

Prefabricated Lightweight Timber Ground Floor Systems R&D Project

Dr Alastair Woodard

Timber ground floor construction is far from a new concept;

what is new, original and innovative is the

'delivery method' and the 'market offering'

Prefabricated timber ground floor systems

delivered by Australia's Frame & Truss manufacturing sector

Benefits: Flood Prone Areas - High & Dry

Benefits: Reactive Clays - Adjustable

Benefits: Sloping Sites – Lighter on the Land

Pre-investigation of builder's views on raised timber sub-floor construction

•	Comments Made & Issues Raised	Action Required							
-	• Sloping sites – many builders would now just use a slab –	 Need to investigate at what slope TSFs 							
	'industry norm' (unless cut & fill requirements too great to	become a more cost effective option							
	be economic)								

Cor	nments Made & Issues Raised	Action Required					
•	Sloping sites – many builders would now just use a slab –	•	Need to investigate at what slope TSFs				
	'industry norm' (unless cut & fill requirements too great to		become a more cost effective option				
	be economic)						
•	Cost is the main driving factor – most builders advised	•	Need to clearly understand and document				
	that they would shift if it could be demonstrated to be more		costs				
	cost effective						

For the volume builders 'COST' is a major factor

- Not necessarily though for everyone

Con	nments Made & Issues Raised	Action Required							
•	Sloping sites – many builders would now just use a slab –	•	Need to investigate at what slope TSFs						
	'industry norm' (unless cut & fill requirements too great to		become a more cost effective option						
	be economic)								
•	Cost is the main driving factor – most builders advised	•	Need to clearly understand and document						
	that they would shift if it could be demonstrated to be more		costs						
	cost effective								
•	Slab easy and quick – one contractor and can have a	•	Need to have a 'design, supply and install'						
	slab on the ground within 3 days, subfloor more difficult –		capacity – one contractor service						
	multiple contractors and takes longer								

Timber Industry needs to match what the concrete sector offers
- supply & install

Co	mments Made & Issues Raised	Action Required						
•	Sloping sites – many builders would now just use a slab – 'industry norm' (unless cut & fill requirements too great to be economic)	Need to investigate at what slope TSFs become a more cost effective option						
•	Cost is the main driving factor – most builders advised that they would shift if it could be demonstrated to be more cost effective	Need to clearly understand and document costs						
•	Slab easy and quick – one contractor and can have a slab on the ground within 3 days, subfloor more difficult – multiple contractors and takes longer	Need to have a 'design, supply and install' capacity – one contractor service						
•	Thermal Performance - all were concerned about sub floors achieving the appropriate energy rating	Need to identify cost effective insulation solutions for sub-floors						
•	Low-lying areas – Council requirement is to build at least 600mm above flood level - many builders just use a deeper more massive slab	Need to investigate at what slab thickness that TSFs become a more cost effective option						
•	Promotion of timber sub-floors – general feeling was that the timber industry was simply not supporting its product whilst the concrete industry was	Investigate what promotion industry should be doing to protect remaining market share (for new homes and alterations & additions)						
•	New 'Waffle Pod' slabs – are providing an even easier way to do slab on ground (slabs sit straight on ground no excavation for beams)	Timber industry need also to investigate new, innovative, construction options						

Currently some real issues for waffle pods – attitudes to 'cost' are changing

Builders in Australia currently prefer slab-on-ground to suspended timber floor systems; slabs today represent over 95% of the new residential market in some states

Builders have concerns with traditional 'built-on-site joist & bearer timber systems' particularly because of

- the multiple trades and contracts required and
- the longer construction periods compared to the slab-onground alternative.

Builders today are used to, and want, —
'one contract, to deliver a working platform, on a site, on
a specific date, for a specific cost'.

This is the challenge for a successful take-up of easy-to-install, cost effective lightweight timber ground floor systems.

Findings – Key Issues

Key issues to address include

- offering a total system that includes the prefabricated timber floor, the supporting system (with a number of options depending on site conditions) and a simple, effective and quick installation process;
- developing an approach that has broad supply channel potential —
 an approach that does not require specialists to deliver;
- securing engagement and
 participation by the truss and frame
 sector design / fabrication / install
 – this provides a whole new value added product line to manufacturers
 and a next step towards further
 prefabrication offerings (fully
 finished wall systems, fabricated roof
 modules etc.).

Project Activities & Timelines

Part A	Review	Critical review of what has been tried in regards prefab floor systems in the past and report on what is needed and how industry should/could respond			
	5.	Designing optimised floor system solutions			
	Design	Designing pre-fabricated floor support methods			
	ه ا	Design Analysis			
		Designing on-site installation techniques and procedures			
	₽0	Project administration - FWPA contract & milestones			
Part R	esti	Elemental and Full size testing of floor panel options for performance			
Pailb	Lab Testing	Elemental and Full size testing of between-panel jointing requirements			
	2	Elemental and Full size testing of pre-fabricated floor support and tie-down			
		Testing of in-shop floor insulation installation options			
		Full size testing of on-site installation techniques and procedures			
	Pilot	Construction of a full-sized home floor			
	≣	Preparation of copy for FWPA Technical Manual			
		Launch			
		Final Report and AFFR			

Project funded by FWPA

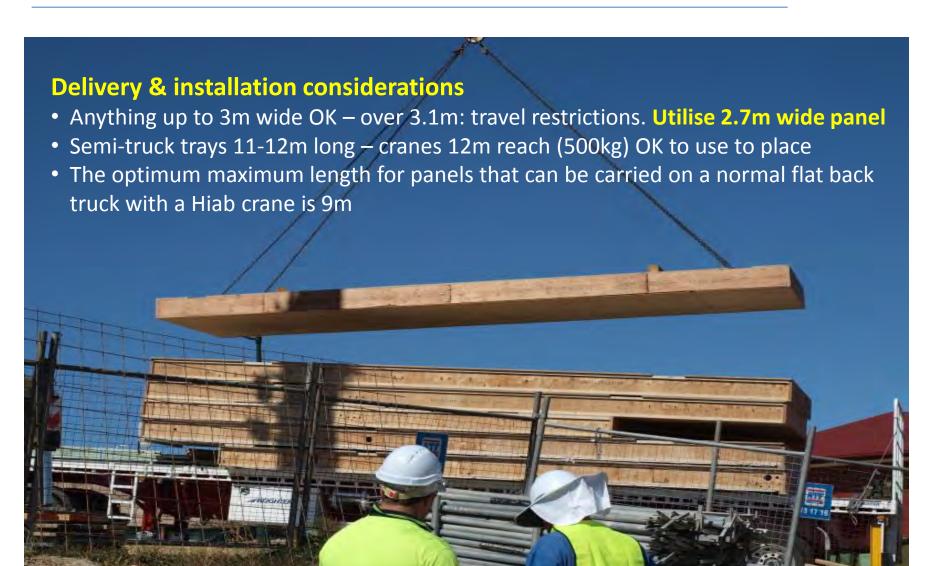
TPC Solutions (Aust) Pty Ltd

	2011/12									2012/13											
oposed Program	2011				20:					2012						2013					
Activity	Sept	October	Nov	Dec	January	February Marc	h April	May	June	July	August	Sept	October	Nov	Dec	January	February	March	April		
Proposal development		M1 -1 Oct	ober																		
Proposal assessment - FWPA				Del 1 -	ritical reviev	report															
Contract signing	1	/		V I M2	15 Dec	Del 2 -	Design Phase re	port													
Critical review		Critical	review	₩			M3 -1	April			Del 3 - La	testing rep	ort								
Design Analysis					DA - analys	s V	1			,	✓ I M4 -	15 August			M5	15 Dec					
Lab Testing - BRANZ NZ						LT - panels	LT - ji	ointing	LT - th	down	V							Del 4 - Pilo	t phase & c	opy for Tech	Manu
Pilot installation process testing - Bowens															₩						
Full scale house test - Major Builder																	,	<i>k</i>	Del 5	Final report	and
Technical Manual copy development	al copy development					Man - testing outcomes					Man- pilo	pilot outcomes Man - fine			Y _{M6} -						
Launch																	Plan	Deliver	1 MIR-	to April	
Final Report & AFFR																	Report	AFFR	,		
	FWPA Advice: Starting date - 1 October with milestone dates planned for the 15 th of April, August and December																				

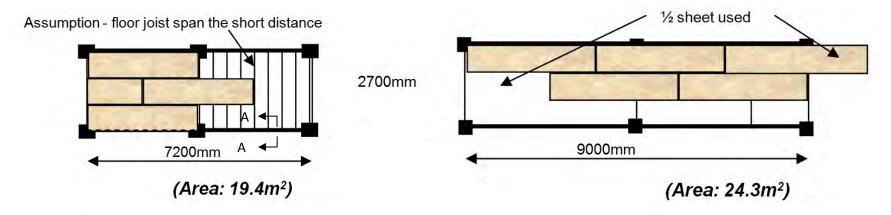
Stage 2: Design Optimisation

- I. Optimised panel floor systems (including floor insulation)
- II. Floor support systems
- III.Onsite installation approaches

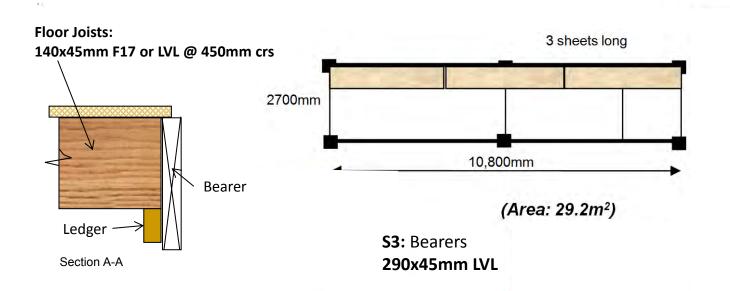
Optimised Floor Systems


Prefabricated Panelised Flooring Configuration Options - optimised around

- delivery & installation considerations
- structural performance and materials cost,
- utilising the current range of commonly available structural flooring products, both
 - solid sawn and
 - engineered (plywood, particleboard, LVL, I-beams and floor trusses);

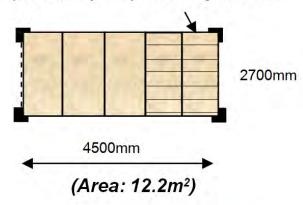


Optimised Floor Systems



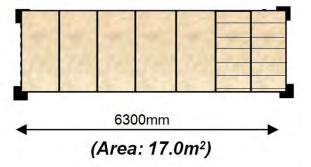
Optimised Floor Systems: S-Type

\$1: Bearers **190x35mm F17 or LVL**


S2: Bearers
240x45mm LVL

Optimised Floor Systems: I and T-type

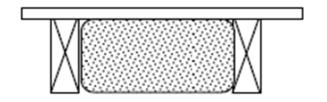
Assumption - floor joist span the long distance

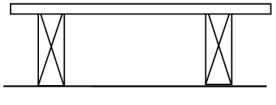


2700mm

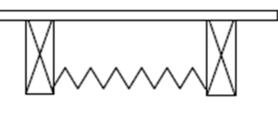
E1: Joists (@450mmcrs) 240 deep I-beams

E2: Joists(@450mmcrs): 300 deep I-beams





Optimised Floor Systems - Insulation


Insulation Options

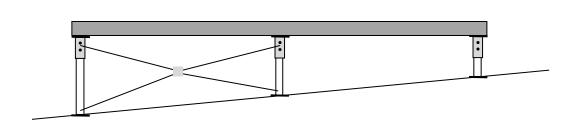
Bulk: Glasswool, Rockwool, Polyester

Cellular Foil Laminate

Concertina Foil

Expanded Polystyrene

Foam Spray

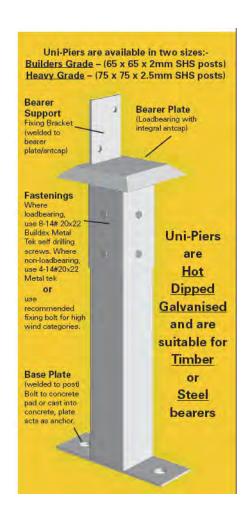

Stage 2: Design Optimisation

Optimised floor systems (including floor insulation)

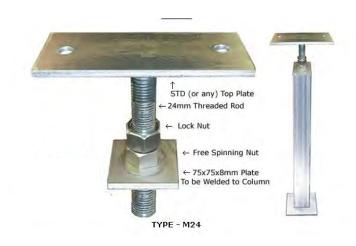
II. Floor support systems

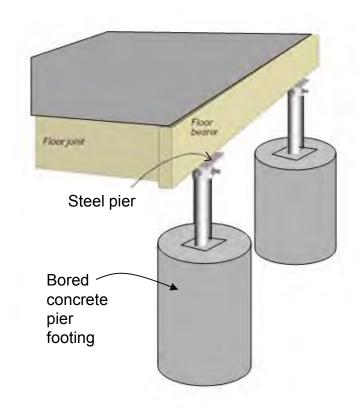
III.Onsite installation approaches

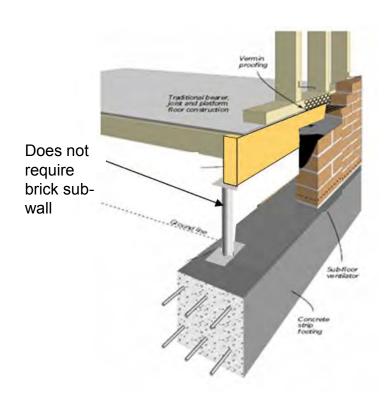
Floor Support Systems


sloping sites, a braced adjustable steel pier approach is very effective allowing levels to be easily achieved (a range of proprietary products exist with different approaches to adjustment and levelling).

flat sites the adjustable steel pier can be used or a set-height precast pier product may prove more cost effective (typically minimum of 400mm high to meet building regulations).


Floor Support Systems – Floor to Ground




Advanta-Pier

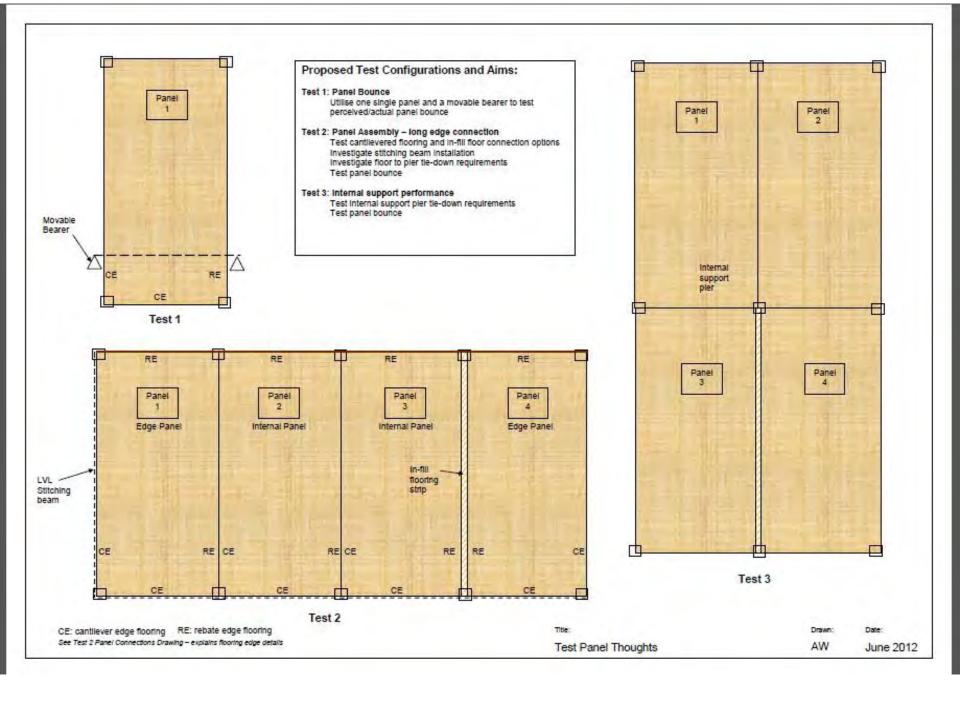
Adjustable Steel Piers

Floor Support Systems - Footings

Bored Concrete Pier

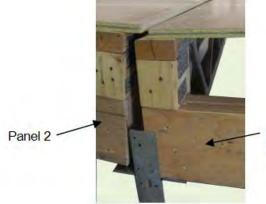
(Lightweight external wall)

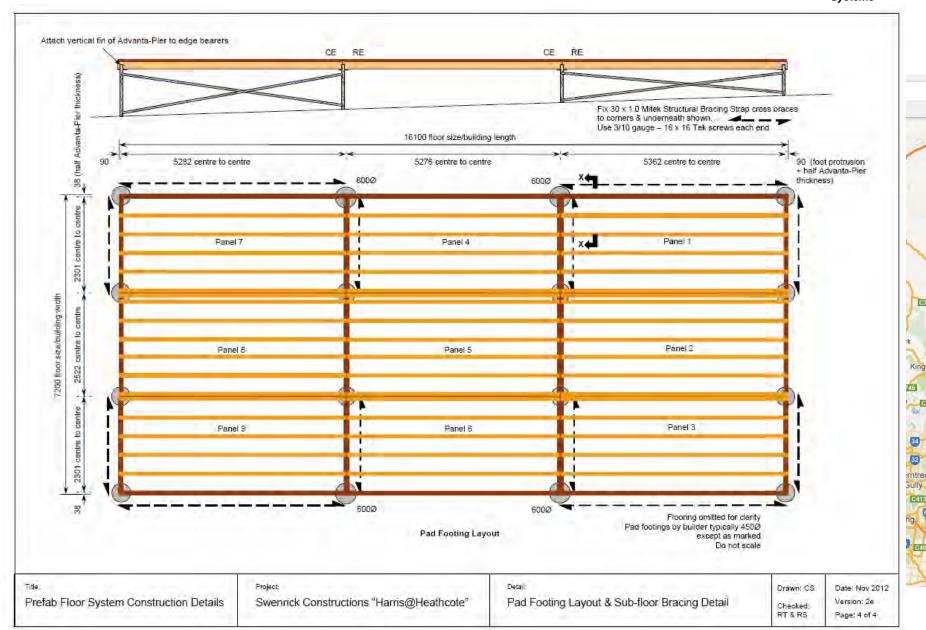
Conventional Strip Footing


(Heavyweight veneer external wall)

Stage 3: Testing

- 1. Elemental testing
- 2. Full panel testing
- 3. Installation Testing

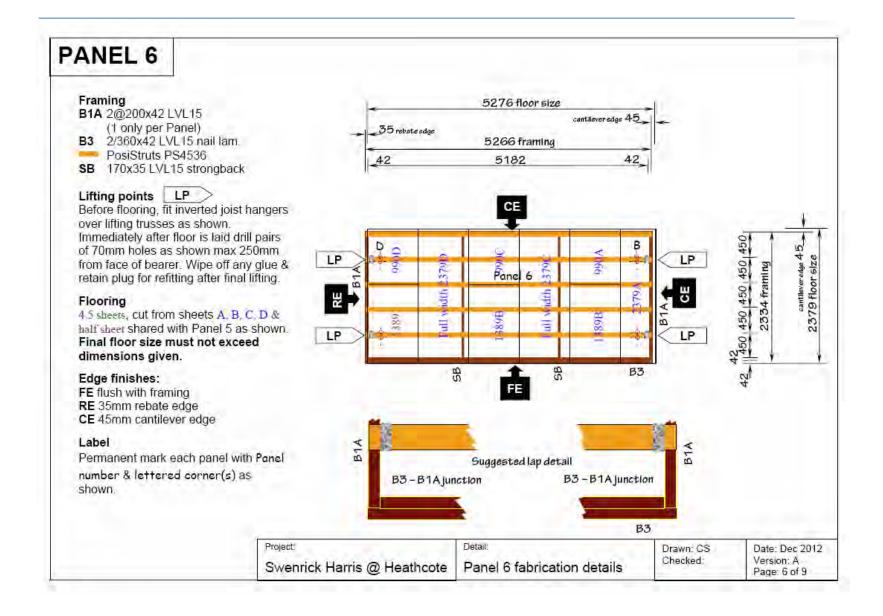

Prefabricated Lightweight Timber Ground Floor Systems



Panel 1 Receiving panel

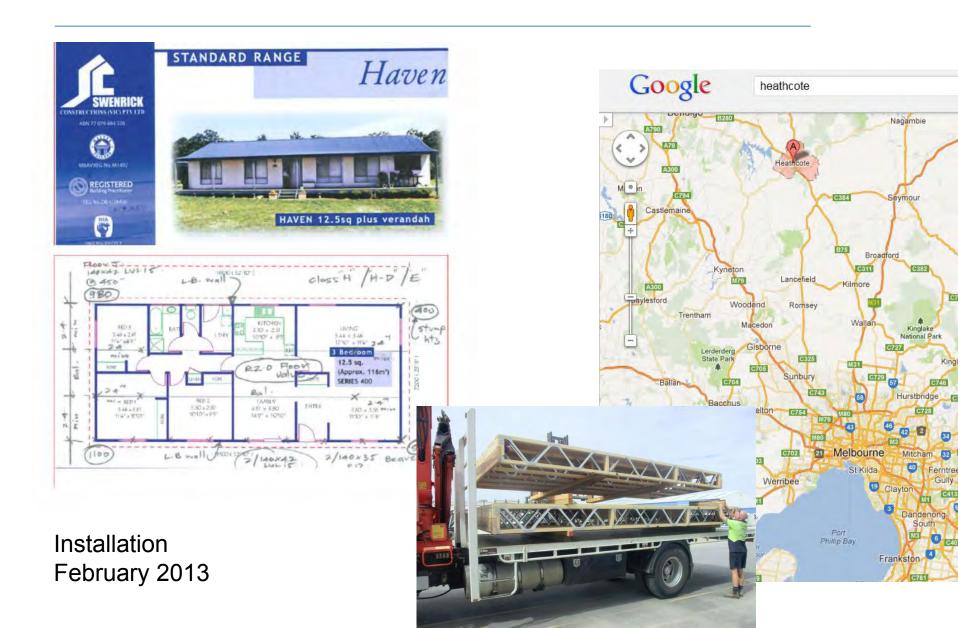
Stage 4: Pilot Phase

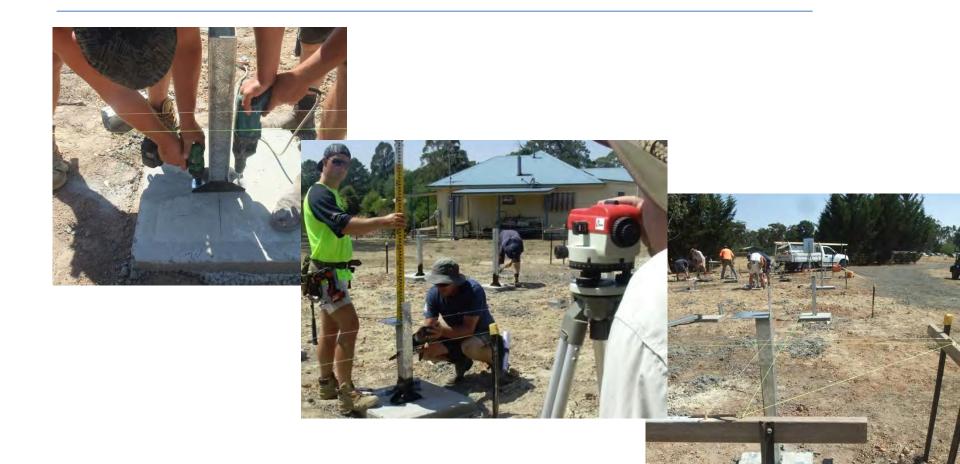
- I. 'Full size home floor' with builder
- II. FWPA Technical Advisory Manual



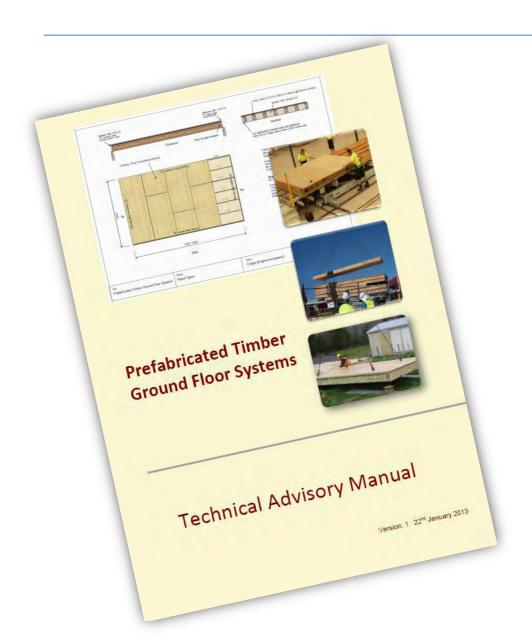
400mm high braced verticals set to provide accurate right-angle

2x90x45 pine fixed on flat to table floor (allows lift for fork access)





Adjustable pier installation



Floor panel site installation

Technical Advisory Manual

Written for frame and truss manufacturers

- Introduction
- Selecting a system
- Design
- Fabrication
- Installation
- Case Study

Market Implementation Strategy

Aim is to manage the introduction so that industry provides a quality solution right from the start. Suggested activities include:

- work closely with Frame & Truss Manufacturers Association;
- Information seminars to be held in each state;
- identify 2-3 innovative and quality F&T manufacturers in each state (Vic, NSW & Qld at least);
- form a small implementation group of these key companies;
- assist companies in understanding the concepts and touting for some jobs in their states;
- assist companies on each job, seeing what we can learn and updating the technical advisory manual;
- work with Pryda, MiTek, Multinail to include in their software;
- further promote the concepts with builders and designers;
- then once we have a number of jobs completed in each state then starting to share the information more broadly.

Lots of Benefits

- Best construction option for: sloping sites, low lying areas, poor soil conditions
- Guaranteed quality due to manufacture in a controlled factory environment
- Reduced material waste and zero on-site waste
- Ease of floor insulation installation
- Increased on-site construction speed (floor & plumbing)
- Simplified plumbing installation (no jack hammering)
- Post construction adjustment (highly reactive clays)
- Extension of concept to indoor-outdoor living and offering prefabricated timber decks and screens
- Lots of opportunities for additional frame & truss value-add: pre-ink-jetting wall frame positions, pre-cutting holes for plumbers, pre-installing plumbing pipes, fittings or shower bases, pre-fitting waterproof flooring & linings

Information Seminars

Detailed information seminars to be held in August

Monday 26th August: QLD Seminar - Brisbane

Wednesday 28th August: NSW Seminar - Sydney

Friday 30th August: Vic Seminar - Melbourne

Prefabricated Lightweight Timber Ground Floor Systems R&D Project

