

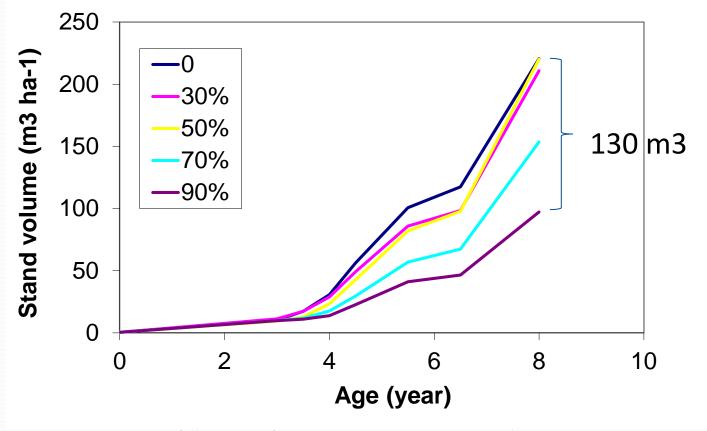
Impacts of pests on plantation productivity

Libby Pinkard

CLIMATE ADAPTATION FLAGSHIP

www.csiro.au

Overview


- Key pests and how they damage
- Rotation-length impact: important damage features
- Climate change:
 - Pest distribution and abundance
 - Host sensitivity and impact
 - Management strategies
- Adaptation strategies

Historical responses

- Coordinated industry response to pests that kill softwoods
 - Sirex, Ips
- Less attention paid to non-lethal softwood pests, or eucalypt pests

Does non-lethal pest attack matter?

Defoliation from Autumn gum moth, Tasmania

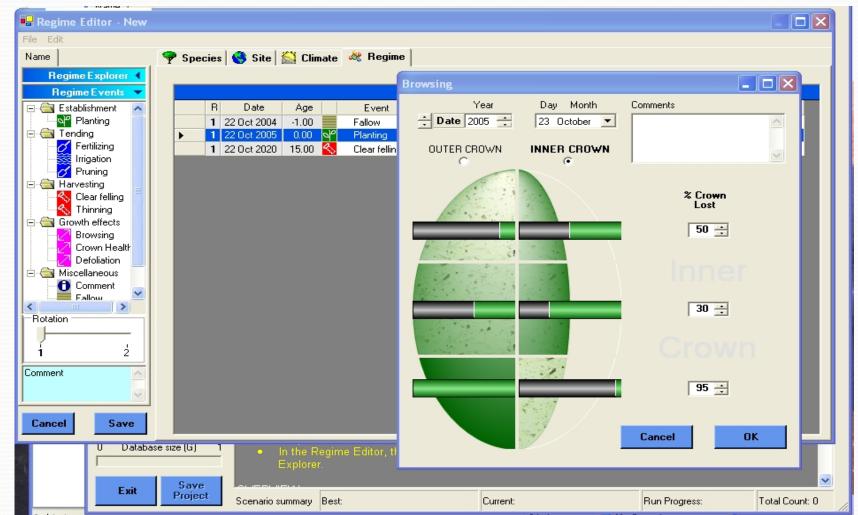
Key pests of temperate plantations

- 75% of key plantation pests are defoliators
- 20% are stem pests
- 5% are root pests

FWPA project: Adaptation strategies to manage risk in Australia's plantations

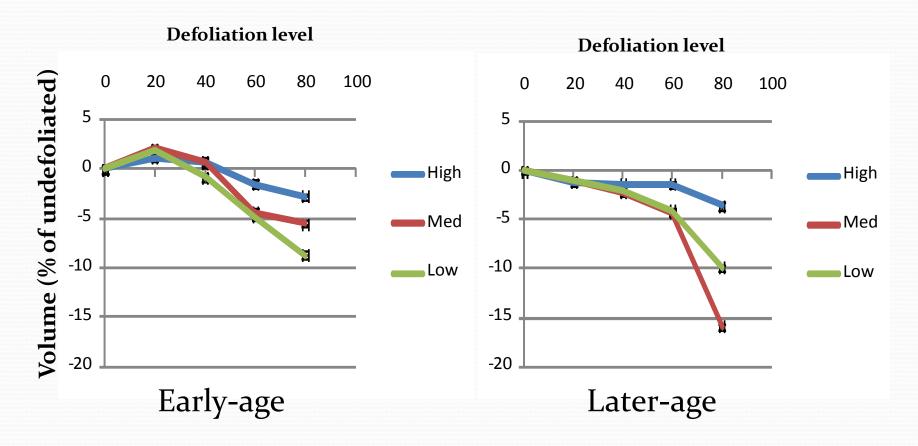
Damage features

Pest species	Susceptible	Season of	Affected	Foliage	Defoliation
	stage	damage	organs	targeted	pattern
Anoplognathus sp	All	SPR, SU, AUT	Leaves, shoots	Juvenile, adult	Entire crown
Gonipterus spp	All	SPR, SU	Leaves, shoots	Juvenile, adult	Top-down
Heteronyx spp	All	SPR, SU, AUT*	Leaves, shoots	Juvenile, adult	Top-down
Liparetrus spp	Seedlings and trees <2 yo	SPR, SU, AUT	Leaves, buds, shoots	Juvenile	Entire crown
Mnesampela privata	Seedlings and young trees	SU, AUT	Leaves	Juvenile	Bottom up
Paropsis, Paropsisterna, Chrysomelid spp	All	SPR, SU, AUT	Leaves, buds	Juvenile, adult	Top down
Uraba lugens	All	SPR, SU, AUT, WIN	Leaves	Juvenile, adult	Bottom up
Creiis lituratus	All	SPR, SU, AUT	Leaves	Juvenile	Top-down
Essigella californica#	Post-canopy closure	AUT, WIN, SPR	Needles	1 YO needles	Bottom-up
Cyclaneusma minus	Post-canopy closure	SPR, AUT	Needles	1 YO needles; not current needles	Entire crown
Dothistroma septosporum	All	SPR, SU	Needles	Any age	Bottom-up
Kirramyces eucalypti	All	SPR, SU, AUT	Leaves	Juvenile	Top-down
Teratosphaeria spp	Before phase change	SPR, SU, AUT	Leaves	Juvenile	Top-down
Puccinia psidii^	Young	SPR, SU, AUT	Leaves, tips	Juvenile	Top-down
Quambalaria spp	Pre-canopy closure	SPR, SU	Leaves, tips	Juvenile	Top-down


Past studies

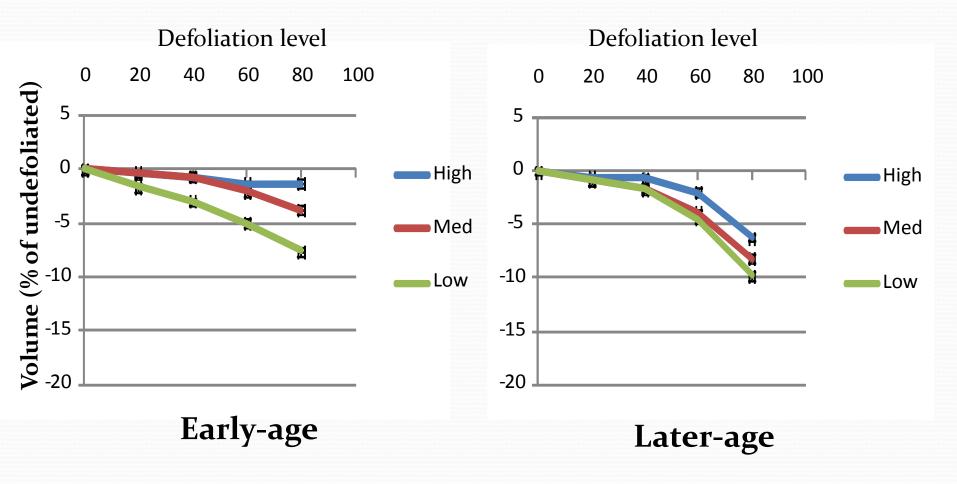
- Generally short term not rotation-length
- Generally young plantations
- Provided basis for modelling defoliation impacts

CABALA links science and

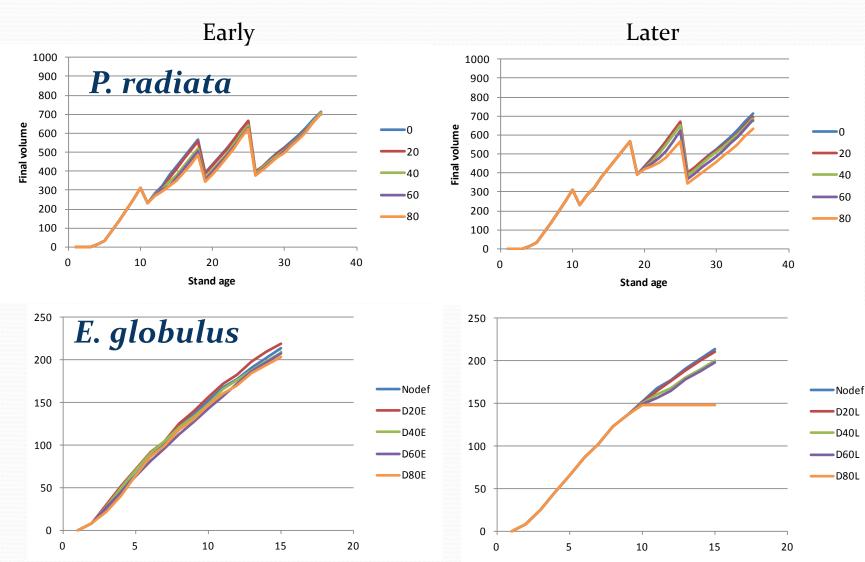

application

The scenarios

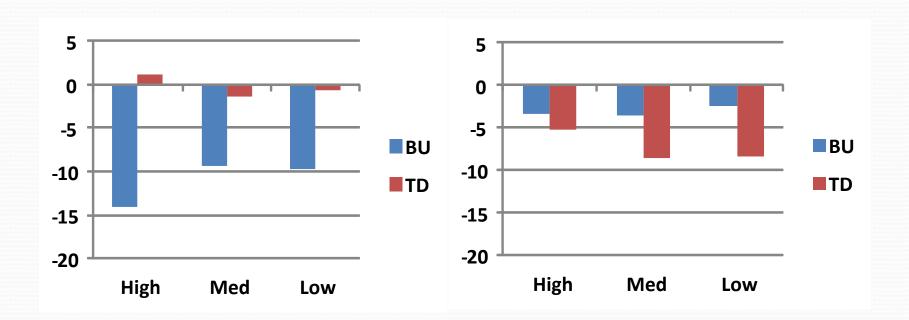
- High and low productivity sites selected (8 in total)
- Low, moderate and high soil fertility applied
- Standard silviculture
- Defoliation:
 - Severity: 0, 20, 40, 60, 80% leaf/needle loss THRESHOLDS
 - Early vs later-age
 - Bottom-up vs top-down
 - Single *vs* chronic
 - Spring *vs* autumn
- Average of 20 model runs per scenario


Thresholds: E. globulus

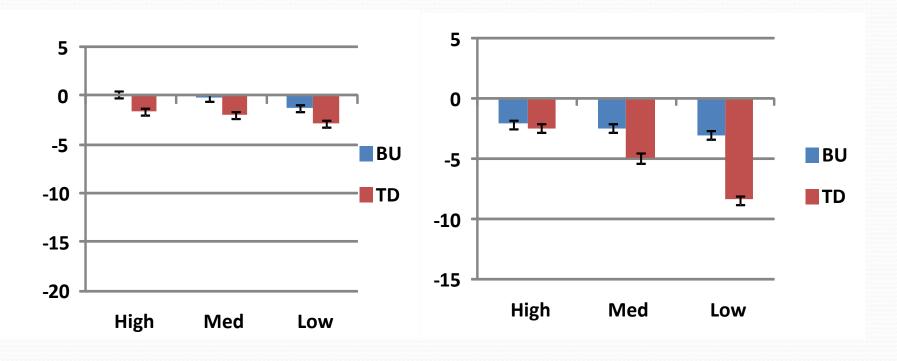
State	Produc	Defoliation threshold*					
	tivity		Early			Later	
		High	Mod	Low	High	Mod	Low
SA-GT	lower	-	-	60%	-	60%	60%
SA-GT	higher	-	-	60%	-	60%	-
SW WA	lower	-	-	-	-	70%	70%
SW WA	higher	40%	-	-	-	70%	70%
Tas	lower	60%	40%	40%	70%	70%	-
Tas	higher	60%	60%	60%	60%	60%	60%
Vic-NSW	lower	50%	60%	60%	70%	70%	70%
Vic-NSW	higher	50%	60%	60%	60%	50%	60%

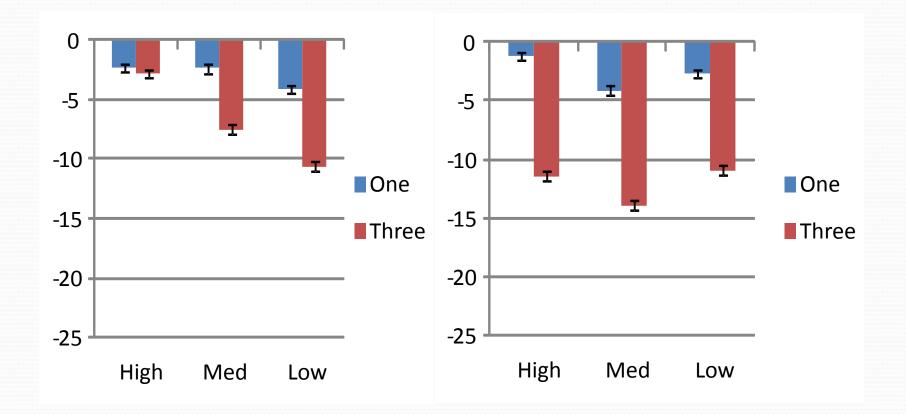

*level of defoliation that results in 5% reduction in harvest volume

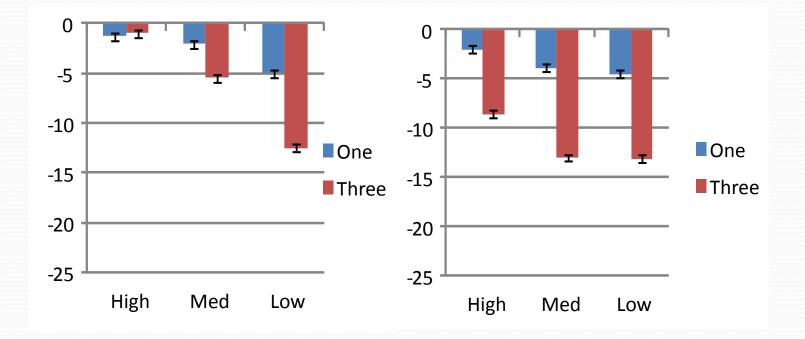
Thresholds: P. radiata



State	Producti		Defoliation threshold				
	vity		Early		Later		
		High	Mod	Low	High	Mod	Low
SA-GT	lower	-	-	60%	70%	60%	60%
SA-GT	higher	-	-	60%	80%	75%	65%
SW WA	lower	-	-	60%	80%	75%	60%
SW WA	higher	-	-	60%	-	75%	65%
Tas	lower	-	-	60%	-	-	60%
Tas	higher	-	-	70%	-	70%	65%
Vic-	lower	-	-	70%	80%	65%	60%
NSW							
Vic-	higher	-	-	80%	80%	75%	65%
NSW							


Defoliation age


Defoliation pattern: E. globulus


Defoliation pattern: P. radiata

Defoliation frequency: E. globulus

Defoliation frequency: P. radiata

Summary

- Later age of more concern than early age
- Top-down generally of more concern although bottom up for young *E. globulus*
- Single defoliation events generally of less concern than multiple events
- Defoliation thresholds:
 - Between 20 40% defoliation reduces stand volume
 - What is the economic threshold?

Climate change

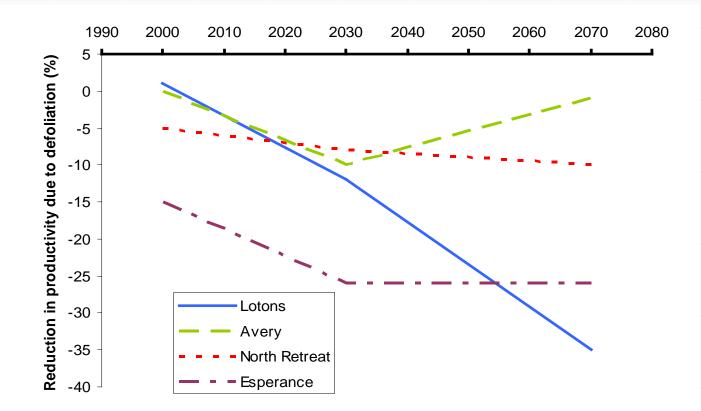
Phenomenon and direction of trend	Likelihood that trend occurred in late 20 th century	Likelihood of future trend based on projections for 21 st century
Warmer/fewer cold days/nights over most land areas	Very likely	Virtually certain
Warmer and more frequent hot days/nights over most land areas	Very likely	Virtually certain
Increased frequency of heatwaves over most land areas	Likely	Very likely
Increased frequency of heavy precipitation events	Likely	Very likely
Increased area affected by drought	Likely in many regions since 1970	Likely
Increased intense tropical cyclone activity	Likely in many regions since 1970	Likely

Implications for plantation

productivity

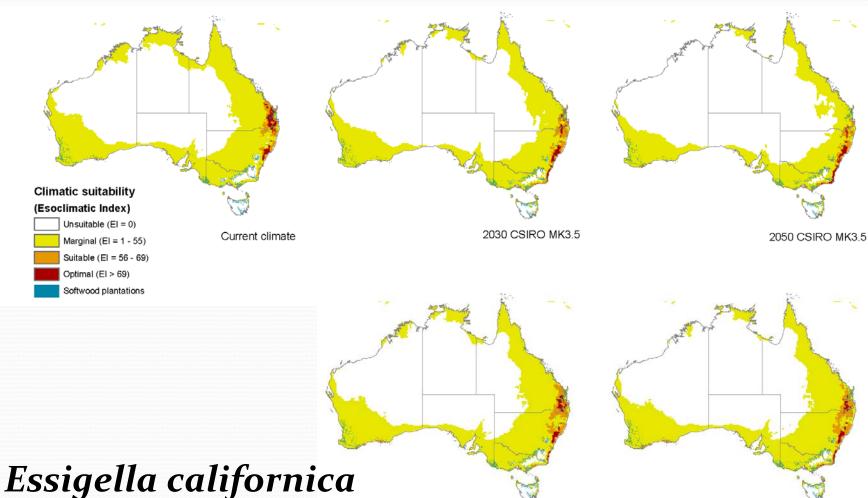
Impact	Possible outcome
Warmer MAT	Change in seasonality of growth and increase in length of growing
	season
	Increased pest damage
	Reduced frost hardening and increased susceptibility to frost
	Increased transpiration and evaporation resulting in increased water stress
	Increased rates of photosynthesis that may increase growth rate
Increased frequency of heatwaves	Tissue damage, protein denaturation and mortality , particularly if combined with drought
	Greater soil evaporation leading to increased plant water stress
	Greater post-establishment mortality
Increased drought	Reduced leaf area index and therefore decreased growth rates
conditions	Tissue damage and mortality
	Greater susceptibility to some pests e.g. stem borers
	Greater post-establishment mortality
Elevated atmospheric CO ₂	Increased growth where water and nutrients are non-limiting
	Increased allocation of biomass below-ground
	Greater water-use efficiency that may reduce drought effects

Implications for pests: distribution,


activity, damage

Impact	Potential outcome
Warmer MAT	Increased number of insect generations per year
	Decreased winter mortality resulting in more rapid population build- up
	Increased late-season damage resulting in potentially greater impact on growth
	Range shifts to higher latitudes and elevations
Decreased precipitation	Increased risk from pests such as stem borers
	Possible decreases in risk from foliar pathogens
More extreme precipitation events	May favour foliar pathogens if high relative humidity occurs
	May wash insects and larvae from leaves
More variable precipitation	May favour some root pathogens e.g Armillaria spp
Elevated CO ₂	Increased development and reproductive rates in some insect guilds
	Increased fecundity and aggressiveness in some necrotrophic and biotrophic fungi

What we don't know...


- BUT trees may produce more defence compounds because of increased CO₂
- So levels of damage may be less than anticipated
- Complex host-pest interactions

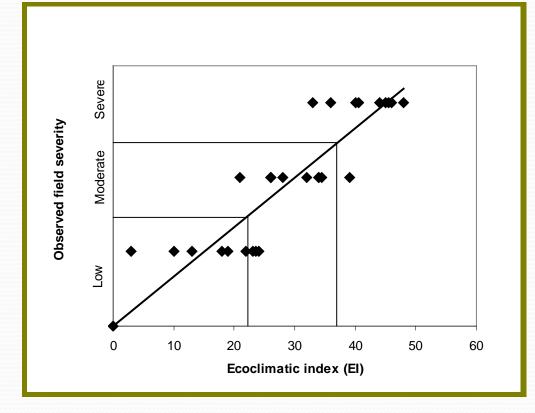
Impact may increase

Pinkard et al 2008. Climate change and Australia's plantation estate: pest impacts on carbon stores. Report to the Australian Greenhouse Office

Distribution and abundance

2030 MIROC-H

2050 MIROC-H


Climatic suitability: eucalypt pests

Pest species	Climatic	Area of	% of estate in each class					
	suitability	estate in	Current	203	0	2	050	
	class	each class		CSIRO 3.0	Miroc-	CSIRO	Miroc-H	
		(ha)			Н	3.0		
Eucalypt pests								
Autumn gum	Unsuitable	245258	9	16	15	24	17	
moth	Marginal	12138	5	3	2	3	4	
	Suitable	101693	37	39	35	35	31	
	Optimal	129976	48	40	47	38	48	
Mycosphaerell	Unsuitable	50591	19	13	11	13	11	
a leaf disease	Marginal	125895	46	54	44	54	39	
	Suitable	76103	28	26	36	27	40	
	Optimal	15743	6	6	8	6	9	
Eucalypt rust	Unsuitable	188510	70	70	69	70	69	
	Marginal	13057	5	5	2	11	3	
	Suitable	42078	15	20	20	16	20	
	Optimal	24687	9	4	8	2	7	
Gum laef	Unsuitable	184706	68	68	68	76	65	
skeletonzer	Marginal	16963	6	15	9	10	17	
	Suitable	6855	26	5	8	8	4	
	Optimal	59808	22	11	15	5	14	
Total eucalypt e	state	268332						

Climatic suitability: pine pests

Pest species	Climatic	Area of	% of estate in each class					
	suitability	estate in	Current	20	30	2	050	
	class	each class		CSIRO	Miroc-	CSIRO	Miroc-H	
		(ha)		3.0	Н	3.0		
Eucalypt pests								
Pine pests								
D. septosporum	Unsuitable	8483	0.8	2	1.5	4	2	
	Marginal	25540	3	5	3	6	3	
	Suitable	398103	40	56	35	58	38	
	Optimal	545963	56	37	61	31	57	
E. californica	Unsuitable	288284	29	15	19	7	13	
	Marginal	541592	55	70	69	89	76	
	Suitable	79204	8	14	9	4	9	
	Optimal	69208	7	0.07	2	0.01	0.05	
S. noctilio	Unsuitable	14467	1	3	3	5	3	
	Marginal	10816	1	0.02	0.02	1	0.01	
	Suitable	326003	33	30	24	32	20	
	Optimal	626802	64	67	73	62	77	
Total pine estate		978089						

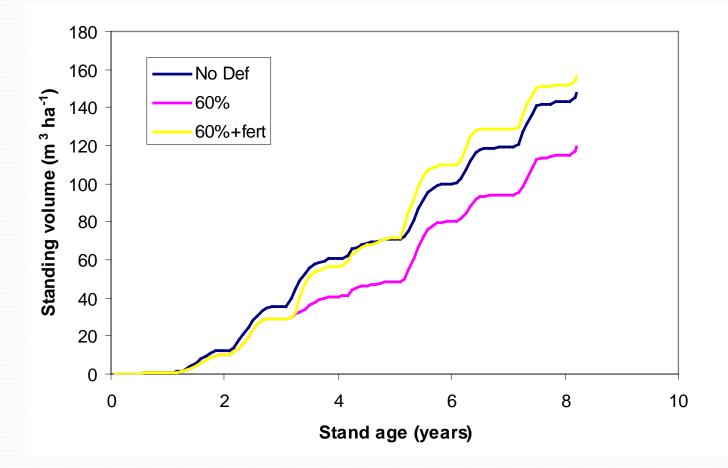
Linking risk to impact

Mycosphaerella leaf disease

Frequency of outbreaks

Species	Severity	Ecoclimatic	Anticipated	Frequency
	rating	index	severity of defoliation	(% of years)
Teratosphaer	Low	0-24	0-30%	20
ia				
	Moderate	25-37	30-60%	60
	Severe	38+	60+%	80
E. californica	Low	0-55	0-10%	30
	Moderate	56-69	10-50%	60
	Severe	>69	50+%	100

Pinkard et al 2008. Climate change and Australia's plantation estate: pest impacts on carbon stores. Report to Australian Greenhouse Office


Summary

- Large uncertainties about how climate change will affect hosts and pests
- Site-specific assessments probably required to understand impact
- Tools for understanding changes in risk and linking to impact
- Monitoring pests and health assessment of hosts critical for understanding risk and impact of climate change

Adapting to change

Strategic	Operational
Industry-wide pest monitoring network	Use IPM to identify control measures
Develop pest distribution and damage database	Regular pest monitoring
Profile potential new pests	
Tools for assessing risk and impact and ways of building resilience	Manage risk (eg species choice) or avoidhigh risk sitesMaintain plantation resilience through
	management: -spacing, fertilising, species choice
	Promote recovery with spacing, fertilising, weed control
	Control pests when thresholds are exceeded
	Define operational windows for control

Promoting recovery: fertilising

Final thoughts

- Good tools available for exploring defoliation impacts
 - Site level
 - Reports
 - Databases
- Regional discussions of risks and impacts of climate change
- Regular updating required as information improves/changes

Thank you

CSIRO Ecosystem Sciences Dr. Libby Pinkard

- t +61 3 6237 5656
- e Libby.Pinkard@csiro.au
- w www.csiro.au

www.csiro.au

