Time	Title	Presenter	
11.30	Introduction to the project	Libby Pinkard	
11.45	Climate change impacts on stand	Jody Bruce	
	strategies to build resilience		
12.15	Climate change impacts on wood	David Drew	
	properties		
12.35	Fire hazard and climate change and	Stuart Matthews	
	adaptation strategies		
12.55	Pest hazard and climate change and	Libby Pinkard	
	adaptation strategies		
13.15	Discussion	Libby Pinkard	

Adaptation to climate change in Australia's temperate plantations

Libby Pinkard, Jody Bruce, Mike Battaglia, Stuart Matthews, David Drew, Geoff Downes, Debora Crawford, Maria Ottenschlaeger

INDUSTRY PARTNERS: WAPRES, Forestry Tasmania, Private Forests Tasmania, State Forests NSW, Norske Skog, Forestry SA, QDAFF, University Western Sydney, University of Tasmania, Treehouse Consulting

CLIMATE ADAPTATION FLAGSHIP

Overview

- Project objectives
- Scope of project
- Dealing with uncertainty
 - Representing future climates
 - Responses to eCO2
 - Interannual variation
- Project outputs

Project objectives

- Develop industry capacity to examine hazards and impacts of climatic variability, through :
 - predictions of changing hazard and impact over the next 20 50 years, including wood density – opportunities and threats
 - development of tools for site or regional assessment; and
 - examination of adaptive strategies to manage hazards and impact.
- Focus was on
 - temperate plantations: *E. globulus, P. radiata*
 - fire, drought and pests
 - productivity and wood properties
- Modelling tools: CABALA, CAMBIUM, CLIMEX, expert knowledge

What is risk?

Management interventions can influence change of state

Scope of project

CSIR

Potential impact

Not all climate change is bad

Positive long-term trend in production *Pinus radiata* Lieshout *et al (1996)*

The "uncertainty explosion"

Jones, R.N. (2000) Climatic Change 45: 403-419

CSIRC

Dealing with uncertainty

- Climatic uncertainty: use multiple climate models (Climate Futures Framework)
- Atmospheric CO₂ uncertainty: estimate assuming responsiveness or no responsiveness
- Inter-annual variation: run models with multiple planting dates
- Rerun analyses as more information becomes available

Representing future climates

Clarke JM, Whetton PH, Hennessy KJ (2011)

How do we select the most appropriate climate models?

Climate Futures for region centred on 32.5 S, 116.5 E							
2050 A1FI							
		Slightly Warmer < 0.5	Warmer 0.5 to 1.5	Hotter 1.5 to 3	Much Hotter >3		
Rainfall Annual (% change)	Much Drier <15%			Likelihood: 12 of 24 models (50%)	Likelihood: 1 of 24 models (4%)		
	Drier -15 to -5%			Likelihood: 6 of 24 models (25%)	Likelihood: 2 of 24 models (8%)		
	Little Change -5 to 5%		Likelihood: 1 of 24 models (4%)	Likelihood: 1 of 24 models (4%)			
	Wetter 5 to 15%			Likelihood: 1 of 24 models (4%)			
	Much wetter >15%						

Clarke JM, Whetton PH, Hennessy KJ (2011)

Project outputs

- Regional reports for 2030
 - Volume impacts
 - Stand mortality
 - Final stocking and piece size
 - Wood basic density
 - Fire and pest hazard
 - Spot analysis of pest impacts, climate impact on wood properties, adaptation strategies
- Review of historical adaptation to climatic variability
- Spatial database
- Updated model: CABALA
- Final project report: summarised project results

Thank you

CLIMATE ADAPTATION FLAGSHIP www.csiro.au

