

Pest hazard and impact

Libby Pinkard, Jody Bruce, Tim Wardlaw, Darren Kriticos, Kylie Ireland, Caroline Mohammed, Christine Stone

CLIMATE ADAPTATION FLAGSHIP

www.csiro.au

Overview

- Key pest species
- Impacts of damage
- How key pests are affected by climate
- Current distribution and how this might change
- Adaptation strategies

Key pest species: 77% are defoliators

Pest species	Susceptible stage	Season of damage	Affected organs	Foliage targeted	Defoliation pattern
Anoplognathus sp	All	SPR, SU, AUT	Leaves, shoots	Juvenile, adult	Entire crown
Gonipterus spp	All	SPR, SU	Leaves, shoots	Juvenile, adult	Top-down
Heteronyx spp	All	SPR, SU, AUT*	Leaves, shoots	Juvenile, adult	Top-down
Liparetrus spp	Seedlings and trees <2 yo	SPR, SU, AUT	Leaves, buds, shoots	Juvenile	Entire crown
Mnesampela privata	Seedlings and young trees	SU, AUT	Leaves	Juvenile	Bottom up
Paropsis, Paropsisterna, Chrysomelid spp	All	SPR, SU, AUT	Leaves, buds	Juvenile, adult	Top down
Uraba lugens	All	SPR, SU, AUT, WIN	Leaves	Juvenile, adult	Bottom up
Creiis lituratus	All	SPR, SU, AUT	Leaves	Juvenile	Top-down
Essigella californica#	Post-canopy closure	AUT, WIN, SPR	Needles	1 YO needles	Bottom-up
Cyclaneusma minus	Post-canopy closure	SPR, AUT	Needles	1 YO needles; not current needles	Entire crown
Dothistroma septosporum	All	SPR, SU	Needles	Any age	Bottom-up
Kirramyces eucalypti	All	SPR, SU, AUT	Leaves	Juvenile	Top-down
Teratosphaeria spp	Before phase change	SPR, SU, AUT	Leaves	Juvenile	Top-down
Puccinia psidii^	Young	SPR, SU, AUT	Leaves, tips	Juvenile	Top-down
Quambalaria spp	Pre-canopy closure	SPR, SU	Leaves, tips	Juvenile	Top-down

The others...

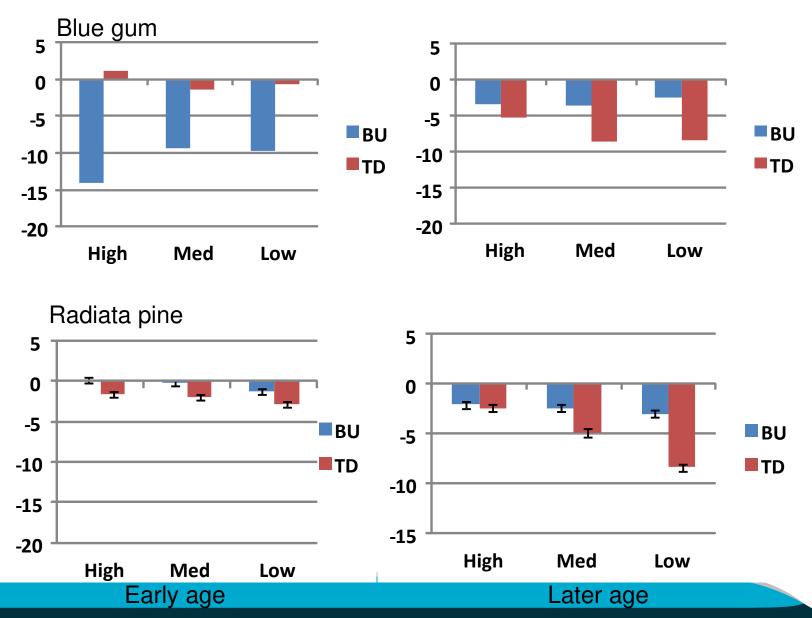
Pest	Regions	Host species	Significance
Stem pests			
Giant wood moth	NSW, Qld	Eucalypts	H, localised
Five spined bark beetle	NSW, Qld	Pines	H, localised
Eucalypt stem borer	All states	Eucalypts	H, localised
Sirex wood wasp	NSW, Vic, Tas, SA, Qld	Pines	Н
Root pests			
Phytophthora root rot	Tas, NSW, WA	Eucalypts, pines	Н

Quantifying defoliation impacts

- Defoliation 'treatments':
 - Severity: 0, 20, 40, 60, 80% leaf/needle loss THRESHOLDS
 - Early vs later-age
 - Bottom-up *vs* top-down
 - Single vs chronic
 - Spring vs autumn
- High and low productivity sites selected (8 in total)
- Low, moderate and high soil fertility applied
- Standard silviculture
- Average of 20 model runs per scenario

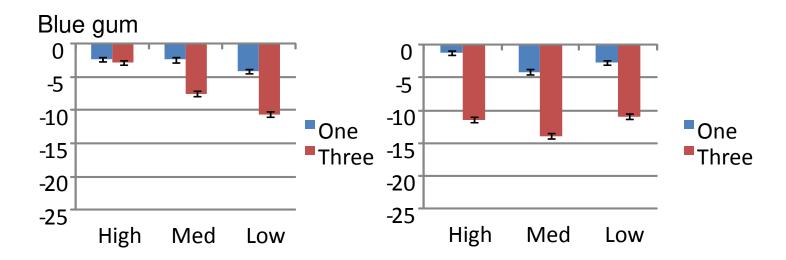
Defoliation thresholds

State	Produc	Defoliation threshold*						
	tivity		Early		Later			
		High	Mod	Low	High	Mod	Low	
SA-GT	lower	-	-	60%	-	60%	60%	
SA-GT	higher	-	-	60%	-	60%	-	
SW WA	lower	-	-	-	-	70%	70%	
SW WA	higher	40%	-	-	-	70%	70%	
Tas	lower	60%	40%	40%	70%	70%	-	
Tas	higher	60%	60%	60%	60%	60%	60%	
Vic-NSW	lower	50%	60%	60%	70%	70%	70%	
Vic-NSW	higher	50%	60%	60%	60%	60%	60%	

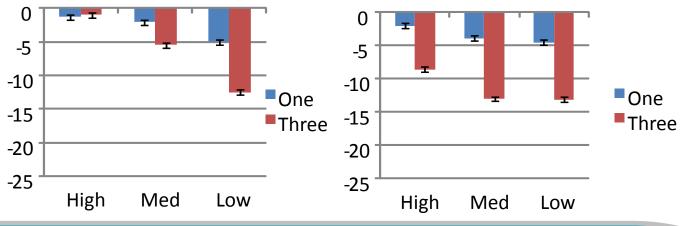


^{*}level of defoliation that results in 5% reduction in harvest volume

State	Producti	Defoliation threshold					
	vity	Early					
		High	Mod	Low	High	Mod	Low
SA-GT	lower	-	-	60%	70%	60%	60%
SA-GT	higher	_	-	60%	80%	75%	65%
SW WA	lower	-	-	60%	80%	75%	60%
SW WA	higher	-	-	60%	-	75%	65%
Tas	lower	-	-	60%	-	-	60%
Tas	higher	-	-	70%	-	70%	65%
Vic- NSW	lower	-	-	70%	80%	65%	60%
Vic- NSW	higher	-	-	80%	80%	75%	65%



Defoliation pattern



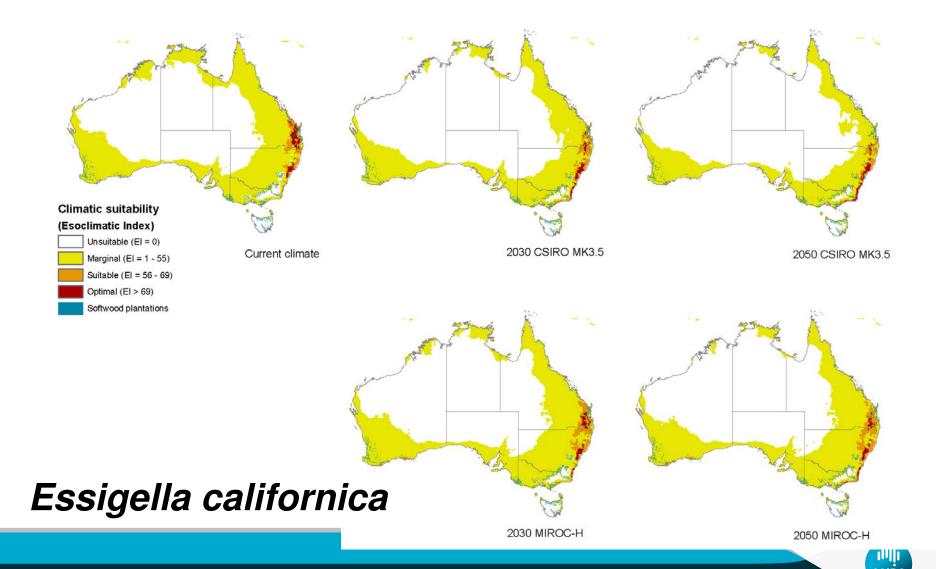
Defoliation frequency

Radiata pine

Early age Later age

Summary

- Later age of more concern than early age
- Top-down generally of more concern although bottom up for young E. globulus
- Single defoliation events generally of less concern than multiple events
- Defoliation thresholds:
 - Between 40 − 80% defoliation reduces stand volume by >5%
 - What is the economic threshold?



Implications of climate change for pests: distribution, activity, damage

Impact	Potential outcome
Warmer MAT	Increased number of insect generations per year
	Decreased winter mortality resulting in more rapid population build-up
	Increased late-season damage resulting in potentially greater impact on growth
	Range shifts to higher latitudes and elevations
Decreased precipitation	Increased risk from pests such as stem borers
	Possible decreases in risk from foliar pathogens
More extreme precipitation events	May favour foliar pathogens if high relative humidity occurs
	May wash insects and larvae from leaves
More variable precipitation	May favour some root pathogens e.g Armillaria spp
Elevated CO ₂	Increased development and reproductive rates in some insect guilds
	Increased fecundity and aggressiveness in some necrotrophic and biotrophic fungi

Distribution and abundance

Climatic suitability: eucalypt pests

Pest species	ies Climatic Area of % of estate in e		te in eacl	n class			
	suitability	estate in	Current	203	0	20)50
	class	each class		CSIRO 3.0	Miroc-	CSIRO	Miroc-H
		(ha)			Н	3.0	
Eucalypt pests		_					
Autumn gum	Unsuitable	245258	9	16	15	24	17
moth	Marginal	12138	5	3	2	3	4
	Suitable	101693	37	39	35	35	31
	Optimal	129976	48	40	47	38	48
Mycosphaerell	Unsuitable	50591	19	13	11	13	11
a leaf disease	Marginal	125895	46	54	44	54	39
	Suitable	76103	28	26	36	27	40
	Optimal	15743	6	6	8	6	9
Eucalypt rust	Unsuitable	188510	70	70	69	70	69
	Marginal	13057	5	5	2	11	3
	Suitable	42078	15	20	20	16	20
	Optimal	24687	9	4	8	2	7
Gum laef	Unsuitable	184706	68	68	68	76	65
skeletonzer	Marginal	16963	6	15	9	10	17
	Suitable	6855	26	5	8	8	4
	Optimal	59808	22	11	15	5	14
Total eucalypt estate		268332					

Climatic suitability: pine pests

Pest species	Climatic	Area of	% of estate in each class					
	suitability		Current	20	2030		050	
	class	each class		CSIRO	Miroc-	CSIRO	Miroc-H	
		(ha)		3.0	н	3.0		
Eucalypt pests								
Pine pests								
D. septosporum	Unsuitable	8483	0.8	2	1.5	4	2	
	Marginal	25540	3	5	3	6	3	
	Suitable	398103	40	56	35	58	38	
	Optimal	545963	56	37	61	31	57	
E. californica	Unsuitable	288284	29	15	19	7	13	
	Marginal	541592	55	70	69	89	76	
	Suitable	79204	8	14	9	4	9	
	Optimal	69208	7	0.07	2	0.01	0.05	
S. noctilio	Unsuitable	14467	1	3	3	5	3	
	Marginal	10816	1	0.02	0.02	1	0.01	
	Suitable	326003	33	30	24	32	20	
	Optimal	626802	64	67	73	62	77	
Total pine estate		978089						

Adapting to change

Strategic	Operational
Industry-wide pest monitoring network	Use IPM to identify control measures
Develop pest distribution and damage database Profile potential new pests	Regular pest monitoring
Tools for assessing risk and impact and ways of building resilience	Manage hazard (eg species choice) or avoid high risk sites Maintain plantation resilience through management: -spacing, fertilising, species choice Promote recovery with spacing, fertilising, weed control Control pests when thresholds are exceeded Define operational windows for control

Summary

- Large uncertainties about how climate change will affect hosts and pests
- Site-specific assessments probably required to understand impact
- Tools for understanding changes in risk and linking to impact
- Monitoring pests and health assessment of hosts critical for understanding risk and impact of climate change

Thank you

