8	9	9	9	10	1	A	A
10	8.5	8.5	9	9.5	9.5	10	0.5	A	A
11	8.5	8	9	9.5	9	10	1	A	A
12	9	9	9	10	10	10	0	A	A
13	8.5	8	8.5	9.5	9	9.5	0.5	A	A
14	8	8	8.5	9	9	9.5	0.5	A	A
15	9	8.5	9	10	9.5	10	0.5	A	A
16	9	8.5	9.5	10	9.5	10.5	1	A	A
17	8	8	8.5	9	9	9.5	0.5	A	A
18	9.5	9	9.5	10.5	10	10.5	0.5	A	A
19	9	9	9.5	10	10	10.5	0.5	A	A
20	9.5	9	10	10.5	10	11	1	A	A
21	9.5	9	10	10.5	10	11	1	A	A
22	9	8.5	9	10	9.5	10	0.5	A	A
23	9	9	9	10	10	10	0	A	A
24	9	9	9.5	10	10	10.5	0.5	A	A
25	9	8.5	9	10	9.5	10	0.5	A	A
26	8.5	8	9	9.5	9	10	1	A	A
27	8	8	8.5	9	9	9.5	0.5	A	A
28	9	9	10	10	10	11	1	A	A
29	9	8.5	9.5	10	9.5	10.5	1	A	A
30	9	8.5	9	10	9.5	10	0.5	A	A
31	9	9	9.5	10	10	10.5	0.5	A	A
32	8.5	8.5	10	9.5	9.5	11	1.5	A	B
33	8.5	8	9	9.5	9	10	1	A	A
34	10	10	10	11	11	11	0	A	A
35	10	10	10.5	11	11	11.5	0.5	A	A
36	10	9.5	10.5	11	10.5	11.5	1	A	A
37	9.5	9	9.5	10.5	10	10.5	0.5	A	A
38	9	9	9.5	10	10	10.5	0.5	A	A
39	9	8.5	9	10	9.5	10	0.5	A	A
40	10	9.5	10.5	11	10.5	11.5	1	A	A

C.4.2. Species 2

Species 2	Uncorrected MC (\%)			Corrected MC (\%)				Individual Qaulity Classes Assuming Target MC of 10\%	
25mm	Average			Average		adient			
Sample \#	$\mathrm{MC}_{1 / 3}$	$\mathrm{MC}_{1 / 6}$	MC ${ }_{1 / 2}$	$M_{\text {M }}^{1 / 3}$	$\mathrm{MC}_{1 / 6}$	MC ${ }_{1 / 2}$	Difference	Average	Gradient
1	9.5	9	11	9	9	10	1	A	A
2	10	9	10	9	9	9	0	A	A
3	10	9.5	11	9	9	10	1	A	A
4	10	9	10.5	9	9	9.5	0.5	A	A
5	10	9	11	9	9	10	1	A	A
6	8.5	8.5	9	8.5	8.5	9	0.5	B	A
7	10	9.5	10.5	9	9	9.5	0.5	A	A
8	10.5	10	11	9.5	9	10	1	A	A
9	12	11	12.5	10	10	10.5	0.5	A	A
10	9.5	9.5	10.5	9	9	9.5	0.5	A	A
11	10	10	10.5	9	9	9.5	0.5	A	A
12	9.5	9	10	9	9	9	0	A	A
13	10.5	10	11.5	9.5	9	10	1	A	A
14	9.5	9	10	9	9	9	0	A	A
15	9.5	9	10	9	9	9	0	A	A
16	10	10	10.5	9	9	9.5	0.5	A	A
17	10	10	11	9	9	10	1	A	A
18	10.5	10	12	9.5	9	10	1	A	A
19	10	10	11	9.5	9	10	1	A	A
20	9.5	9	10	9	9	9	0	A	A
21	9	9	10	9	9	9	0	A	A
22	10	9.5	10.5	9	9	9.5	0.5	A	A
23	9.5	9	10	9	9	9	0	A	A
24	10.5	10	12	9.5	9	10	1	A	A
25	12	11.5	13	10	10	11	1	A	A
26	10	9.5	11	9	9	10	1	A	A
27	10	10	10.5	9	9	9.5	0.5	A	A
28	11	10.5	12	10	9.5	10	0.5	A	A
29	10.5	10	11	9.5	9	10	1	A	A
30	11	10.5	12	10	9.5	10	0.5	A	A
31	9.5	9	10	9	9	9	0	A	A
32	11	11	13	10	10	11	1	A	A
33	11	10.5	12	10	9.5	10	0.5	A	A
34	11	10.5	12	10	9.5	10	0.5	A	A
35	9	8.5	10	9	8.5	9	0.5	A	A
36	10	10	10.5	9	9	9.5	0.5	A	A
37	10	10	11	9	9	10	1	A	A
38	10.5	10	11	9.5	9	10	1	A	A
39	11.5	11	12	10.5	10	11	1	A	A
40	10.5	10	11	9.5	9	10	1	A	A

A.8. Site 5

C.5.1. Species 1

Species 1	Uncorrected MC (\%)			Corrected MC (\%)				Individual Qaulity Classes Assuming Target MC of 12\%	
25mm	Average	Gra		Average		adient			
Sample \#	$M_{1 / 3}$	MC ${ }_{1 / 6}$	$\mathrm{MC}_{1 / 2}$	MC ${ }_{1 / 3}$	MC ${ }_{1 / 6}$	MC ${ }_{1 / 2}$	Difference	Average	Gradient
1	10.1	8	12.5	13.1	10	15.5	5.5	A	E
2	10.9	9.1	12.4	13.9	11.1	15.4	4.3	A	D
3	10.1	8.1	12.1	13.1	10.1	15.1	5	A	D
4	11	9.3	13.5	14	11.3	16.5	5.2	A	E
5	10.9	9.2	13	13.9	11.2	16	4.8	A	D
6	10.1	8.4	12	13.1	10.4	15	4.6	A	D
7	10.2	8.5	12.2	13.2	10.5	15.2	4.7	A	D
8	10.1	7.9	12.3	13.1	9.9	15.3	5.4	A	E
9	10	8.1	12	13	10.1	15	4.9	A	D
10	10	9.1	12	13	11.1	15	3.9	A	C
11	10.9	9.8	12.8	13.9	11.8	15.8	4	A	D
12	9	8.3	10.1	11	10.3	13.1	2.8	A	B
13	10.4	9.5	11.8	13.4	11.5	14.8	3.3	A	C
14	8.4	8	8.9	10.4	10	10.9	0.9	A	A
15	8	7.9	8	10	9.9	10	0.1	A	A
16	8.4	8	8.5	10.4	10	10.5	0.5	A	A
17	9.6	7.9	11.3	11.6	9.9	14.3	4.4	A	D
18	9.8	8.5	11	11.8	10.5	14	3.5	A	C
19	9.8	9	11.5	11.8	11	14.5	3.5	A	C
20	11	8.5	13	14	10.5	16	5.5	A	E
21	8.5	8	9.2	10.5	10	11.2	1.2	A	A
22	9.3	9	8.8	11.3	11	10.8	-0.2	A	A
23	9.7	8	11.4	11.7	10	14.4	4.4	A	D
24	10	8.3	12	13	10.3	15	4.7	A	D
25	9.5	8	11.2	11.5	10	14.2	4.2	A	D
26	10.6	9	12.2	13.6	11	15.2	4.2	A	D
27	10.8	9	13	13.8	11	16	5	A	D
28	10.4	8.5	12.2	13.4	10.5	15.2	4.7	A	D
29	9.2	7.4	11.2	11.2	9.4	14.2	4.8	A	D
30	10	9.2	12	13	11.2	15	3.8	A	C
31	11	9.9	11.8	14	11.9	14.8	2.9	A	B
32	9	8.3	10	11	10.3	13	2.7	A	B
33	11.2	10.8	12.1	14.2	13.8	15.1	1.3	B	A
34	12	11.2	12.1	15	14.2	15.1	0.9	B	A
35	10.6	10	11.4	13.6	13	14.4	1.4	A	A
36	11	10.2	11	14	13.2	14	0.8	A	A
37	11	10.5	11.8	14	13.5	14.8	1.3	A	A
38	10.8	10	12	13.8	13	15	2	A	A
39	10.5	10	11	13.5	13	14	1	A	A
40	12	11.3	12	15	14.3	15	0.7	B	A

Overall 90% Class	A	D

