

RESOURCE CHARACTERISATION & IMPROVEMENT PROJECT NUMBER: PN07.3018

MAY 2008

Sorting plantation *Eucalyptus nitens* logs with acoustic wave velocity

Publication: Sorting plantation *Eucalyptus nitens* logs with acoustic wave velocity

Project No: PN07.3018

© 2008 Forest and Wood Products Australia Limited. All rights reserved.

Forest and Wood Products Australia Limited (FWPA) makes no warranties or assurances with respect to this publication including merchantability, fitness for purpose or otherwise. FWPA and all persons associated with it exclude all liability (including liability for negligence) in relation to any opinion, advice or information contained in this publication or for any consequences arising from the use of such opinion, advice or information.

This work is copyright and protected under the Copyright Act 1968 (Cth). All material except the FWPA logo may be reproduced in whole or in part, provided that it is not sold or used for commercial benefit and its source (Forest and Wood Products Australia Limited) is acknowledged. Reproduction or copying for other purposes, which is strictly reserved only for the owner or licensee of copyright under the Copyright Act, is prohibited without the prior written consent of Forest and Wood Products Australia Limited.

ISBN: 978-1-920883-30-0

Researcher: R. Farrell and G. Nolan Centre for Sustainable Architecture with Wood, University of Tasmania, Locked Bag 1324, Launceston, TAS 7250

Dr T. Innes FEA Pty. Ltd., PO Box 733, Launceston, TAS 7250

Final report received by FWPA in April 2008

Forest and Wood Products Australia Limited PO Box 69, World Trade Centre, Victoria 8005 T +61 3 9614 7544 F +61 3 9614 6822 E <u>info@fwpa.com.au</u> W <u>www.fwpa.com.au</u>

Sorting plantation *Eucalyptus nitens* logs with acoustic wave velocity

Prepared for

Forest and Wood Products Australia

by

R. Farrell, T. Innes and G. Nolan

Executive summary

Sawn lumber from plantation-grown *Eucalyptus nitens* displays significant variation in stiffness and strength. Diversion of low-strength material to non-structural timber production and separation of high strength material for premium value structural applications will improve resource utilisation and enterprise profitability. Acoustic wave velocity (AWV) was evaluated as a direct measure of wood stiffness using two age classes of *Eucalyptus nitens*. The two age-classes (8 years and 13-15 years) from a total of five sites provided material representative of the resource currently being directed to the structural market. Standing trees and felled logs were measured before and after harvest using readily available stress wave timing tools (FAKOPP and Hitman). Logs were sawn, dried and finished according to normal structural processing requirements. One sample board per log was then tested for stiffness, bending strength and hardness. Log samples were also collected to determine green and basic density, and relationships between the evaluated wood properties and AWV measurements in trees and logs were determined.

The AWV along logs provided the strongest correlation with wood stiffness facilitating the segregation of logs into stiffness classes. AWV cut-off values were identified to batch logs into three stiffness classes with an average MOE of 12, 10 and less than 10GPa. Although AWV measurement on logs provided the single best correlation with an $R^2=0.54$ (n=155), it was observed that both AWV on logs and trees provided highly significant positive correlation with board stiffness. The correlation between tree AWV and stiffness was sufficiently good ($R^2=0.36$, n=155) to allow trees to be batched to segregate the higher value structural material. One cut-off AWV was identified to batch material into two stiffness classes with an average MOE of 12 and 10GPa. Given that AWV and wood property values were significantly different among sites this study indicates that acoustic assessment of *E. nitens* plantations could provide some indication of the resource value for the structural market. A weaker but still highly significant positive correlation was found between stiffness and hardness indicating that segregation based on increasing stiffness would also improve hardness values.

Table of contents

E	xecutive summary	i
1	Introduction	1
2	Methodology	2
	2.1 Harvest	2
	2.1.1 Site	2
	2.1.2 Pre-harvest assessment	2
	2.1.3 Harvest	2
	2.2 Mill operations	3
	2.2.1 Mill measurements	3
	2.2.2 Properties measurement	3
	2.2.3 Log processing	3
	2.2.4 Drying	4
	2.2.5 Board assessment	4
3	Analyses	7
	-	
4	Results and discussion	8
	4.1 Wood Properties	8
	4.2 Statistical Correlations	9
	4.3 Using AWV to Batch Logs or Trees	12
	4.3.1 Batching Logs	12
	4.3.2 Batching Trees	14
5	Conclusions	16
6	Further work	17
7	References	18
8	Appendices	20
	8.1 Visual grading rules:	20
	8.2 Cutting patterns used:	21
	8.3 Tree, log and board data:	23
	8.4 Details of analysis using age and age+site as fixed effects (excluding upper logs)	25
	8.5 Illustration of correlations analysed by age class and as a pooled data set	25
9	Acknowledgments	27
	0	

I Introduction

Acoustic wave velocity (AWV) is one of a suite of non-destructive evaluation tools now available to the Australian sawn hardwood industry. Taken with wood density, AWV provides a direct indication of the dynamic MOE (Modulus of Elasticity) and the timber's stiffness (Carter, Briggs *et al.* 2005). It has been shown to be a good indicator of dry wood stiffness and has been successful in segregation of softwoods for structural timber production (Tsehaye, *et al.* 1997, Ross 1999, Dickson and Matheson 1999). Dickson *et al.* (2003) used AWV tools to segregate sawlogs of *Eucalyptus dunnii*, reporting a significant relationship between AWV and timber stiffness. Ilic *et al.* (2005) used AWV to segregate eucalypt logs and study internal checking in sawn boards. This project will determine whether AWV can be successfully used to batch plantation grown *E. nitens* logs for improvement of structural grade out-turn, and suitable AWV cut-off values for such batching.

Sawn plantation-grown *Eucalyptus nitens* displays significant variation in stiffness and strength. Diversion of low-strength material to non-structural timber production and separation of high strength material for high value structural applications will improve resource utilisation and enterprise profitability. Benefits from AWV-assisted batching for structural applications can potentially extend to other eucalypt species grown in Australian plantations including *Corymbia* spp., *E. dunnii, E. globulus, E. grandis* and *E. pilularis*.

Plantation-grown *E. nitens* will comprise an increasing proportion of the future sawlogs produced in Tasmania, for both structural and appearance products. Forestry Tasmania has established over 20,000 ha of pruned *E. nitens* plantations intended for appearance-grade applications. These plantations will also yield unpruned upper logs potentially suited to structural products. Tens of thousands of ha of additional *E. nitens* plantations in Tasmania owned by FEA Ltd and other private companies are potentially available for sawing for structural products in the future. AWV therefore has potential to improve log allocation to appropriate processing streams for large volumes of sawlogs per year in Tasmania alone. AWV measurement is low-cost, so effective segregation to appropriate end use would be highly cost-effective.

2 Methodology

2.1 Harvest

2.1.1 Site

Sites were selected from FEA's plantation estate to provide two age classes (approximately 8 years to simulate thinning and 13-15 years to simulate clearfall). Three site productivity classifications were selected per age-class: high, medium and low site index. As the low productivity site from the age-class 8 trees didn't produce any sawlogs, a total of five sites were included in the study. Four sites were from North-east Tasmania and one from North-west. The variety of sites is expected to provide a broad range of material in terms of density and stiffness. **Table 1** provides a summary of the sites selected.

	Site Classification	High	Medium	Low
	Coupe	NE006B	NE011A	NE007B
-	SI* (initial estimate)	С	E	J
Cloarfall	Date planted	11/93	11/91	9/93
Cleanall	Colour	Red	Orange	Yellow
-	Number of logs	31	36	29
-	Site number	1	2	3
	Coupe	NE026	NW007A	
-	SI (initial estimate)	А	E	_
Thinning	Date planted	12/98	12/98	
Thinning	Colour	Green	Blue	- NO Sawioy
-	Number of logs	29	30	_
	Site number	4	5	

Table 1 Site numbering and	l colour coding
----------------------------	-----------------

*SI = Site Index

The trees on each site were assessed and areas sufficient to recover approximately 30 sawlogs from a single plot were selected for harvest.

2.1.2 Pre-harvest assessment

All trees in the selected areas were assigned a 3-digit number with the first digit being the site number and the next two consecutive numbers from 01.

The stress wave velocity (SWV) of each sawlog tree was measured using the FAKOPP microsecond timer. Based on the prevailing wind direction as indicated by the wind rose from the nearest meteorological site, readings were taken on the western aspect of stem for the NW coupe and the north-western aspect for stems for NE coupes. The AWV was measured over a one metre length from 0.5 m to 1.5 m above ground level.

2.1.3 Harvest

The selected trees were harvested and debarked. Sawlogs were cut to a minimum of 5.55 m long. Stems were merchandised to maximise sawlog recovery. Where more than one sawlog was recovered per stem the sawlogs were numbered with a four integer code, i.e. the three integer tree code followed by a log sequence number e.g. 403/2.

Coloured tags were used to confirm the position of the log in the tree, i.e. butt, 2^{nd} and $3^{rd} \log$.

Each site was assigned a site colour with two shades. The small end of each log was painted the site colour. Half the logs were painted one shade, the other half the second shade. The large end of each log was sealed with clear log grease (Dussek-Campbell Technimul).

2.2 Mill operations

2.2.1 Mill measurements

The harvested logs were delivered to FEA's Bell Bay sawmill and laid out on bolsters (**Figure 1**). The large end of each log was then trimmed, and a 25 mm disk recovered (for measurement of density and green moisture content) to leave a 5.4m sawlog. The small and large end diameters of each log were then measured. The acoustic wave velocity of each log was assessed with the Hitman HM200 now known as the Director HM200.

Figure 1. Measuring logs from site 4

After assessment, the large end of each log was painted with one of 22 colours. Colour combinations were unique so milled boards can be traced to the source log, identifying the tree and sawlog position in the tree.

2.2.2 **Properties measurement**

Green and basic density measurements were made on a diametral strip from the 25 mm disk recovered from each log.

2.2.3 Log processing

Logs were allocated to diameter batches on FEA's scanner before milling to a cutting pattern according to diameter class (**Table 2**). Further detail on cutting patterns used is provided in Appendix 8.2.

SED min	SED max	100x38	100x25	150x38	150x25
150	169	1	2		
170	179	2			
180	199	2			1
200	222	2		1	
223	270	2		2	

Table 2. Cutting patterns by log diameter class

Figure 2 shows colour-coded boards in green packs after milling.

Figure 2. Boards in green packs after milling

2.2.4 Drying

All boards were racked and air-dried to below fibre saturation point on-site at FEA, over a period of four months (April – August 2007). Boards were then kiln-dried to final moisture content (12%) using FEA's standard schedule for structural *E. nitens*. Following drying the boards were planed to final dimensions.

2.2.5 Board assessment

Finished boards were sorted by site, log and position in the tree according to the colour-coding scheme used (**Figure 3**). The boards were visually strength graded by one of FEA's grading staff. One 38x100 sample board (from a maximum of two per log) was selected from each log and samples cut for in-grade testing of stiffness (MOE), strength (MOR), Janka hardness and oven-dry moisture content (MC). The board selected was "in-grade" (according to visual grading rules) where possible, otherwise the best quality board was selected. Given the size of logs and products cut, the radial position of the board in the log was not considered (in some instances there was only one sample board per log).

Figure 3. Sorting finished boards by site, log and position in tree.

Strength and Stiffness Evaluation (Figures 4 and 5)

An 1800mm piece was cut from the selected board from the butt end after end split had been removed, thus test pieces were selected from approximately equal heights in the tree (considering butt-logs, 2nd logs and 3rd logs as three separate classes). The 4-point bending tests were carried out at FEA's structural testing laboratory according to AS/NZS 4063:1992. MOE and MOR were calculated and corrected to values at 12% MC based on the oven-dry MC of each sample by adjusting bending strength and stiffness according to AS 2878 (Standards Australia 2000).

Figure 4: 1800mm sample pieces cut and strapped for strength and stiffness testing.

Figure 5. Strength and stiffness evaluation at FEA's structural testing laboratory.

Janka Hardness (Figure 66)

A 150mm piece was subsequently cut from the butt end of the remaining sample board. This piece was tested at 2 points using an Instron machine as described by Mack (1979). Once hardness had been assessed the sample piece was oven dried and moisture content determined according to AS/NZS 1080.1 (Standards Australia 1997).

Figure 6. Janka hardness testing using an instron machine.

3 Analyses

Tree-AWV, Log-AWV, stiffness, strength, hardness, green density, basic density were tabulated with relevant tree and log measurements and correlations between the traits

determined. Data were grouped and analysed by individual site, by age class and then pooled and analysed as one dataset. Pearson's product-moment correlation coefficients "r" (a common measure of correlation between two variables) were calculated amongst variables for each grouping. Linear regression equations were determined for predicting stiffness from DBH, tree AWV, log AWV and green density. The correlation between AWV and stiffness was analysed further to determine what batching values could be determined from the results. The butt-log MOE (and AWV) was tested against upper log MOE and AWV using Students T-Test to determine whether there was any significant difference. Data for 155 logs was tabulated, with 139 butt-logs, 13 2nd logs and 3 top logs.

4 Results and discussion

4.1 Wood Properties

The data for individual tree, log and board measurements for each site are provided in Appendix 8.3. A summary of mean wood properties including tree and log measurements is provided in **Table 3**. The standard error is provided to measure the error in the prediction of green density, basic density, MOE, MOR and janka hardness from tree and log AWV. It should be clear that the standard error measures, not the standard deviation of the estimate itself, but the standard deviation of the error in the estimate.

				Green	Density (kg/m3)	Basic I	Density (kg/m3)	P	/IOE (GPa	1)	Ν	/IOR (MPa	a)	Janka	Hardnes	s (kN)
Mean		Standa	d Error		Standard Error			Standar	d Error		Standar	d Error		Standar	d Error			
	DBH (cm)	Tree Fakopp AWV (Km/s)	Log Hitman AWV (Km/s)	Tree AWV	Log AWV	Mean	Tree AWV	Log AWV	Mean	Tree AWV	Log AWV	Mean	Tree AWV	Log AWV	Mean	Tree AWV	Log AWV	Mean
SITE 1	301	3.677	3.880	117	122	915	35	28	482	2.15	1.83	12.218	14.66	14.59	53.907	0.73	0.55	4.009
SITE 2	321	3.850	3.972	66	56	979	33	33	511	1.99	1.65	12.299	15.36	14.71	56.978	0.80	0.78	4.523
SITE 3	243	3.564	3.617	37	39	950	25	26	482	0.98	0.94	10.237	12.24	12.80	55.385	0.85	0.86	4.655
SITE 4	239	3.450	3.472	59	57	853	25	25	456	1.49	1.23	8.660	13.97	13.93	39.129	0.95	0.98	4.345
SITE 5	255	3.401	3.220	42	41	1044	30	30	460	1.30	1.18	9.410	14.29	14.10	51.359	0.68	0.67	3.708
AGE CLASS 13 (SITE 1-3)	291	3.708	3.835	83	86	949	32	31	493	1.79	1.52	11.650	14.08	14.12	55.505	0.84	0.84	4.394
AGE CLASS 8 (SITE 4+5)	247	3.425	3.344	108	87	954	28	27	458	1.82	1.41	9.042	15.15	15.11	45.348	0.89	0.86	4.021
ALL SITES	274	3.600	3.648	94	93	951	31	30	480	1.80	1.53	10.657	14.93	14.83	51.639	0.86	0.85	4.251

Table 3. Mean tree and log data

A comparison of tree and wood property data for each age class, indicate that, overall, the more mature wood (age class 13-15 years) was superior to the wood sawn from the 8 year old trees. Logs from the 13-15 yr old trees were larger than those from the 8 year old age class with the exception of site 5 (8 years old) that produced logs of larger diameter than the low productivity coupe (site 3) from the 13-15 year age class trees. Site 2 produced the best trees, having the largest diameter, highest mean basic density, MOE, MOR and second-highest hardness. Site 4 produced the smallest diameter trees, and had lowest basic density, MOE and MOR, although it performed relatively well in hardness. Wood from the 13 yr old trees had a higher average stiffness than the 8 yr old trees, approximately 2.5 GPa higher. The 13 yr old trees also had a higher average MOR (by approximately 10 MPa), a higher basic density (8% higher), and were harder than the 8 yr old trees by approximately 0.4 kN. MOR was largely dictated by visual grading done, i.e. only in-grade sample boards were property tested (where available).

A fixed effects model testing the effect of site (as a factor) and DBH (as a covariate) on the dependent variables (tree Fakopp, log Hitman, green density, basic density, MOE, MOR and Janka hardness) was carried out on butt-logs only (inclusion of upper logs would confound the effect of site). Site effect is significant (P<0.001) for all the variates, i.e. AWV measurements and wood properties among sites were significantly different, indicating the potential of AWV measurements to assess wood quality in forest stands. The data was also analysed according to age-class (lower logs only) with age as the single fixed factor. Analysed in this manner, age is highly significant (P<0.001) for all response variates except hardness where it is still significant with P=0.026. Density, stiffness, strength and hardness are statistically greater in the older wood. A third model was used to analyse age and site within age as fixed effects. Both terms are significant (most are highly significant P<0.001) showing that wood properties differ between ages and sites within age-classes also differ. The means and probability values for the variables analysed are given in Appendix 8.4.

The standard error values in **Table 3**, are generally larger when tree AWV is the independent variable, than when log AWV is used, i.e. log AWV is generally the better predictor of green density, basic density, MOE, MOR and Janka hardness. The ability of tree and log AWV to predict stiffness is further discussed in section 4.2 statistical correlations.

4.2 Statistical Correlations

Correlations amongst variables (Table 4)) show in a general sense that more variables provided significant correlation in the older trees (age class 13-15), than the younger age 8 trees. For example, tree AWV was found to be significantly positively correlated with all variables (with the exception of DBH that had no significant correlation) for the older trees, whilst for younger trees, tree AWV was only significantly negatively correlated with DBH and positively correlated with log AWV.

In the pooled data correlations generally improved over the correlations observed at the age class level. DBH was significantly (positively) correlated with both tree and log AWV's, basic density, stiffness and strength. It appears that DBH is negatively correlated with tree and log AWV within an age class but positively correlated when the data is pooled. As there is little overlap of DBH values between age-classes (younger trees are generally smaller) it is possible to find a negative correlation within an age class, but a positive correlation when the data is pooled (plots are shown in the Appendix 8.5. In a study of *E. dunnii* logs Dickson et al. (2003) observed a significant negative relationship between log AWV and DBH (but no correlation with tree AWV) for age 9 trees. The authors of that study also observed no significant relationship between tree or log AWV and DBH for the 25 yr old trees. In agreement with the trends observed by Dickson et al (2003) log and tree AWV was significantly positively correlated with basic density, hardness, stiffness and strength. A weaker but significant negative correlation was also observed with log AWV and green density but not for tree AWV and green density. Basic density was significantly positively correlated with hardness, stiffness and strength in addition to DBH, tree and log AWV's. Hardness was significantly correlated with stiffness, strength, tree and log velocities. Stiffness was positively correlated with DBH, tree and log AWV's, basic density, hardness and strength.

Table 4 Pearson's correlation coefficients for each age class and pooled data for key variables.

	DBH	Tree Fakopp velocity	Log Hitman velocity	Green Density	Basic Density	Hardness	Stiffness (MOE)
Tree Fakopp velocity	-0.05						
Log Hitman velocity	-0.05	0.68					
Green Density	-0.13	0.27	-0.06				
Basic Density	0.14	0.53	0.56	0.17			
Hardness	-0.09	0.27	0.25	0.02	0.59		
Stiffness (MOE)	0.29	0.51	0.68	-0.06	0.40	0.27	
Strength (MOR)	0.02	0.28	0.27	-0.12	0.17	0.23	0.59
<u>Sites 4&5 (Age class 8yrs)</u>		Tree Fakopp	Log Hitman	Green	Basic	Uendeses	Stiffness
T 1 1 1 1 1 1 1 1	DBH	Velocity	velocity	Density	Density	Hardness	(MOE)
	-0.26	0.01	l				
Log Hitman velocity	-0.41	0.64	0.01				
Green Density	0.34	-0.17	-0.61				
Basic Density	0.00	0.15	0.19	0.16			
Hardness	-0.14	-0.05	0.24	-0.29	0.15	0.40	
Stiffness (MOE)	-0.06	0.18	0.27	0.28	0.20	0.16	
Strength (MOR)	0.19	-0.11	-0.14	0.35	-0.06	0.06	0.62
<u>Sites 1-5 (Pooled Data)</u>	I						
	DBH	Tree Fakopp velocity	Log Hitman velocity	Green Density	Basic Density	Hardness	Stiffness (MOE)
	0.47						
Tree Fakopp velocity	0.17						
Tree Fakopp velocity Log Hitman velocity	0.17	0.78					
Tree Fakopp velocity Log Hitman velocity Green Density	0.17 0.37 -0.02	0.78	-0.20				
Tree Fakopp velocity Log Hitman velocity Green Density Basic Density	0.17 0.37 -0.02 0.29	0.78 0.08 0.57	-0.20 0.61	0.13			
Tree Fakopp velocity Log Hitman velocity Green Density Basic Density Hardness	0.17 0.37 -0.02 0.29 0.01	0.78 0.08 0.57 0.25	-0.20 0.61 0.32	0.13 -0.11	0.49		
Tree Fakopp velocity Log Hitman velocity Green Density Basic Density Hardness Stiffness (MOE)	0.17 0.37 -0.02 0.29 0.01 0.42	0.78 0.08 0.57 0.25 0.60	-0.20 0.61 0.32 0.73	0.13 -0.11 0.03	0.49 0.51	0.30	

In the 13-15 year age-class trees (and pooled data) stiffness was significantly correlated with both tree and log AWV's with the strongest correlations being with log Hitman velocity. Similar results were reported by Dickson et al. (2003) for Eucalyptus dunnii. One difference between the two studies is that for the younger age 8 trees we find stiffness to be significantly correlated with the log AWV (albeit weakly, r = 0.27), but not with standing tree AWV, whereas Dickson et al. (2003) report significant correlations (tree and log AWV) for both age class 9 and 25 yr old E. dunnii). Again, this indicates that the younger aged E. nitens trees in this study provide poorer correlations amongst MOE and other key wood properties. The reason for this is unclear, however, one feasible explanation could be that there is greater radial variation (of wood properties) in the younger trees; i.e. wood formed later is more uniform so that as the tree grows the more variable "core-wood" forms a lower proportion of the tree. Thus, log AWV (measuring an average MOE) may be closer to the individual piece MOE in older trees, but less reliable in the more variable vounger trees. Considering that dynamic MOE = density x AWV² (Wang et al., 2001), the correlation between AWV^2 and stiffness was also examined, however, no improvement in the correlations was observed.

As expected, stiffness was significantly correlated with bending strength for all datasets. Pearson's correlations for tree AWV against stiffness were also tested for Butt logs only and for upper $(2^{nd} \text{ and } 3^{rd})$ logs only to examine how tree AWV (measured at 0.5 to 1.5m) predicts stiffness along the length of the stem. **Table 5** shows that there is

little difference in the correlation between butt logs only and the upper logs, i.e. tree AWV appears to be an equally good predictor of stiffness further up the stem.

	Tree Fakopp Velocity All Logs	Tree Fakopp Velocity Butt log only	Tree Fakopp Velocity 2nd and 3rd log only
Stiffness (MOE)	0.60	0.58	0.55
P < 0.01.			
P < 0.05.			

Table 5. Pearson's correlation coefficients for Tree Fakopp velocity and stiffness for
butt and upper logs

Paired t-tests were conducted on a sub-set of data (excluding all trees with only butt log samples) comparing log AWV and wood property values for the butt-log against values for the second log. Table 6 shows that Log AWV, MOR and green density were significantly different, basic density was almost significantly different, but no significant difference was observed for MOE and hardness of butt-logs versus the second log.

The value of this result may be limited by the small sample size of upper-log material but the finding is included for interest. It may be harder to demonstrate a statistical difference between MOE than a difference in log AWV as we only tested one board per log. Testing multiple boards per log (were possible) may have helped detect a significant difference in MOE between butt-logs and second logs.

Table 6. Results of paired t-tests comparing log AWV and wood property values for butt-logs versus second logs.

	Butt Log Hitman	2nd Log Hitman	Butt Log Green Density	2nd Log Green Density	Butt Log Basic Density	2nd Log Basic Density	Butt Log MOE	2nd Log MOE	Butt Log MOR	2nd Log MOR	Butt Log Hardness	2nd Log Hardness
Mean	3.8	4.0	967.5	881.2	480.1	498.6	11.9	12.7	49.8	62.3	4.1	4.4
P(T<=t) two-tail	0.0	05	0.0	038	0.0)51	0.2	27	0.0)48	0.1	146
P < 0.01												
P < 0.05												

Regression equations (**Table 7**) for predicting stiffness from tree AWV, log AWV, DBH and green density indicate that the best single variable for predicting stiffness is log AWV, accounting for 54% of the variation in stiffness in the pooled data. When examined at the age class level log AWV accounted for 47% of stiffness variation in age class 13-15 logs, but only 7% of the variation in age class 8 logs. Thus indicating that log AWV is a good predictor of stiffness in older trees but provides a poorer prediction for the younger trees examined in this study.

The addition of other variables that can be easily measured on trees or logs was explored. The addition of DBH or Green Density to tree Fakopp or log Hitman velocity provided minimal improvement in the prediction of stiffness.

Table 7. Linear regression equations for predicting stiffness from readily measuredvariables.

Age Class 13-15	
MOE = 8.2239 + 0.012 x DBH	$R^2 = 0.09$
MOE = -5.1466 + 4.5304 x tree Fakopp velocity	$R^2 = 0.26$
MOE = -9.7445 + 5.5786 x log Hitman velocity	$R^2 = 0.47$
MOE = 13.1342 -0.0016 x Green Density	$R^2 = 0.00^*$
MOE = -9.4059 + 4.6723 x tree Fakopp velocity + 0.0128 x DBH	$R^2 = 0.36$
MOE = -10.4291 + 5.3054 x log Hitman velocity + 0.0059 x DBH	$R^2 = 0.49$
MOE = -2.4010 + 5.1730 x tree Fakopp velocity - 0.0054 x Green Density	$R^2 = 0.31$
MOE = -9.5156 + 5.647 x log Hitman velocity - 0.0005 x Green Density	$R^2 = 0.47$
Age Class 8	
MOE = 9.8083 - 0.0031 x DBH MOE = 4.1162 + 1.4380 x tree Fakopp velocity MOE = 2.9913 + 1.8093 x log Hitman velocity MOE = 5.4301 + 0.0037 x Green Density MOE = 4.2993 + 1.4196 x tree Fakopp velocity - 0.0005 x DBH MOE = 1.4931 + 1.9878 x log Hitman velocity + 0.0036 x DBH MOE = -0.8729 + 1.7051 x tree Fakopp velocity - 0.0042 x Green Density MOE = -13.7808 + 4.3406 x log Hitman velocity - 0.0087 x Green Density	$R^{2} = 0.00^{*}$ $R^{2} = 0.03$ $R^{2} = 0.07$ $R^{2} = 0.03$ $R^{2} = 0.03$ $R^{2} = 0.03$ $R^{2} = 0.12$ $R^{2} = 0.31$
Pooled Data	
MOE = 5.3404+0.0194 x DBH	$R^{2} = 0.18$
MOE = -8.4965+5.3203 x tree Fakopp velocity	$R^{2} = 0.36$
MOE = -7.1053+4.8689 x log Hitman velocity	$R^{2} = 0.54$
MOE = 10.0470+0.0007 x Green Density	$R^{2} = 0.00^{*}$
$MOE = -7.7434 + 4.4443 \times \log \text{Hitman velocity} + 0.0080 \times \text{DBH}$	$R^2 = 0.56$
$MOE = -10.8715 + 4.8301 \times \text{tree fakopp velocity} + 0.0151 \times \text{DBH}$	$R^2 = 0.47$
$MOE = -12.1463 + 5.1334 \times \log \text{Hitman velocity} + 0.0043 \times \text{Green Density}$	$R^2 = 0.57$
$MOE = -8.2650 + 5.3842 \times \text{tree Fakopp velocity} - 0.0005 \times \text{Green Density}$	$R^2 = 0.37$

*R² value < 0.00

4.3 Using AWV to Batch Logs or Trees

4.3.1 Batching Logs

The procedure for monitoring stiffness in machine graded structural lumber, according to AS/NZS 4490-1997 (Standards Australia 1997^c), is based on the *mean* MOE exceeding a specified characteristic value. Currently, Australian Standards do not require control of the variation around the mean MOE, however, this may change in the future. It is noted that some individual companies establish their own "in-house" verification rules, explicitly controlling the variation of MOE within each lumber grade. An excerpt from AS1720.1 (**Table 8**) shows the average MOE values for different MGP (machine graded pine) grades.

		Characteristi	c strength, N	ЛРа	Short duration average modulus	Short duration average	
grade	Bending	Tension parallel to grain	Shear in beams	Compression parallel to grain	of elasticity parallel to the grain	modulus of rigidity for beams	
	$f_{\rm b}'$	f'_i	f'_*	$f_{ m e}^\prime$	Ε	G	
MGP 15	41	23	9.1	35	15 200	1 010	
MGP 12	28	15	6.5	29	12 700	850	
MGP 10	16†	8.0	5.0	24	10 000	670	

Table 8. Characteristic properties for MGP grades: AS1720.1-1997, Standards Australia1997^b.

* Properties apply only for 35 mm and 45 mm thicknesses.

† For 45 mm thickness, f' for MGP 10 may be taken as 19 MPa.

‡ The modulus of elasticity given has been obtained from bending tests and contains the effects of shear.

Two AWV cut-off values have been estimated from the observed results of this study to batch material into three grades with values (average MOE) aligning to recognised MGP grades (for comparative purposes).

Figure 7 shows the correlation between log AWV and board MOE, and indicates the AWV cut-off values.

F 1 1 1 1	••••••••••••••••••••••••••••••••••••••			141. I 4 . I. 1	
Figure 7.	Correlation between	log Awy and	board MOE,	with batching	values indicated.

The mean MOE for logs with an AWV > 3.8 km/s (as identified by the MGP12 Equivalent line) is 12.71GPa. The mean MOE for logs with an AWV between 3.5 km/s (MGP10 Equivalent line) and 3.8 km/s is 10.09GPa. The mean MOE for logs with an AWV lower than 3.5 km/s is 9.02GPA. Thus, the observed results have been batched (according to AWV) identifying material that would attain the equivalent of MGP12, MGP10, and material that falls below MGP10. Identifying lumber falling below MGP10 equivalent is of interest, as the value of this material would be expected to drop off significantly.

Any sorting of logs to increase stiffness will also produce a correlated increase in wood hardness. Table 4 shows that there is a significant positive correlation between stiffness and hardness (r = 0.3). Figure 8 further illustrates the relationship between these variables. Although the relationship is significant the relationship is much weaker than that reported by Dickson *et al* 2003 for *E. dunnii*, who observed r > 0.6.

4.3.2 Batching Trees

Given the strength of the correlation between AWV measured on the standing trees and stiffness there is also batching potential at the tree level, albeit at a lower level than log batching. One AWV cut-off value was identified from the observed results of this study to batch material into two grades with values (mean MOE) aligning to recognised MGP grades (for comparative purposes).

Figure 9 shows the correlation between tree AWV and board MOE, and indicates the AWV cut-off values.

Figure 9. Correlation between tree AWV and board MOE, with batching values.

Trees with an AWV > 3.8 Km/s (as identified by the MGP12 Equivalent line) have a mean MOE of 12.86GPa. Trees with an AWV less than or equal to 3.8 Km/s have a mean MOE of 10.21GPa. Thus, the observed results have been batched (according to tree AWV) identifying material that would attain the equivalent of MGP12 and MGP10. Although the observed correlation between tree AWV and stiffness is not as good as that observed between log AWV and stiffness, **Figure 9** illustrates how tree AWV could be used to segregate high value structural material from lower quality material.

5 Conclusions

The objective of this study was to determine whether AWV could be successfully used to batch plantation grown *E. nitens* logs for improvement of structural grade out-turn. The results have been encouraging, with highly significant positive correlations being observed between log AWV, tree AWV and board stiffness.

In accordance with results published for other species, AWV along *E. nitens* logs was sufficiently well correlated with stiffness to enable logs to be batched to segregate material of varying stiffness. AWV cut-off values were identified from the results to batch the logs according to grades aligning with MGP grades. Logs were batched such that the resultant lumber was grouped into the equivalent of MGP12, MGP10, and those falling below MGP10. The correlation between tree AWV and stiffness was also sufficiently good to allow trees to be batched to segregate the higher value structural material. Given that AWV measurements and wood properties among sites were found to be significantly different, this study indicates that AWV measurements have potential application in the assessment of wood quality in *E. nitens* plantations, i.e. acoustic assessment of standing trees could provide indication of the resource value for structural markets.

Analyses of the data by age class suggested that older trees (13-15 yrs) provided much better correlations than younger trees, thus suggesting that a larger sample of the older trees could have improved the observed correlations. Reasons for the poor correlations in young trees are not clear, however, greater radial variation of MOE in young trees may offer a viable explanation.

Although the analysis was limited by sample size, upper logs had a higher AWV and produced significantly stronger (MOR) boards than butt logs from the same tree. However, no significant difference in MOE or hardness was observed between butt and upper logs.

6 Further work

Further work related to this study might investigate the radial and longitudinal modelling of stiffness in *E. nitens* logs with the aim of generating a 2-D stiffness profile from estimates of mean MOE. Such a study could be conducted on small clear samples investigating the AWV correlation with stiffness, and the radial and longitudinal variation of stiffness in the log. The occurrence of knots in the resource would likely limit correlation with MOR.

Another valid extension could be to investigate the use of AWV measurement on sawn *E. nitens* boards to facilitate mean board MOE grading rather than the use of a traditional roller type machine stress grader. Such methods are already common practice in NZ for radiata pine and are likely to be employed in Australia in the near future as grading standards develop.

7 References

Beadle CL, Forrester D, Wood M, Valencia JC and Medhurst J (2007) Effects of silviculture and the environment on the variables that determine outcomes from eucalypt plantations managed for solid-wood products. Technical report 173, Research Programme 2: High value wood resources. CRC for Forestry.

Carter P, Briggs D, Ross R, Wang X (2005) Acoustic testing to enhance western forest values and meet customer wood quality needs. PNW-GTR-642. Pacific Northwest Research Station.

Dickson RL, Matheson AC (1999) Management intervention points to improve the wood quality of current and future crops. In: Proceedings of the 3rd Wood Quality Symposium, Rotorua and Melbourne.

Dickson RL, Raymond CA, Joe W, Wilkinson CA (2003) Forest Ecology and Management 179 243-251.

Ilic J, Northway R, Thumm A, Wright J (2005) The development of NDE technologies for use in the hardwood sawmilling industry. Forest and Wood Products Research and Development Corporation. Project No. PN03.1317.

Matheson AC, Dickson RL, Spencer DJ, Joe B, and Ilic J (2002) Acoustic segregation of *Pinus radiata* logs according to stiffness.

Ross RR, (1999) Using sound to evaluate standing timber. Int. Forestry Rev. 1 (1), 43-44.

Standards Australia (1997) AS/NZS 1080.1 Timber-Methods of test – Moisture content. Standards Australia, Sydney.

Standards Australia (1997^b) AS 1720.1 Timber structures, Part 1: Design methods. Standards Australia, Sydney.

Standards Australia (1997^c) AS/NZS 4490 Timber – Stress-graded – Procedures for monitoring structural properties

Standards Australia (2000) AS/NZS 2878 Timber – Classification into strength groups. Standards Australia, Sydney.

Tsehaye A, Buchanan AH, Walker JCF (1997) Log segregation into stiffness classes. In: Ridoutt BG (Ed.), Managing variability in Resource Quality. FRI Bulletin No. 202. Forest Research Institute, Rotorua.

Wang X, Ross RJ, Mattson JA, Erickson JR., Forsman JW, Geske EA, Wehr MA (2001) Several Nondestructive Evaluation Techniques for Assessing Stiffness and MOE of Small Diameter Logs. USDA Forest Service, Forest Products Lab. FPL-RP-600.

8 Appendices

8.1 Visual grading rules:

Permissible characteristics

The following characteristics shall be permitted within the limitations herein;

- (a) Knots (tight or loose, sound or unsound, intergrown or not, round, oval or arris, single or in a cluster) including occluded branch stubs, knot holes and holes other than those caused by insects.
 - (i) *width on wide faces of piece* not exceeding one-third the width of the surface on which they occur
 - (ii) width on edges not limited
 - knot area ratio of bark-encased knots, loose knots or knot holes occurring within one-third of the board width of the edge¹ – not exceeding 50%
- (b) *Bark*
 - (i) width not exceeding 3 mm (measured radially)
 - (ii) aggregate length not exceeding one tenth of the length of the piece
 - (iii) extending from one surface of the piece to another not permitted.
 - (iv) area ratio of bark inclusions occurring within one-third of the board width of the edge¹ not exceeding 50%
- (c) Decay or associated stain
 - (i) length not exceeding one-quarter of the length of the piece²
- (d) Borer holes as for knots
- (e) Pith no restriction
- (f) End splits; aggregate length at each end not exceeding the lesser of the width on the piece or 100 mm.
- (g) Checks other than internal
 - (i) width not exceeding 3 mm
 - (ii) depth not extending from one side of the piece to the other
 - (iii) individual length not exceeding one quarter of the length of the piece
- (h) Gum veins as for checks other than internal
- (i) Internal checks not exceeding in aggregate a loss of one tenth of the crosssectional area.
- (j) Want, wane
 - (i) not exceeding one tenth of the cross sectional area
 - (*ii*) not exceeding one third of the width of the edge on which it occurs and not exceeding one half of the width of the face on which it occurs.
- (k) Sapwood not exceeding one-fifth of the cross sectional area at any cross section.
- (I) Hit and miss
 - (i) within the limits for want and wane permitted
 - (ii) exceeding the limits for want and wane depth not exceeding 3 mm and individual length not exceeding 600 mm.

Combination of characteristics

A combination exists when two or more characteristics occur in a length of the piece such that there is less than twice the width of the piece between them, measured parallel to the length of the piece.

A combination of defects is permitted if the aggregate size of the combination is not greater than one characteristic of the maximum permitted size.

8.2 Cutting patterns used:

SED:150-169mm (2x25x100+1x38x100)

SED: 170-179mm (2x38x100)

SED: 180-199mm (2x38x100+1x25x150)

SED: 200-222mm (2x38x100+1x38x150)

SED: 223-270mm (2x38x150+2x38x100)

8.3 Tree, log and board data:

															1
			Log Data			Tree [Data							Hardness	
															Visual
Tree No.	Log No.	Hitman km/s	SED	LED	DBH	Height	Eakopp	Eakopp km/s	Green	Basic density	MC Average	MOE (GPA)	MOR (MPA)	Tangential	Grading (1=in
			010			. i olgini	, anopp	r altopp falle	Density	Daoio aonony	morningo			KN	grade)
101	101	3.77	189	229	238	24.5	263	3.80	955.11	469.00	104%	13 372	67.92	3 332	0
102	102/1	3.77	205	242	260	26.1	263	3.80	982.94	467.94	110%	9 846	43.78	3.007	1
102	102/2	4.08	158	200	260			3.80	918.89	496.87	85%	11 485	48.18	4 4 4 4	i
103	103	3.82	154	197	205	23.6	276	3.62	916.76	443.79	107%	10.622	57.09	3 514	1
104	104	3.8	226	258	267	28.4	269	3.72	1027.65	5 512 47	101%	11 600	55.72	4 282	ó
104	105/1	3.92	190	225	267	28.4	269	3.72	937 34	466.60	101%	12 407	51.68	3,608	ő
105	105/2	3.92	145	185	267	20.4	200	3.72	01/ 1/	5 523.16	75%	15 973	89.87	4 701	1
106	106/1	3.77	248	290	377	30	289	3.46	951 38	449.88	111%	14 572	61.94	3 4 4 7	ó
106	106/2	3.77	201	247	377	50	203	3.46	499.00	445.00	69%	11 583	60.68	3,817	1
107	107	3.87	250	201	368	20.7	287	3.48	405.00	405.00	70%	12 315	62.03	4.466	
107	108	4.08	198	250	368	29.7	287	3.40	1014.63	2 574.62	77%	9 950	19.12	5 220	1
109	100	3.85	238	292	291	27.3	251	3.98	1019.46	524.80	94%	15 163	63.01	4 161	1
110	110/1	4.05	198	238	201	27.3	251	3.98	973.63	498.80	95%	15 441	54.08	4 681	1
110	110/2	4.00	154	197	291	21.0	201	3.98	921.08	400.00	85%	12 713	51.34	4.837	1
111	111	3.92	263	306	400	30.5	287	3.48	933.66	457.14	104%	13 783	61.56	3,635	i
112	112	4	212	255	400	30.5	287	3.48	966.54	4 532.03	82%	12 462	56.06	4 985	1
113	113	3 72	185	200	234	24.8	201	3.60	964.54	459.34	110%	10 743	37.09	2 756	ò
115	115	3.54	215	256	268	26.7	284	3.52	053.50	400.04	116%	8 122	17.12	3 251	1
116	116	3.95	170	213	268	26.7	284	3.52	887.54	462.68	92%	12 826	55.57	3 723	i
117	117	3 72	175	210	220	24.2	263	3.80	000.84	402.00	109%	7 968	44.10	3 801	ò
118	118	3.49	280	317	360	32.1	300	3 33	905.26	445.50	103%	9 243	44.33	2 365	1
119	110	3 59	215	275	360	32.1	300	3 33	888.70	416 71	113%	11 357	58.88	3,812	ó
120	120	4	225	288	288	27.3	241	4 15	956.28	486.76	96%	13 333	53.33	3,812	ő
121	121	4 25	186	220	288	27.3	241	4.15	043.0/	526.69	79%	15 222	64.74	5 3 2 9	1
122	122	3.67	277	305	351	29.3	283	3.53	837.18	413.81	102%	9 752	46.36	3 226	ó
123	123	3.87	175	220	351	29.3	283	3.53	914 15	5 506.47	81%	11 683	52.64	4 913	1
125	125	3.62	236	325	323	27.5	288	3.47	1029.81	477.61	116%	10 707	33.05	3 777	ó
126	126	3.97	198	234	323	27.5	288	3.47	885.3/	4 471 36	88%	11 823	65.80	3 700	1
120	127/1	4 15	195	222	231	24.8	236	4 24	953.88	509.52	87%	15.061	88.09	5 703	ó
128	128	3.97	210	230	277	28.3	276	3.62	1005.30	490.05	105%	10.134	54.16	3 218	1
129	129	4 25	160	200	277	28.3	276	3.62	892.00	487.60	83%	17 508	51 76	4 573	1
201	201/1	3.59	277	320	325	28	269	3.72	1020.61	459.95	122%	9 894	46.28	3 316	ò
202	2017	3.82	227	275	325	28	269	3.72	1034.84	5 529.18	96%	10.039	47 54	3,626	1
203	203	3.77	198	239	259	29.9	259	3.86	1042.22	2 501 74	108%	9 724	45.31	4 300	ò
204	204	4 25	155	190	259	29.9	259	3.86	923.94	4 505.42	83%	12 369	56.26	4 265	1
205	205	4.23	251	279	295	28.6	235	4 26	996.04	521.28	91%	16.057	74.20	4 401	i
206	206/1	4 53	213	251	295	28.6	235	4 26	947.88	574 42	65%	15 027	83.53	5 659	i
206	206/2	4.53	178	214	295			4 26	865.83	568.63	52%	14 059	57 70	5.005	i
206	206/3	44	141	171	295			4 26	907.34	4 597 38	52%	16 351	94 88	5 951	1
207	207	3.57	288	314	344	32.6	292	3.42	970.74	4 436.15	123%	9.827	54.29	3.712	ò
208	208/1	3.87	246	279	344	32.6	292	3.42	885.18	442.35	100%	9.815	29.43	4.032	1
208	208/2	4	209	240	344			3.42	860.91	470.27	83%	13.251	77.85	4,167	0
209	209	3.7	275	321	341	33.7	269	3.72	1037.90	501.27	107%	9.429	41.26	3,500	1
211	211	3.9	256	284	302	33.3	257	3.89	1044.08	8 527.50	98%	10.853	35.84	4.171	0
212	212	4.18	213	252	302	33.3	257	3.89	989.70	533.59	86%	11.743	51.44	4.074	0
213	213	4.18	177	213	302	33.3	257	3.89	983.60	0 597.37	66%	11.769	37.48	4.992	1
214	214/1	3.7	287	305	331	33.5	264	3.79	1033.35	5 487.29	112%	13.053	79.61	4.128	1
215	215	3.87	246	286	331	33.5	264	3.79	1010.26	6 499.48	102%	12.341	59.43	4.638	1
216	216	3.97	213	237	331	33.5	264	3.79	980.44	4 559.78	75%	12.450	63.02	4.941	0
217	217/1	3.85	292	320	360	31.8	266	3.76	1120.42	2 536.83	109%	14.471	50.58	4.635	1
217	217/2	4.17	250	295	360			3.76	962.10	498.32	93%	14.539	67.77	3.788	1
217	217/3	3.95	199	254	360			3.76	1007.25	5 547.18	84%	15.715	82.05	5.598	1
218	218	3.85	267	308	355	28.8	253	3.95	1015.43	3 477.46	113%	11.958	50.55	4.683	1
219	219	3.77	186	226	355	28.8	253	3.95	993.36	6 557.37	78%	11.566	61.58	6.693	0
220	220/1	3.77	275	317	337	31.3	254	3.94	1063.18	8 479.30	122%	10.847	52.15	2.990	0
220	220/2	3.95	247	274	337			3.94	961.68	8 462.33	108%	12.871	66.30	3.953	1
220	220/4	3.95	165	209	337			3.94	922.72	2 494.75	86%	13.162	38.56	5.762	1
221	221	4.08	249	280	312	31.2	253	3.95	1035.32	2 532.07	95%	12.106	58.40	4.964	0
223	223	3.57	293	337	355	29.8	264	3.79	1024.52	2 489.56	109%	11.297	50.34	3.338	1
224	224/1	3.95	249	291	355	29.8	264	3.79	905.92	2 454.37	100%	13.458	64.69	3.580	1
224	224/2	4.1	209	245	355			3.79	848.61	490.23	73%	12.743	71.78	3.931	1
226	226	3.92	187	222	278	28.9	259	3.86	993.64	4 507.95	96%	11.902	74.61	5.533	0
227	227	3.82	197	215	237	27.9	247	4.05	1063.77	7 492.56	116%	9.269	34.02	4.213	0
229	229	4.05	236	263	334	29.2	270	3.70	964.92	2 503.28	92%	10.320	53.76	4.703	0
230	230/1	4.1	196	234	334	29.2	270	3.70	946.70	520.63	82%	12.428	47.09	4.992	1
230	230/2	3.95	150	191	334			3.70	892.03	3 530.60	68%	14.412	52.23	5.784	1
228	228	4.13	160	194	237	27.9	247	4.05				11.636	39.42	4.821	0

Data for sites 3,4 and 5 on following page.

			Log Data		Tree Data								Hardness		
Tree No.	Log No.	Hitman km/s	SED	LED	DBH	Height	Fakopp	Fakopp km/s	Green Density	Basic density	MC Average	MOE (GPA)	Mor (MPA)	Tangential KN	Visual Grading (1=in grade)
301 302	301 302	3.49 3.39	192 188	255 257	253 275	19 18	284 286	3.52 3.50	968.12 979.42	441.80 476.07	119% 106%	9.749 9.121	50.42 47.63	3.106 4.155	1
303	303	3.7	160	216	223	18.3	279	3.58	946.04	454.83	108%	10.262	64.10	3.579	1
305	304	3.34	135	198	201	16.3	307	3.26	814.28	481.30	69%	8.992	36.49	3.716	1
306 307	306 307	3.95 3.7	149 162	190 216	220 219	18.2 18.2	262 267	3.82 3.75	941.18 984.90	466.73 525.28	102% 88%	12.627 9.968	67.46 79.07	4.312 4.412	1
308	308	3.65	164	210	221	18.2	277	3.61	963.97	448.72	115%	11.200	49.11	4.837	1
309 310	309 310	3.7 3.59	139 189	196 264	214 265	18 19.2	268 282	3.73 3.55	924.23 1003.45	485.52 527.46	90% 90%	9.900 8.979	55.97 33.58	6.564 4.641	1
311	311	3.97	166	198	213	18	259	3.86	977.70	520.20	88%	11.520	53.25	4.885	0
312	312	3.59	1/6	205	245 227	20.3	265	3.56	916.93	443.40 504.33	107%	9.086 8.840	53.54 53.48	3.945 4.836	0
314	314	3.65	183	237	242	18.7	269	3.72	1018.33	499.79	104%	11.333	77.07	4.713	1
315	315	3.25	185	223	255	19	281	3.56	937.70	504.94	86%	9.608	30.90	4.966	1
317 319	317 319	3.57 3.67	174 160	230 205	243 218	18.7 18.1	299 281	3.34	944.54 949.19	453.27 466.36	108% 104%	9.329 11 484	44.73 68.69	6.379 4 219	0
320	320	3.8	246	295	333	20.3	273	3.66	894.14	518.59	73%	11.354	59.02	5.661	1
321 323	321 323	3.24 3.7	197	248 200	268 213	19.3	294 283	3.40	942.43 958.51	455.55 505.05	107%	9.251 11.351	56.60 46.36	3.999	1
324	324	3.57	154	221	240	18.7	286	3.50	965.10	507.55	90%	8.954	28.65	4.309	1
325	320	3.49	203	261	287	19.6	287	3.48	956.45	455.91	110%	10.675	66.62	4.279	1
328	328	3.8	165 155	210	216 220	18.1 18.2	271	3.69	945.80	465.46	103% 107%	11.306 10.311	60.29 59.87	3.774	1
330	330	3.47	174	227	244	18.8	286	3.50	976.40	491.93	98%	10.181	67.49	5.174	1
331 322	331 322	3.44 3.72	207 177	265 226	273 243	19.4 18.7	289 281	3.46 3.56	992.43 938.03	473.82 473.35	110% 98%	8.780 9.681	52.05 51.43	4.509	1
401	401	3.29	166	245	236	19.7	311	3.22	786.22	432.85	82%	9.185	32.62	3.158	1
402	402	3.27 3.49	173	222	227	18.7	302 284	3.31	940.37 834.00	457.75 444.69	105%	10.256 8.684	52.25 42.66	4.694	1
404	404	3.44	166	211	220	19.4	301	3.32	738.44	450.13	64%	8.805	38.88	4.433	1
405	405/2	3.85	166	210	276	22.0	202	3.55	816.49	458.53	78%	9.787	57.50	3.628	1
407	407	3.52	160 185	195	207	19.1	287	3.48	856.97	453.47	89% 97%	10.893	68.77 19.54	4.458	1
409	400	3.65	158	196	213	19.2	274	3.65	897.25	476.57	88%	9.160	38.08	4.848	ò
410 411	410 411	3.27 3.65	150 152	205 196	215 208	19.5 19.1	304 279	3.29 3.58	840.52 777.40	433.54 459.12	94% 69%	7.867 10.067	19.92 36.71	4.744 6.371	1
412	412	3.27	193	250	260	20.1	313	3.19	876.90	487.52	80%	8.291	36.84	4.553	0
413	413	3.47	204	255 255	262	19.2	283	3.53	944.19 807.97	469.36 480.24	68%	9.534 6.597	30.21	4.330	1
416	416	3.57	141	203	216	19.3	276	3.62	910.95	519.56	75%	8.176	20.63	2.664	0
418	410	3.21	174	240	297 273	20.8	328	3.05	904.52	457.44	95%	8.447	55.53	6.952	1
420 421	420	3.65	168 176	200 218	212 220	19.2 19.4	285 289	3.51	782.70	439.24 506.25	78% 84%	9.367 7.866	57.17 29.58	4.731	1
422	422	3.47	170	200	214	19.2	300	3.33	888.90	418.05	113%	8.626	39.55	3.643	1
423 424	423 424	3.67 3.75	1// 144	220 180	226 216	19.5 19.3	276 276	3.62	798.46 755.39	445.63 481.72	79% 57%	9.657 7.649	54.49 16.30	4.020 4.558	1
425	425	3.62	169	205	219	19.3	271	3.69	856.61	480.60	78%	10.856	59.33	4.323	1
427	427	3.16	186	250	2/3	20.3	329	3.25	908.15	430.58	110%	7.581	37.73	5.415	1
430 415	430 415	3.32	198 158	265 210	274 222	20.3 19.2	287 294	3.48 3.40	921.07	436.77	111%	7.613 9.176	42.82	3.087	1
406	406/1	3.62	188	232	237	21.4	278	3.60				9.523	34.39	4.619	1
406 501	406/2 501	3.87 3.27	148 175	182 212	237 257	19.1	314	3.60 3.18	1053.43	455.31	131%	11.347 8.215	47.20 45.79	4.941 3.981	1
502	502	3.24	204	253	272	19.9	298	3.36	969.18	422.91	129%	9.864	63.77	3.678	1
504	503	3.34	199	240	295	19.8	276	3.62	1093.35	491.72	120%	9.174	29.58	4.933	1
505 506	505 506	2.99 3.11	221 176	282 221	296 241	19.5 19	308 310	3.25	1040.88	443.58 468.22	135% 128%	6.758 9.802	36.19 30.74	3.580 3.444	0
507	507/1	3.04	215	271	267	19.1	299	3.34	1045.09	437.00	139%	9.106	58.45	5.516	1
507	507/2	3.27 3.01	141 163	202	267 229	18.5	338	3.34	1113.83 994.46	487.37 462.92	129% 115%	10.032 8.827	60.97 45.62	4.687	0
509	509	3.37	182	222	231	19.7	281	3.56	1010.43	412.35	145%	12.224	73.82	3.458	1
510	510	3.29	172	207	296	19.6	200 288	3.47	1125.19	454.71 489.15	131%	9.535	72.24	4.498	1
512 514	512 514	3.09	177	223	239 257	18.9 18.6	310 308	3.23	1083.18	442.22	145% 107%	9.203	66.44 64.86	3.195	1
516	516	3.09	196	252	262	19.6	320	3.13	1039.69	434.65	139%	7.632	42.42	3.320	1
517 518	517 518	3.29 3.32	177 200	228 250	222 248	18.3 19.2	300 288	3.33 3.47	1054.65	489.99 480.44	115% 124%	8.782 10.158	61.21 47.24	3.087 3.161	1
519	519	3.42	188	227	237	18.8	272	3.68	1012.16	522.22	94%	9.734	26.86	4.668	1
520 521	520 521	3.16 3.21	192	234	237 253	19.6	286 289	3.50	1062.70	429.18 425.48	148%	10.196	40.06	3.507 3.100	1
522	522	3.21	182	224	267	19.8	281	3.56	1064.26	442.70	141%	8.817 11.314	26.89	3.404	1
523	523	3.09	166	276	292	17.9	301	3.32	1063.95	475.29	162%	7.481	39.97	3.230	1
525 526	525	3.14 3.01	207	263 295	273	20.4	307	3.26	1081.57	503.32 477.43	115% 123%	9.581 8.884	52.39 50.12	3.975	1
527	520	3.44	185	235	232	18.7	269	3.72	1012.40	465.58	118%	9.675	43.17	3.843	1
528 529	528 529	3.44 3.06	190 188	244 229	261 232	20.9 18.7	281 295	3.56 3.39	1026.87 1065.26	426.23 458.66	141% 132%	9.434 6.886	46.72 37.42	3.128 3.534	1
530	530	3.29	176	223	230	18.8	274	3.65	980.77	439.59	123%	8.330	61.52	3.404	1
513 Blank cells ide	513 ntify missing d	3.32	210	251	263	21.1	280	3.57				0.604	56.35	2.943	1

8.4 Details of analysis using age and age+site as fixed effects (excluding upper logs).

			basic	moisture			Janka
Age (years)	fakopp	hitman	density	content	MOE	MOR	hardness
8	3.421	3.327	457.50	1.090	8.970	44.82	4.00
13	3.688	3.798	489.50	0.978	11.320	53.85	4.34
significance of difference	p<0.001	p<0.001	p<0.001	p<0.001	p<0.001	p<0.001	p=0.026

Analysis of age + age.site	fakopp	hitman	basic density	moisture content	MOE	MOR	Janka hardness
significance of difference:							
age	p<0.001	p<0.001	p<0.001	p<0.001	p<0.001	p<0.001	p=0.019
age.site	p<0.001	p<0.001	p=0.003	p<0.001	p<0.001	p=0.005	p<0.001

8.5 Illustration of correlations analysed by age class and as a pooled data set.

9 Acknowledgments

The authors gratefully acknowledge the contribution of staff at Forest Enterprises Australia Ltd (FEA) for their considerable support in this project.

They also thank Dr Chris Harwood of CRC for forestry for valuable comments on the project report.

For assistance during the field work and lab testing component of the project we would like to thank Dr David Wood of the University of Tasmania's School of Engineering, as well as Steve Wright, Samuel Gadient and Steven Hindrum from the Centre for Sustainable Architecture with Wood.