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Executive Summary 

 

The main aims of this project were to i) determine the underlying geo-climatic drivers of 

genotype by environment interaction (GE) for radiata pine across planting environments in 

Australia and New Zealand and ii)  define site types that maximise genetic gain in 

productivity by matching genotypes with production environments. The outcomes of this 

project will facilitate optimal deployment of genetic stock to particular environments and 

development of software tools for the deployment by the Southern Tree Breeding Association 

(STBA) in Australia and the Radiata Pine Breeding Company (RPBC) in New Zealand. 

Future impacts of climate change were also considered. 

G×E in STBA trials 

As a result of this project, current breeding and deployment regions will be redefined in 

Australia. It is expected that the number of breeding regions in Australia will be reduced and 

this could significantly simplify management of the national breeding programme. This 

should result in additional genetic gains in the breeding and deployment programs, which will 

come from accounting for G×E variance. This project has provided necessary information 

including site-site (i.e. inter-trial) genetic correlations for use in breeding value estimation by 

TREEPLAN®. The project has also provided necessary relationships between site means and 

variances of different traits for use in customised deployment tools such as SEEDPLAN®. 

The combination of optimal breeding and deployment of genetic stock to particular 

environments is likely to significantly improve radiata pine plantation productivity. 

New site types were defined by grouping trial sites into clusters using a new analytical 

methodology (‘rgModel’). The first two most pronounced site clusters were based on 

minimum temperature, representing Warm and Cool site types. The next cluster split to Cool-

Wet and Cool-Dry site types was based on rainfall variables, and it further improved the 

model fit. This analytical methodology forms a framework for future analyses of a suite of 

traits, including composite traits, as more and better estimates of site-site genetic correlations 

are obtained from STBA trials. For industry to fully benefit from this framework, it is 

important that future trials are genetically well connected both to each other and to past trials 

already in STBA DATAPLAN®.  For all well-connected trials with genetic correlation 

estimates, more site-specific environmental data are also needed.  

G×E in RPBC trials 

For RPBC trials in New Zealand and NSW, Australia, previous analyses demonstrated 

existence of substantial additive GE for stem diameter measured at breast height (Dbh). 

Here, on a subset of 24 parents tested across 48 RPBC trials, Multiple Regression Tree 

(MRT) analyses identified mean annual precipitation and minimum temperature coldest 

month as the most likely key drivers of G×E in New Zealand. The analyses identified wet 

sites where certain genotypes performed exceptionally well and cold sites where the same 

genotypes performed below their overall average performance, but where others performed 

well.  
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As more data from genetically well-connected trials and more precise information on 

environmental variables (silviculture and in particular soils) becomes available it will enable 

RPBC to make better-informed decisions about development of new site-types for breeding. 

The information presented in this report will inform how genotypes may be allocated to 

specific sites, for deployment in the optimal environments to achieve stands of high 

productivity. For deployment purposes, using a technique such as MRT, it will be possible to 

create maps to select test sites representative of the target planting zone for progeny trials as 

well as match genotypes to target environments.  

Effects of climate change 

The future climate of radiata pine plantation areas will change relative to the climate during 

the time periods of existing trials. The climate change according to HadGEM2–ES (IPCC 

2013) model for the year 2050 will be significant both in Australia and New Zealand: an 

increase in mean annual temperature of 1.90 and 1.95 deg. C, and a decrease mean annual 

precipitation of 2% and 8%, respectively. Since the current range of climates at field test sites 

will often not be representative of the likely future climates in their plantation areas, newly-

established field trials will need to target the future climates. In this report we show how to 

determine where to establish new trials that will be representative of future climates. 
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General Introduction 

Genotype by environment interaction (G×E) often represents a significant proportion of the 

overall phenotypic variation between plants (Yan and Kang 2003). Importance of G×E in 

forest trees has been reviewed by White et al. (2007). When G×E is present, the performance 

of genotypes across a range of environments is considered ‘unstable’. This necessitates 

defining groups of environments with relatively stable performance (Matheson and Raymond 

1986). In other words, breeding and deployment regions are defined so that within these 

regions G×E is minimised.  

Dealing with the issue of G×E requires an estimation of its magnitude as well as identification 

of its causes. The magnitude of G×E could be quantified by the cross-environment genetic 

correlation, rGE, in which the same trait measured in two different environments is considered 

to be two different traits (Falconer and McKay 2006). The magnitude of G×E declines as rGE 

approaches unity and increases as rGE approaches and transgresses zero. The main approach to 

identification of causes of G×E has been to characterise test environments in terms of 

environmental variables (i.e. climate and soil) and identify the main environmental factors 

driving G×E. However, G×E is often not simply related to a single environmental variable, 

but rather a number of climatic or other site characteristics (e.g. Matheson and Cotterill 1990).   

Because of these complexities many tree improvement programmes are not generally able to 

completely resolve the issue of G×E beyond the level of identification of best provenances for 

larger geographic areas. However, benefits of genetic improvement can be fully realised only 

if both best provenances and improved genotypes are well matched to environments. Radiata 

pine (Pinus radiata D. Don), breeding populations in Australia and New Zealand are based on 

land races derived mainly from two native provenances (i.e. Monterey and Año Nuevo, 

respectively), and are now in advanced (i.e. fourth) breeding generation. Therefore 

provenance effects are probably not as important as for species with less advanced breeding 

programs. At the same time, radiata pine advanced generation breeding and deployment zones 

are not based on biological patterns of G×E, but rather on plantation inventory boundaries, 

which may be strongly defined by cadastral considerations. While adaptation of forests 

depends on the response of genotypes to future climate conditions, current breeding and 

deployment zones cannot be adapted (i.e., modified) to changing climate conditions (e.g. 

Schreiber et al. 2011). 

Previous research 

Provenance trials provide information about a species’ climatic adaptation that can be used to 

predict the productivity in new (i.e. exotic) environments. Burdon et al. (1997) investigated 

the relative performance of three mainland provenances of radiata pine (Año Nuevo, 

Monterey and Cambria) and three regional land-race stocks, 'Kaingaroa', 'Nelson' and 

'Southland', on different site categories.  The land-race stocks were included to provide New 

Zealand controls, these being predominantly from select-tree seed collections within 

unimproved stands and three NZ non-select controls (Kaingaroa, Nelson and Southland).  

Strong differences among provenances in their relative performance on different site 

categories were reported, suggesting provenance-by-site interactions.  Sites were grouped into 

five categories, representing infertile clays, coastal dunes, volcanic plateau, central and 

southern south island (Burdon et al. 1997). Susceptibility to Dothistroma needle blight may 
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have had a negative effect on performance of some provenances, as it has previously been 

shown for the ‘Cambria’ provenance (Gapare et al. 2011). 

Significant G×E among radiata pine families has been observed in several experiments in 

Australia. For example, G×E for growth and stem characteristics of radiata pine assessed at 

age 9 years across ten sites in southern Australia was reported by Wu and Matheson (2005). 

They showed that two high elevation sites in New South Wales contributed disproportionately 

to G×E variance compared with the other sites. In the same set of trials assessed at age 20 

years, G×E was found for diameter growth, but not for wood density (Gapare et al. 2010). In 

another set of eight trials in Australia (two trials were located in South Australia, two in 

Victoria, one in Western Australia, and three in Tasmania) there was also evidence of G×E 

for tree diameter and branching (Baltunis et al. 2010). Although these studies reported 

evidence of G×E, the authors never attempted to formally identify the causes of the observed 

G×E, because of the limited number of sites did not warrant such analysis.  

Raymond (2011) reported significant G×E at family level for diameter growth, with 

elevational differences between sites being a key driver of G×E in New South Wales.  A 

recent study by Gapare et al. (2012) confirmed those results and divided New South Wales 

sites into high-elevation high-rainfall and low-elevation low-rainfall groups. Ivković et al. 

(2014) used 20 genetically well-connected trials across southern Australia to obtain estimates 

of genetic correlations between performances at different trial sites and concluded that 

interaction at transcontinental scale can be correlated with the climatic variables, primarily 

rainfall and temperature, but may also be related to smaller scale environmental variation (i.e. 

soil and terrain variation). 

In New Zealand, significant family by environment interactions were observed in radiata pine 

between pumice and clay soil sites (Johnson and Burdon, 1990). In a progeny test of 25 

parents mated in a series of five, five-parent, disconnected diallels established on 11 sites 

chosen to represent all major site types for growing radiata pine in New Zealand, Carson 

(1991) found G×E to be significant for stem diameter (Dbh). However, minimal genetic gains 

were found with regionalisation. McDonald (2009) reported moderate to negative site-site 

genetic correlations (<0.60) for Dbh, indicating the presence of G×E, driven by extreme 

maximum temperatures and altitude (these two climatic variables proxies for moisture 

availability). Apiolaza (2011) reported moderate to high (0.46–0.96) genetic correlation 

estimates (many not significantly different from 1.0) indicating that there was little interaction 

for basic density.  

Most tree improvement programmes have not resolved the issue of G×E because of the lack 

of sufficiently genetically-connected trials and difficulty of interpreting G×E with respect to 

mappable geo-climatic variations. Radiata pine tree improvement programmes in Australia 

and New Zealand are among the most advanced in the world. Significant improvement has 

been made in growth, form and wood quality traits (Wu et al. 2007). However, current radiata 

pine breeding value prediction and deployment in Australia is based largely on the National 

Plantation Inventory (NPI) regions (Gavran and Parsons 2011), rather than on environmental 

drivers of G×E. In practice the large number of regions means that general performance 

breeding selections are made (except for Dothistroma susceptible sites), while deployment 

can use these regions more fully. Similarly, in New Zealand no regionalisation based on 

environmental drivers of G×E has yet been introduced. Therefore, current breeding and 

deployment regions cannot deliver optimal genetic gains across the whole radiata pine estate.  

This study was based on the most comprehensive, genetically-connected and well-distributed 

network of radiata pine genetic trials maintained in Australia by the Southern Tree Breeding 

Association (STBA) and in New Zealand by the Radiata Pine Breeding Company (RPBC). 

Based on data from the trials with common genetic material, estimates of site-site genetic 

correlations were obtained. The patterns among these correlations were modelled against 
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various environmental characteristics. The study was the largest effort to date to understand 

G×E and to obtain site classifications that account for a large proportion of G×E in Australia 

and New Zealand. Identification of the causal genotypic and environmental components that 

are driving G×E for radiata pine growth and form quality traits can be incorporated, along 

with bioeconomic selection indices, into breeding and deployment strategies for radiata pine.   

Moreover, since genotypes are selected based on a composite trait index value rather than 

individual trait values (either in an index or more arbitrary independent culling), it is 

important to investigate if there would be G×E interaction for the index values. Although 

there may not be G×E for individual traits, there still may be G×E for index value, due to 

different economic weights for traits in different areas. Namkoong (1984) showed that when 

an index has different relative economic weights for component traits in different 

environments, genetic entries may change rankings even with the same rankings for 

component traits. In other words, the relative sizes of trait economic weights can influence the 

size and the sign of difference between genotypes in index values at different sites. In 

addition, genetic variances may change between sites in relation to the site means, giving 

different effective index weights even when the absolute weights may be the same. Therefore, 

it is important to quantify, in absolute terms, the expected site means and variances for 

productivity, form, branching and wood quality traits. 

Objectives of the project  

The main aim of this project was to determine the underlying geo-climatic drivers of genotype 

by environment interaction (GE) across radiata pine planting environments and to define site 

types that would increase and come close to maximising genetic gain in productivity by 

matching genotypes with production environments. The outcomes of this project will 

facilitate optimal deployment of genetic stock to particular environments and the development 

of software tools for the deployment by STBA and RPBC.  

The specific objectives of the study were: 

 Estimate site-site genetic correlations and site-site differences in environmental (i.e. 

geo-climatic) variables 

 Identify GE patterns for growth, form, branching traits, and composite traits 

 Determine the underlying geo-climatic drivers of GE across planting environments in 

Australia and New Zealand 

 Define site types that maximise genetic gain by matching genotypes with production 

environments 

 Examine effects of climate change on breeding and deployment regions in Australia 

and New Zealand, and 

 Ensure adoption of results by radiata pine industry 
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GxE analyses of STBA Trials 

 Summary 

 This project has provided necessary information (e.g. inter-trial genetic correlations) 

for use in breeding value estimation by TREEPLAN® and in customised deployment 

tools such as SEEDPLAN®. The combination of optimal breeding and deployment of 

genetic stock to particular environments is likely to significantly improve radiata pine 

plantation productivity 

 New site types were defined by grouping trial sites into clusters based on genotype 

performance in different environments using ‘rgModel’. The first two most 

pronounced clusters were based on minimum temperature, representing Warm and 

Cool site types. The next cluster split Cool-Wet and Cool-Dry site types based on 

rainfall variables and further improved the model fit. 

 As a result of this project, current breeding and deployment regions will be redefined 

in Australia. It is expected that the number of breeding regions (i.e. site types) will be 

reduced and this could significantly simplify management of the national breeding 

programme 

 Genetic gains in the breeding and deployment programs will come from accounting 

for G×E variance, and a greater precision of selection due to larger population sizes 

for within-region selection hence greater selection pressure 

 The framework (i.e. rgModel) has been established for future work on G×E in a suite 

of traits including composite traits in STBA trials, when more estimates of site-site 

genetic correlations are obtained 
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Introduction 

This component study of the project was based on a comprehensive, genetically well-

connected and well-distributed set of genetic trials in Australia. The study used information 

from all radiata pine progeny trials maintained by the Southern Tree Breeding Association 

(STBA). Based on data from those trials with common genetic material, estimates of site-site 

genetic correlations were obtained. The patterns among these correlations were modelled 

against various environmental characteristics. The study is the largest effort so far to 

understand G×E in radiata pine in Australia and to obtain site classifications that will account 

for a large proportion of G×E. The general aim is to facilitate optimal deployment of genetic 

stock to particular environments and development of software tools for deployment by the 

STBA. The specific objectives of the study were: 

 To estimate genetic parameters such as variances (i.e. additive and dominance), 

heritability, and genetic correlations between trials for growth, form, branching and 

wood properties in the STBA trials 

 To examine patterns of GxE between trial locations in southern Australia 

 To identify potential geo-climatic drivers of GxE,  and 

 Redefine breeding and deployment zones 

Methodology  

Environmental variables 

Climate, geological, and soil information for more than 300 STBA trial locations were 

obtained for the analyses. Daily climate data for the selected locations within Australia were 

extracted from the SILO enhanced Climate Database 

(http://www.longpaddock.qld.gov.au/silo). Daily climate data constructed using observations 

from 4600 locations across Australia for rainfall, maximum and minimum temperatures, 

evaporation and solar radiation based on spatial interpolation algorithms were available. The 

interpolation routines allow estimation of daily climate data for locations at distance from 

existing meteorological recording stations. The climate data sequence from planting to trial 

assessment was obtained, for each trial. The following variables were derived based on SILO 

data: 

 Mean Annual Temperature (MT) 

 Mean Temperature of Driest Quarter (MTDQ) 

 Mean Temperature of Growing Season (MTGS) 

 Mean Annual Max Temperature (MMXT) 

 Max Temperature of Driest Month (MXTDM) 

 Mean Annual Min Temperature (MMNT) 

 Annual Precipitation (P) 

 Precipitation of Driest Quarter (PDQ) 

 Precipitation in Growing Season (PGS) 

 Evaporation (TE) 

 Potential Evapo-transpiration (PET) 

 Mean Annual Solar Radiation (MRD) 

 Vapour Pressure (VP) 

 Relative Humidity Highest Temperature (RHHT) 

 Relative Humidity Lowest Temperature (RHLT) 

Growing season was defined to be from September to April based on McMurtie et al. 1994. A 

simple monthly aridity index (AIX) was calculated as a ratio of monthly mean pan 

http://www.longpaddock.qld.gov.au/silo
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evaporation rate to the total monthly rainfall. Monthly minimum AIX value for the most arid 

quarter was used to rank the sites in terms of aridity (Eamus et al. 2000). Aridity indices can 

also be based on precipitation and potential evapo-transpiration (PET) and are related to water 

balance.  

Broad-scale geological (i.e. surface geology) data were obtained from Geoscience Australia 

(http://mapconnect.ga.gov.au/MapConnect/Geology). The Surface Geology of Australia GIS  

layer/surface? is a seamless national coverage of outcrop and surface geology. All map 

polygons have attributed geological unit name, age, and lithological composition according to 

the Australian Stratigraphic Units Database (Raymond and Retter 2010). Parent rock codes 

were categorised using a technical classification system into 11 categories (Figure 1). This 

system was developed to group forest sites according to expected volume productivity 

(Turner et al. 1990, 2001). In addition, a high-resolution weathering intensity index for the 

Australian continent, based on airborne gamma-ray spectrometry and digital terrain analysis 

was also obtained (Wilford 2012).  

The Australian Soil Resource Information System (ASRIS, www.asris.csiro.au) database was 

used to obtain information on soil and land resources in a consistent format across southern 

Australia. ASRIS provides information at seven different scales. The first three scales provide 

general descriptions of soil types, landforms and regolith across the continent. The remaining 

four scales provide more detailed information on regions where mapping is complete. The 

information was obtained on soil depth, water storage, permeability, fertility, carbon content 

and erodibility. Most soil information is recorded at five depths. The lowest scale consists of a 

soil-profile database with fully characterised sites that are known to be representative of 

significant areas and environments.  

Soil data were also available from forestry organisations and companies. For example, in the 

Green Triangle region of South Australia, ForestrySA maintains a GIS-based soil database 

developed over the last 40 years. The ForestrySA GIS soils and site productivity geographic 

data base is a composite of the Stephens’ (1941) soil survey (CSIRO Bulletin No 142) and 

soil surveys conducted by the ForestrySA Research Section. Between 2007 and 2010, almost 

the entire ForestrySA land base in the Green Triangle Region has been field-checked for soil 

identification and boundaries to confirm the validity of both the original Stephens soil survey 

and subsequent ForestrySA soil surveys. Similarly Timberlands Pacific, also maintains a GIS 

database of soil data in northern Tasmania. 

http://mapconnect.ga.gov.au/MapConnect/Geology
http://www.asris.csiro.au/
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Figure 1. Parent rock codes for >200 trials from STBA DATAPLAN® 

 

Database of genetic correlations 

The following procedure was used when working with the progeny test data imported into 

DATAPLAN®: PPGVal® (unpublished software by G. Dutkowski) was used for data 

validation. PPGVal is an R language script designed to graphically validate data downloaded 

from DATAPLAN® (or before import into DATAPLAN®). Data validation before analysis 

is important because it aids the analyst in the data interpretation. Invalid data are given a 

reject flag (_reject field = 1) so that the data is not used for model development, variance and 

correlation estimation, or subsequently for TREEPLAN® breeding value estimation. 

TrialMAPPER® and PPGMap® programs can also be used for further validation. 

Multiple stems cannot be included in spatial analyses, and for a tree with n stems the 

“equivalent diameter” defined as the quadratic mean of the measured stems calculated as: 

                                   

To prepare data for spatial analysis using auto-regressive error structures all trees must be 

mapped to a, rectangular xy grid. The program PPGBlok® used row and column numbers for 

each tree to create a complete rectangular grid filled with missing values where there are 

missing trees.  

For each of the trials, each trait was first analysed using a uni-variate, single site model in 

order to estimate the genetic variance components, individual-tree narrow-sense heritability 

and standard errors associated with each trait. A reduced (i.e. parental) linear mixed-effects 

model was fitted using ASReml software (Gilmour et al. 2009): 

euZuZbXy fd   

where y is a vector of observations, b is a vector of fixed effects (i.e. site mean and 

replication), ud is a vector of random incomplete block and/or plot design features, uf is a 
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vector of random family effects (i.e. full-sib family), and e is a vector of random residual 

terms. X and Z are known incidence matrices relating the observations in y to effects in b, and 

p, f, respectively. 

Spatial data analyses were performed using a two-dimensional separable autoregressive 

model fitted using ASReml® (Gilmour et al. 2009). The spatial method partitioned the 

residual into an independent component () and a two-dimensional spatially auto-correlated 

component () 

The raw data was adjusted for surface sum (the sum of design, spatial and extraneous terms) 

using PPGMap® (Greg Dutkowski, unpublished software 2012), before further analyses. 

After the adjustment multi-site data was combined before proceeding with bi- or multi-variate 

or factor analyses (Cullis et al. 2014). In bi-variate case the following model was used: 

iifipiii efZpZbXy
ii

  

where, iy  is the vector of observations that is indexed (i) by the two ‘traits’ (i.e. parent 

performance of two different sites) 




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ib  is the vector of fixed effects representing sites (i.e. field trials) and replications within the 

trials and iX  is the incidence matrix relating the iy  observations to the ib  fixed effects; 
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heterogeneous across traits, 
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iE is the error variance for each site and
 iI  is 

the identity matrix of dimension equal to the number of observations of each trait, 0 indicates 

no between-site error co-variance. 

For all models, Restricted Maximum Likelihood (REML) - derived variance and covariance 

estimates were constrained to fall within the theoretically possible range; variance 

components estimates were constrained to be greater than zero while covariance estimates 

were constrained so that correlation estimates ranged from -1 to +1. Two separate analyses 

were used to test for the significance of the genetic correlation between sites, where the 

difference between the log-likelihood estimates of a (full) model and a (reduced) model that 

fixed the trial-trial correlation to unity was used with a degree-of-freedom chi-squared test to 

estimate p-values (Dutkowski et al. 2006). The PPG ASRTools® suite of programs was also 

used to streamline the processing of ASReml output files and to reformat them for further 

analyses and reporting. 
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Modeling genetic correlations: rgModel 

The rgModel is an R (R Development Core Team 2014) custom-made script that was used to 

model the database of correlations. The model of the genetic correlations gave estimates 

according to the formula 

Est = rt:t*ra:a*re:e 

where:  

rt:t is the correlation between traits (t), when traits are used to allow for GxE by creating more 

than one trait, where each trait is the performance on different site types. The correlation 

between a trait t and itself is set to be 1 for type A (trait:trait) correlations, and for type B 

(site:site) can be set to 1, or estimated to give an indication of residual G×E: the correlation 

between sites within a site type as an expression of unexplained G×E. 

ra:a is the age:age correlation based on parameters of the Lambeth’s (1980) correlation model. 

All ra:a are constrained to be the same value for all traits (t). 

re:e is the inter-environmental correlation based on an AR1 model for environmental 

parameter e (where present), where the values for e can be scaled so that the differences range 

between 0 and 10. All re:e are constrained to be the same value for all traits (t) (although this 

restriction can be released). 

Estimates of each of the parameters were found by minimising the objective function: 

Wt ESS = Sum(Wa*Wuse/Wse*WnPar/WnUse(Est – ra)
2 

+ 

Wb*Wuse/Wse*WnPar/WnUse(Est – rb)
2
+WeE) 

where: 

Wt ESS is the weighted error sum of squares 

Wa is the weight given to type A correlations. Set as 1. 

Wb is the weight given to type B correlations. Set as 1. 

Wuse is a flag (0/1) given by the analyst to identify whether specific type A and B estimate 

should be used, to avoid values in the database which are thought to be problematic. 

Wse is the weight given to standard error of each of the type A and B estimate, to avoid giving 

undue weight to estimates with low standard errors.  This gives more weight to values closer 

to 1, as values closer to 1 have lower SEs, and to a degree counter-acts the lack of estimates 

above 1. A maximum value of 10 was used for this weight to avoid giving correlations close 

to 1 a very high weight. Bounded estimates were given this value as well. 

WnPar is the optional weight given to each of the type a and b estimates depending on the 

number of parents (type A) or parents in common (type B), to give higher weights to 

estimates that are based on more parents. Scaled as sqrt(nPar)/100. 

WnUse is the weight given to number of uses of a trial for each of the type A and B estimates, 

to avoid giving undue weight to trials from which many estimates were derived. Scaled as 

sqrt(nUse)/100 . 

Est is the estimate from the model, as above. 

r is the correlation estimate from the database for each of the type a and b correlations. 

We is the weight given to the last eigen value of the rt:t matrix to derive estimates for trait 

pairs that have no or little data to support them. Set as zero apart from when trying to estimate 

correlations for the current site type model when not all site type correlations have correlation 

data to support them. 
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e is the last eigen value of the rt:t matrix. 

Constraints and starting values can be added to the models. The parameters in any model are 

estimated by testing each possible parameter value above and below the starting or previous 

value, and then picking the change that best lowers the model weighted error sum of squares 

of all the parameters tried. This process is then repeated until no model improvement takes 

place, whereupon the sizes of the steps tested are reduced, and the process is repeated. After a 

defined set of reductions (10) with no further improvement in model fit, the estimation 

process stops and the final parameter values are presented. The progress of the modelling 

could be reviewed using the rgModel_PlotGetBestValues.r script and the resulting plot 

(Figure 2). The estimates can be checked by viewing the estimated correlations against the 

correlations in the database, using the script rgModelGraph.r. 

 

 

  

Figure 2. The progress of the estimation procedure, with the tested values shown on the right 

for each step: For each step of the loop, values above or below the starting or previous value 

are tested to see which best lowers weighted error sum of squares (black line), and the best 

change is set as the starting value for the next loop. Once no further reduction can be made, 

the size of the step above and below is halved and the process repeated 10 times until no 

further improvement in model fit is possible. 

The base model was one where there was only a single trait (site type) for Dbh, Straightness 

or Branch Size. This was tried without and with residual G×E – allowing correlations between 

sites in a site type to be less than 1. Comparison of models proceeded only after initial 

estimation of the coefficient of the Lambeth age-ratio correlation model from the typeA 

correlations. This coefficient was then fixed in all subsequent models. The second baseline 

was to define traits by splitting into site types based on the current site classification used in 

TREEPLAN® of National Plantation Inventory regions, plus a special site type for trial that 

had been infected with Dothistroma pinii.  

From the single site type baseline, each of the ordinal environmental variables was tested to 

see which gave the best Wt ESS (weighted error sum of squares) as an AR1 model. Splitting 

the sites into different sites type proceeded stepwise by sequentially splitting the sites into 

classes on the basis of the available ordinal and (non-ordinal) categorical environmental 

variables. For ordinal variables all possible values defined in the data were used to 

sequentially split out a new trait from the existing traits (initially all trials), and seeing which 

split value in which existing trait gave the lowest Wt ESS (Figure 3&4). The best splits were 

compared with those same environmental variables from the AR1 modelling. For (non-
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ordinal) categorical variables, each level (and unique combination of levels) was used to 

define a new trait and that combination which gave the lowest Wt ESS was chosen (Figure 5 

and 6). All ordinal and categorical variables were thus compared and the one that gave the 

lowest Wt ESS and the split value or level combination was used. The process was repeated 

after the first split, with each ordinal and/or categorical variables screen for each of the 

existing classes. 

 

 
Figure 3. Splitting out a new class based on ordinal variable Tmin_oct from the initial class 

called “Low” 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Splitting out a new site type based on Temperature Seasonality (Ts) after an initial 

split into Warm and Cool based on Tmin_oct. 
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Figure 5. Splitting out a new class (state) based on a single class from a categorical variable 

from the initial class called “Main” 

 

Figure 6. Splitting out a new class (state) after an initial split into Warm and Cool based on 

Tmin_oct. 

To screen for outlier trials, all groups of trials from 1 to 3 in size were also tested as if they 

were categorical variables. When new traits are based on outlier trials with no clear 

environmental link between them, then it is likely that further splitting into site types is not 

warranted. Similarly no further splitting is warranted when the reduction in Wt ESS is small, 

or the outliers give a better model fit. 

 

Breeding Value Prediction  

For the site classification models tried, breeding values were predicted for Dbh data using 

TREEPLAN® (Dutkowski et al. 2014) and the identified site types. The estimated breeding 

values for each region/site type were compared in terms of variance of breeding values and 

correlation with a priori site types. The same methodology and rgModel have been applied to 

analyses of stem diameter (Dbh), stem straightness, and branch size (see Appendix 1 for 

analyses of latter two traits).  

Results 

Database of genetic correlations 

A database of genetic correlations was developed for this project and currently has more than 

800 site-site and more than 700 trait-trait genetic correlations (between diameter at breast 

height, branch size, branch angle, stem straightness, wood density, wood acoustic velocity, 

and deformity). As more data becomes available, more correlation estimates will be included 
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into the database of genetic correlations. Only additive genetic correlations for Dbh are 

presented here to demonstrate the proof of concept, but results for branch size and stem 

straightness can be found in Appendix 1. The estimates of genetic correlations were much 

more variable for pairs of trials with fewer than 100 parents in common and standard errors 

were also variable for estimates from less than 100 parents as demonstrated in Figure 7. 

  

Figure 7. Site-site genetic correlations for Dbh and their standard errors (SE) (with 95%CI 

and smoothed loess trend) on the left. The estimates were much more variable for low 

numbers of parents in common and the smoothed was lower, presumably due to the lack of 

correlations above one.  The SE of the estimates decreased for estimates close to 1, but was 

also lower for pairs of trials with more parents in common.  

Age-age correlations 

Estimation of the “age-age” parameter or “Lambeth coefficient” (Lambeth 1980) was initially 

done only from the trait-trait correlations and this gave a value of 0.193. Using the site-site 

genetic correlations led to an increase in the Lambeth coefficients (i.e. lower correlations) 

(Figure 8), especially where no G×E was allowed. As this change in Lambeth coefficients 

could be due to confounding of the age-age correlations with inter-site correlations less than 

1, and the Lambeth coefficient of 0.193 was used for all Dbh modelling. Allowing for G×E 

gave a similar Lambeth coefficient to the one obtained using only trait-trait correlations. 

 

 

 
Figure 8. Lambeth Dbh age ratio model parameters and trends for trait-trait correlations (left), 

site-site correlations with G×E (centre) and equal weighting on both correlations (right).  
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Validation of the predictions from the fixed Lambeth model showed that the age:age 

correlations were quite well predicted. There is one low outlier, but this has been given low 

weight in the model. 

 

Figure 9. Diagnostic graph from single site Dbh base model with fixed Lambeth coefficient. 

The estimates show their 95% Confidence Interval (CI) as a vertical line. The diagonal line 

indicates where the model and the data are the same. Red symbols indicate that the prediction 

is outside the 95%CI. The horizontal lines indicate the relative weight used. 

Current site classification 

All the trials in STBA’s DATAPLAN® are currently classified into site classes based on the 

National Plantation Inventory regions: Green Triangle (GTR), Central Victoria (CVIC), 

Central Gippsland (CGIPP), Tasmania (TAS), Central Tablelands (CTAB), Southern 

Tablelands (STAB), Northern Tablelands (NTAB), Murray Valley (MV) and Western 

Australia (WA). A “DOTHI” site type for trials with Dothistroma infection data (i.e. 

NPI_DOTHI). DOTHI trials were in NE Victoria and one trial in northern NSW (Figure 10).  
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Figure 10. All DATAPLAN® trial locations classified by NPI region and DOTHI                                                                           

site type.  

The models showed that the current a priori NPI_DOTHI regions and site classification and 

correlations were substantially better in terms of model fit (i.e. lower weighted error sum of 

squares - Wt ESS) than no classification, but worse than allowing for residual G×E with the 

No_G×E model. Within the a priori structure, allowing for residual G×E only marginally 

improved model fit. Estimating the correlations with the NPI_DOTHI structure substantially 

improved model fit. However, constraining the inter-trait correlation matrix to be positive 

definite (NPI_DOTHI_PD) led to a poorer model fit (Table 1).  
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Table 1. Results from different site classification models. 

Model Residual GxE Wt ESS Residual ra 

Baseline: No GxE No 931.96 1 

 Yes 479.90 0.66 

Baseline: NPI DOTHI a priori No 531.22 1 

 Yes 480.47 0.36-0.95 

Baseline: NPI DOTHI estimated No 367.33 1 

 Yes 316.59 0.36-0.95 

Baseline: NPI DOTHI PD No 468.68 1 

 Yes 417.94 0.36-0.95 

Split 1 Mtwetq 8.985 No 494.89 1 

 Yes 364.00 
Cool 0.58 
Warm 0.85 

AR Rain_oct No 430.89 1 

Split 1 Rain Oct 3 classes No 513.86 1 

 Yes 384.23 0.22-0.84 

Split 2 Rain_march 68 in Cool No 394.68 1 

 Yes 315.78 
Cool_Dry 0.75 
Cool_Moist 0.18 
Warm 0.85 

Split 3 Temperature Annual Range 
in Cool_Dry 

No 354.46 1 

 Yes 292.09 

Cool_Dry_Uniform 0.86 
Cool_Dry_Variable NA 
Cool_Moist_0.18       
 Warm 0.85 

 

Allowing for residual G×E indicated high unexplained G×E in Tasmania, however the 

number of trials in any of the site types were generally low (<6). Allowing for residual G×E 

within this structure gave a better fit, mostly due to the low between-site correlations in 

Tasmania (0.36-5 trials), CVIC(0.48- 3 trials) and MTAB (0.68 - 2 trials). GTR had low G×E 

(0.87 – 9 trials) (Figure 11). Estimating the correlations between these classes substantially 

improved model fit, however there were some site type pairs that could not have their 

correlations estimated due to a lack of pairs of trials in the different site types. The matrix is 

not positive definite (Eigen < 0) and thus cannot be used for BV prediction. 
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Figure 11. Genetic correlations for Dbh in NPI_DOTHI regions with G×E Model.  

 

Constraining the matrix to be positive definite by giving weight to the last eigen value did 

achieve a positive definite correlation matrix. All correlations are reduced, some substantially. 

Clustering based on the resulting correlation matrix (Figure 12) showed geographically-

sensible main groups for the southern mainland (CGIPP, GTR, CVIC) with TAS as an 

outgroup, and a southern Great Dividing Range group of MVAL and STAB, with LOFTY 

also as an outgroup. DOTHI and WA were outgroups relative to all of these and were grouped 

with CTAB and NTAB respectively. The main groups could be used to define a smaller 

number of site types, or the correlations between them used to improve breeding value 

prediction within the current site type definitions. 

 

 

 
 

Figure 12. Dbh_NPI+DOTHI hierarchical clustering based on positive definite matrix of 

inter-site genetic correlations.  
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Site type classification based on environmental variables 

The best initial split was based on mean temperature of the wettest quarter (Mtwetq). The 

correlation between high and low values for this temperature variable after splitting at 8.9 

degrees (i.e. between Cool and Warm site types) was quite low, at r=0.48. However, within 

Cool site type, the correlations were much more dispersed, with values from the minimum 

allowed value of -0.5 to 1.0. There was a good scope for further splitting the Cool sites, as 

indicated by the high residual G×E for such site (Figure 13). 

 

 
Figure 13. Additive genetic correlations between Dbh in Warm and Cool site types estimates 

after splitting on Mtwetq as the primary split.  

The first split separated out south-eastern highland areas and most of Tasmania from WA, 

GTR, lowland parts of western Victoria and Gipppsland, warm sites in NE Tasmania and 

northern NSW. The AR model was better than splitting the trials into the two groups (as 

gauged by lower Wt ESS) with Rain_Oct the most informative variable. A number of other 

rainfall and moisture index variables had similar fit (presumably because they are correlated 

to rainfall) (Figure 14). 

After splitting on Mtwetq, the AR model indicated that rainfall in October was the best 

predictor with a variety of other moisture variables also effective predictors. Splitting the site 

types indicated that rainfall in March was the best for the second split, better than the AR 

model, although the split only identified 4 trials in the new group at the extreme end of 

Rain_Mar. This variable splits out high rainfall areas in the Otway and Stzelecki ranges, parts 

of the Great Dividing Range, and Tasmania.  

Other moisture traits all gave similar but slightly worse model fit, all within the cool sites, all 

giving more or less the same areas as a new site type. Three trial outliers gave the best model 

fit, isolating BR9610, BR9710 and Q14114, indicating that these trials have high leverage and 

are influencing the results for moisture as all have March rainfall >68mm. The outlier trials 

are however from diverse parts of the range (Figure 14). 
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Figure 14. Map of Rainfall March within Cool sites for Mtwetq (all DATAPLAN® trials, but 

with outlier trials identified). DB23R 

The correlations between classes were low (0.2-0.3), but they were moderate between Warm 

and Cool_Dry (0.5) site types. Allowing for residual G×E showed relatively high within site 

type correlations (>0.75) for most site types, except for the new Cool_Moist class, which had 

only 4 trials, and only 2 site-site correlations, with an average correlation of 0.18 (Figure 15). 

 

 

Figure 15.  Genetic correlation coefficients ×100 for the two best splits based on 

environmental variables. 
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The splits for stem straightness (Stemstr) and branch size (Brs) are described in the 

(Appendix 1). For Stemst the best split was based on environmental variable Rain September, 

with NFI regions CTAB, DOTHI, MVAL, NTAB next best. For branch size (Brs) the best 

autoregressive (AR) model was based on annual precipitation (Ap). The best split based on 

environmental variable was equally on identifying outlying trials BR9615, BR9710, and 

RAD142 and environmental variable Ap. A number of other rainfall variables, and parent 

rock code were not far behind as predictor variables. The correlation between Dry and Moist 

site types for Brs was only 0.48.  

TREEPLAN® runs  

TREEPLAN® runs were defined that matched with the correlation models that were tested. 

The runs were based on just the Dbh data which consisted of 186 trial trait measurements in 3 

age classes (0-5, 6-12 and 13-14 years) from 154 trials spread across southern Australia. Only 

additive effects are included, and the data were scaled so that the additive variance of each of 

the traits was one, with each trial being given the heritability estimated from the site by 

allowing each trait to have a different error variance. 

The BV variances (i.e. variances among breeding values) at each age were quite low (0.37-

0.45) for the baseline No_GxE model. The BV variances were generally smaller for the model 

using NPI and Dothistroma regions with a priori (i.e. assumed) inter-region correlations 

(NPI_DOTHI_Apriori), although in some instances they were higher, with a general weak 

trend of increasing variance with the number of trials. GTR forms part of a cluster of NPI 

regions which now have a higher correlation with each other, than previously, so this may 

account for that, however the BV variance for the other regions (CGIPP and CVIC) have not 

changed as much. TAS and MVAL had generally lower BV variances with the PD model as 

these generally had lower correlations in the PD model than under the a priori model, 

suggesting inflation of the BVs (and thus gains) in these regions (Figure 16). 

 
Figure 16. Comparison of BV variance from TREEPLAN® runs for current NPI and 

Dothistroma regions for positive definite (PD) and A priori (i.e. currently assumed) 

correlation matrix model (points with same label represent different age of measurement). 
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The correlations of the BVs between the two runs were generally high (>0.95), however they 

were low for the DOTHI, LOFTY, and WA which have lower correlations with the PD set 

than the a priori ones. Therefore the newly estimated correlations did make a difference. For 

the model based on Tmin_Oct, the BV variances for the Cool sites were much reduced (about 

0.25), in line with the relatively high residual GxE in that site type. For the Warm sites the 

variance increased to 0.53 for the youngest age class, and was about the same for the later age 

classes.  

Discussion 

G×E analyses of STBA trials 

There appeared to be a positive link between the number of parents in common between trials 

and genetic correlations, which was found in other studies (e.g., Apiolaza 2012). For Pinus 

radiata in Australia G×E was modelled using rgModel based on a database of genetic 

correlations, weighted by t values (i.e the ratio of estimate to its prediction error). Correlation 

estimates between current site types used in TREEPLAN® were updated based on the 

database (Dutkowski and Ivković 2014). Estimating the correlations between NPI regions 

substantially improved model fit, relative to current a priori NPI_DOTHI regions and site 

classification. However there were some site type pairs that could not have their correlations 

estimated due to a lack of pairs of trials in the different site types. 

To identify new site types based on environmental variables rgModel parameters were 

estimated by minimising the weighted error sum of squares of each model using the genetic 

correlations in the database. The first split of site types was based on mean temperature in 

wettest quarter (Mtwetq 9.0°C). The second split was on March rainfall (Rain_march 68 mm), 

with a variety of other wetness variables being very similar. Only 4 trials were in a new class 

identified and outlier analysis indicated that only a few cool site trials were driving this 

difference. However, cool sites are not the primary focus of the STBA’s breeding program.  

This division based on environmental variables confirms drivers of G×E identified by other 

methods in the previous work in Australia (e.g. Baltunis et al. 2010, Raymond 2011, Gapare 

et al. 2012, Ivković et al. 2014). However, the smaller number of trials used in those studies 

gave variable results depending on which trials were used and what environmental variables 

differed between them. In addition, the historic separation of state breeding programs, which 

led to a lower number of genotypes in common across state boundaries for most trials, may 

have caused bias in the correlation estimates. 

Breeding value (BV) prediction using TREEPLAN® showed that changing the correlations 

between currently used NPI regions to new values based on the database of genetic 

correlations either increased or decreased the variance among BVs. For site types which 

became more closely correlated than previously determined, the variance among BVs 

increased, which is desirable as it gives more resolution for selection. The correlation between 

BVs obtained on the basis of current and updated inter-NPI region correlations was generally 

high (>0.95), but for those regions for which the genetic correlations with other regions were 

now smaller, the BV correlations were lower.  

Breeding value prediction using TREEPLAN® also showed that compared to a baseline 

model of only a single site type, splitting sites into two new site-types, cool and warm, led to 

reduced BV variance for cool site type, presumably due to high residual G×E. There was an 

increase in BV variance for the youngest age class on warm sites, however this age class had 

only a relatively few trials. While it had been expected that the variance of BVs would 

increase for models where sites were better allocated to site types, and thus conflicting 
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performance was reduced, this was not possible to clearly see in the current data.  The effect 

of genetic group variance and the amount of data are probably confounded with any such 

effects. However, this does not diminish the clear benefits of accounting for inter-region and 

site-type G×E based on results of the project. 

Site-types determined for stem straightness (Stemstr) and branch size (Brs) are described in 

the (Appendix 1). To account for G×E in composite traits (i.e. selection index) absolute 

values of component (i.e. breeding-objective) traits are necessary for application in 

deployment tools such as SEEDPLAN®. At the same time the relationship between mean and 

variance for breeding-objective traits is important for scaling the breeding values of entries in 

TREEPLAN®. The results based on resource evaluation studies in Green Triangle Region, 

Western Australia (WA) and Tasmania (TAS) on the relationships between mean and 

variance were established are described in the Appendix 2. 

Conclusion 

As a result of this project STBA has moved from applying a priori (i.e. assumed) inter - NPI 

region genetic correlations in TREEPLAN®, to applying the best available empirical 

estimates. In addition, the results of current modelling and classification of trials into Warm 

and Cool site types, and Wet and Dry within Cool site types are currently being tested for 

application by the STBA’s breeding and deployment programme. While it had been expected 
that the variance of BVs would increase for models where sites were better allocated to site 

types, and thus conflicting performance was reduced, this was not possible to clearly see in 

the current data. The effect of genetic groups (i.e. land subrace) variance and the amount of 

data are confounded with any such effects.  

Nevertheless, the structures and approaches have been established for both the correlation 

modelling and the prediction of breeding values once the best models are identified. This will 

provide a platform for future work, when more estimates become available for inclusion in 

the database of genetic correlations. Additional genetic correlations will soon become 

available from WA trial sites, which will provide more information on G×E between warm 

sites and that will help to better identify causes of G×E in such areas. Breeding and optimal 

deployment of genetic stock to particular environments based on this knowledge is likely to 

significantly improve radiata pine plantation productivity. 

Recommendations 

1. A good framework has been established (i.e. rgModel) that should be used in future 

work on G×E in STBA or any other radiata pine network of trials  

2. Genetic parameters (i.e. site-site, trait-trait, and age-age genetic correlations) should 

be deposited in a joint database of genetic parameters for radiata pine. 

3. The work on G×E for GCA needs to be extended to SCA. 

4. Changes in selection criteria (i.e. site type classifications) for TREEPLAN® 

evaluation should be further examined and implications of the results for 

SEEDPLAN® and site matching 

5. Different weightings of the site-site genetic correlation estimates may also need to be 

investigated in future TREEPLAN® runs. 

6. More estimates of site-site genetic correlations are needed and for that more trials are 

needed. Our analyses suggested that up to 100 parents in common between trials are 

desirable to get reliable bi-variate estimates of site-site genetic correlations. 
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7. For industry to fully benefit from this framework, it is important that new trials are 

genetically well connected to each other and to trials already in STBA DATAPLAN®.  

8. For all well connected trials with genetic correlation estimates, more site-specific 

environmental data are also needed. Collection of fine-scale environmental data, 

including soil chemical, textural and depth information, for each trial is recommended.  

9. Protocols should also be established so that the traits other than growth can be 

predicted for different deployment site types. This will help deployment based on 

composite index traits in deployment tools. 
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GxE analyses of RPBC trials 

Summary 

 We used one set of provenance and one set of progeny trials to predict relationships 

between genotype performance and environmental variables in order to determine 

possible drivers of genotype by environment interaction (G×E) in radiata pine grown 

in New Zealand.   

 For provenance trials, based on analyses using multivariate regression trees (MRT), 

infertile clays accounted for 21% of variance and mean daily minimum temperature of 

the coldest month accounted for 13% of variance.   

 For the progeny trials high rainfall and cold temperature are the likely drivers of G×E 

in New Zealand and explained 25% of G×E variance 

 For deployment purposes, it is possible to group the sites into high rainfall sites (where 

most genotypes performed better) and cold sites, where specific parents need to be 

picked for deployment.   

 The results from analyses such as MRT can be applied to create maps for use by 

breeders and forest managers to select test sites for trials as well as to match and 

deploy genotypes to target environments. 
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Inroduction 

Burdon et al. (1997) investigated the relative performance of three mainland provenances of 

radiata pine (Año Nuevo, Monterey and Cambria) and three regional land-race stocks 

(Kaingaroa, Nelson and Southland), on different site categories. In this study, we used Dbh 

data from the same 21 radiata pine provenance trials planted across New Zealand in 1980, 

which is the subject of the publication by Burdon et al. (1997). We tested whether multiple 

regression tree (MRT) analysis could replicate the results obtained in the original study. 

Furthermore, we extended the analyses by combining different climate and soil attributes in 

order to determine the probable causes of G×E in diameter growth in New Zealand. 

Second, we also applied the MRT analysis to a large data set from 48 radiata pine progeny 

trials, established by the Radiata Pine Breeding Company (RPBC) that are genetically 

connected by 28 common parents that are currently widely deployed in New Zealand. The 

ultimate objective was to predict relationships between parents and environmental variables in 

order to determine possible drivers of G×E. The identification of climatic and or 

environmental variables as probable causes allows us to extrapolate the performance on test 

sites to sites with similar characteristics and creation of site-type maps. A key question was 

also whether specific genotypes are needed for distinct environments or whether there are 

genotypes that perform uniformly well across all environments. 

Methods 

Environmental variables  

Environmental variables that describe various aspects of New Zealand’s climate, landforms 
and soils, were obtained from Land and Environment New Zealand (LENZ) 

(http://lris.scinfo.org.nz/layers) for all 112 RPBC test sites.  Daily climate observations were 

obtained from the Virtual Climate Station Network (VCSN) from NIWA (National Institute 

of Water and Atmospheric Research Ltd.). The resolution was a 0.05° latitude/longitude grid, 

covering all of New Zealand. A thin-plate smoothing spline model based on latitude, 

longitude and elevation was used for spatial interpolation (Tait et al. 2006).  

Comprehensive quantitative soil information was extracted from the S-map online database 

(http://www.landcareresearch.co.nz/databases/nzlri.asp). Depth to slowly permeable horizon, 

drainage, macroporosity at depth and at the surface, maximum salinity, minimum pH, 

phosphate retention, total carbon, potential rooting depth and topsoil gravel content were 

extracted from the National Soils Database and the New Zealand Fundamental Soil Layers 

(Wilde et al. 2000).   

The climate variables used in the analyses included mean annual precipitation, temperature, 

radiation, and moisture indices as annual averages, max or min, or averages for different 

periods of the year, such as the warmest quarter or the wettest quarter. We selected climate 

and soil variables that were expected to have an effect, which can be measured easily and 

interpreted in a biologically meaningful way. In addition, it was desirable that the input 

variables were orthogonal with respect to each other.  However, some degree of confounding 

or non-orthogonality was inevitable as the climatic data were predicted from the site climate 

location data, so factors such as radiation and temperature variables were interrelated. 

Breeding values and genetic clustering  

The availability of genetically-related RPBC trials planted across a wide range of 

environments provided genetic links and allowed estimation of across-site variance and 

covariance components. Unstructured site by genotype variance covariance matrices (i.e. a 

http://lris.scinfo.org.nz/layers
http://www.landcareresearch.co.nz/databases/nzlri.asp
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matrix allowing estimation of all variance and co-variance parameters among sites) can 

account for both scale and rank interactions, but with many environments the estimation of an 

unstructured covariance matrix is not usually feasible (Smith et al. 2001).  A reduced 

(parental) mixed model analysis with a factor analytic (FA) variance structure for the G×E 

effects and separate variance for the errors for each trial were applied to RPBC trial data by 

Cullis et al. (2014).  While the FA model is computationally less demanding, because fewer 

parameters are estimated, it also allows simultaneous estimation of all variance and 

covariance parameters. For reduced data dimensionality the FAk form uses a sparse 

formulation that requires k levels to be inserted into the mixed model equations for the k 

factors. We used breeding values estimated by Cullis and Jefferson (2012) for further analyses 

and clustering involving environmental described in the following section.  

Clustering using multiple regression tree analyses (MRT) 

Twenty one provenance trials planted across New Zealand provided the experimental basis 

for the first part of this study.  The experimental design and detailed seed source information 

for Año Nuevo, Monterey and Cambria provenances and three regional land-race stocks, 

Kaingaroa, Nelson and Southland was described in Burdon et al. (1997). Since age for Dbh 

measurements ranged from 5 to 15 years (juvenile and transition ages), we standardised the 

data, so that all traits are expressed in units of standard deviations from a site mean of zero 

and so that they are weighted equally in MRT analysis. Although there were multiple seedlots 

within the native provenances compared, and the land-race stocks were single homogeneous 

groups, there were no significant differences in the variance of the groups after the 

standardisation across trials. The standardized data for each site were then analysed singly, 

treating provenances as fixed effects using the software ASReml (Gilmour et al. 2009) giving 

Best Linear Unbiased Estimates (BLUEs) for the three Californian populations and the three 

land races.   

The second dataset used in this study contained a subset of trials that were used by Cullis et 

al. (2014) of 48 RPBC field trials. The numbers of parents and families in common varied 

substantially between RPBC trials and we used the empirical best linear unbiased estimates 

(E-BLUPs) of a subset of 24 most-tested and most-deployed parents that were tested across all 

48 sites. Multivariate regression trees (MRT) are based on the same principles as 

Classification and Regression Trees, but extended to more than one response variable (i.e. 

multiple genotypes) (De’Ath 2002).  The regression tree clusters are driven by the degree of 

genetic differentiation observed in the response dataset.  These analyses were implemented 

with the MVpart package v1.2–6 for the R programming environment (R Development Core 

Team 2008).   

Our approach was to start with an unconstrained clustering, using the Euclidian distance 

measure, so that we know the maximum variance that could be explained by G×E.  

Hierarchical clustering was performed with R package hclust using the Euclidian distance 

measure (R Development Core Team 2008). The result of this function is a dendrogram 

splitting all sites based on the distance measures. We then applied a cut off after the fourth 

split based on data cross-validations. All sites were assigned a group as a new categorical 

variable. These groups were then used as categorical predictors in the MRT analysis, in order 

to generate barplots representing genotype performances for the leaves and nodes in the 

dendrogram. Then, as an alternative, the clustering was constrained by climate and soil 

variables to determine which ones might be responsible for G×E.  How much variance was 

accounted for by this latter procedure indicates the proportion of G×E that can be explained 

by environmental variances.  
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Results 

Clustering of provenance trials 

Our analysis of provenance trials suggests that the likely drivers of provenance by site 

interactions appear to be soil type and temperature. We partially replicated the results of 

Burdon et al. (1997) (Figure 17a).  Infertile clay site types accounted for 21% of variance and 

mean daily minimum temperature of the coldest month (MinTCM) accounted for 13% of 

variance. The MRT clustering indicated that the maximum explainable G×E variance was 

62%, compared to 34% explained under constraints of soil and climate variables (Figure 

17b). 

 

 

 

Figure 17 Unconstrained (a) and constrained cluster (b), grouping 21 planting sites according 

to the performance of Año Nuevo, Monterey and Cambria provenances and three regional 

land-race stocks, Kaingaroa, Nelson and Southland. The same order of provenances used for 

legend (vertical order of listing) is also used for the histograms (horizontal order). Variances 

in breeding values explained by each node of the cluster are indicated in red. In gray scale 

colored bars represent group means expressed in deviation from an overall mean of zero 

(horizontal line). Site names are given below each group. 

Clustering of progeny trials 

The unconstrained clustering analysis based on Euclidean distance of genotypic performance 

of the 24 parents tested at 48 RPBC progeny trials revealed four groups (A to D) (Figure 18). 

Group A with nine sites comprised the overall top-performing genotypes, while group B was 

characterised by a relatively poor performance of the same parents at 16 sites. The remaining 

23 sites were split into groups C and D with mixed performance of the parents. The total 

variance in breeding values explained by the clustering was 58% and the breakdown in 

variances in breeding values explained by each node of the cluster were 31%, 17% and 10% 

(Figure 18).   
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Imposing constraints by climate variables – mean annual precipitation (MAP), mean 

minimum temperature coldest month (MinTCM), we obtained similar groupings (Figure 19). 

The first split was by MAP, identifying 11 wet sites with MAP above 1670 mm. It is on these 

11 wet sites where the good performers did better (as in Group A in Figure 18).  

Interestingly, the estimated BV values for individual parents were almost the same across 

these 11 sites as they were for the nine sites of group A in the unconstrained cluster, even 

though the unconstrained clustering accounted for much more observed variance (31% vs. 

9%).  The remaining 37 sites were split into two groups based on MinTCM (<1.6), the split 

being similar to the one in the unconstrained analysis, separating group B from C and D.  

When clustering was constrained by climatic variables, total variance in predicted breeding 

values explained by the clustering was 15% (or 26% of G×E variance).  We used the results 

from the constrained clustering to produce a map (Figure 20) showing location of trials in 

each group.  We also show radiata pine plantation areas in NZ Central North Island with 

minimum temperature coldest month less than 1.6, where a high degree of GxE can be 

expected (Figure 21). Such maps may be used by tree breeders and forest managers to select 

sites for breeding trials as well as match genotypes to target environments.   

 
Figure 18. Unconstrained cluster analysis: grouping of 48 planting sites according to the 

performance of 24 parental genotypes. Genotypes are ordered from left to right by breeding 

value (BV), and the lower bar chart displays how genotypes deviate from their average 

breeding values at a particular group of sites (δBV).  Variances in breeding values explained 
by each node of the cluster are indicated in red. The parental genotypes coded 1 to 24 from 

left to right.  Site codes are shown below each group. 
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Figure19. Constrained cluster analysis: grouping of 48 planting sites according to the 

performance of 24 parental genotypes, constrained by mean annual precipitation (MAP) and 

minimum temperature of the coldest month (MinTCM).when performance of 24 parental 

genotypes is constrained by mean annual precipitation (MAP) and minimum temperature of 

the coldest month (MinTCM). Genotypes are ordered from left to right by breeding value 

(BV), and the lower bar chart displays how genotypes deviate from the average breeding 

value at a particular group of sites (δBV).  Variances in breeding values explained by each 

node of the cluster are indicated in red. The parental genotypes coded 1 to 24 from left to 

right.  Site codes are shown below each group. 
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Figure 20. Grouping of 48 trial sites ( ) in New Zealand based on mean annual precipitation 

(MAP) and minimum temperature cold month (MinTCM) (based on clustering in Figure 19); 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 21. Radiata pine plantation areas (overlap of green and yellow) in NZ Central North 

Island with minimum temperature coldest month less than 1.6°C, where cross-over G×E can 

be expected.  
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Discussion 

Clustering without and with environmental constraints 

Using the soil variables collated from Land and Environment New Zealand (LENZ) layers we 

could not replicate the results of Burdon et al. (1997), and the split of trials on infertile clays, 

which previously explained a substantial amount of G×E for the provenance data. This 

suggests that in addition to soil types and temperature, there are other management or 

environmental variables contributing to the observed G×E in DBH.  Susceptibility to 

Dothistroma needle blight may also have a differential effect on provenance performance, as 

it has previously been shown to affect Cambria provenance negatively.  Gapare et al. (2011), 

for example, found negative genetic correlations between Dothistroma defoliation and DBH 

as well as between defoliation and survival in radiata pine provenances (Gapare et al. 2011).   

A study by Watt et al. (2010) reported that variables driving productivity in New Zealand 

included mean annual temperature, available root zone water storage, mean annual wind 

speed, length and slope factor and major soil parent material. MacDonald (2009) applied 

multiple regression to resemblance matrices for Dbh and a number of environmental matrices, 

finding G×E to be driven by extreme maximum temperatures and altitude. The effect of these 

two climatic variables may also be proxies for moisture availability. However, in our case, 

none of the other climatic and environmental predictors could explain as high a proportion of 

G×E variance as was explained by mean annual precipitation (MAP) and minimum 

temperature coldest (MinTCM).  

This study has confirmed the presence of G×E in New Zealand for Dbh in contrast to traits 

related to stem form and wood quality which have shown little or no evidence of G×E (e.g. 

Johnson and Burdon 1990, MacDonald 2009, Gapare et al. 2010, Apiolaza 2012). We 

characterised the role of environments and identified specific environmental variables 

responsible for generating a proportion of the G×E interaction. More detailed environmental 

variables and better connected trials may enable us in the future to explain a larger proportion 

of the G×E for growth in New Zealand, and may allow us to develop a regionalisation 

strategy to deal with the issue (Cullis et al. 2014). 

Conclusions 

Analyses here demonstrated relationships between genotype performance and the 

environmental variables as drivers of G×E in radiata pine grown in New Zealand. The 

analyses of progeny trial data showed that extreme rainfall and cold temperature are the likely 

drivers of G×E in New Zealand. Second-generation genotypes behaved more consistently 

than first-generation provenance material across a wide variety of site and climate conditions. 

The best genotypes performed above average on wettest sites. They only rarely significantly 

changed ranks with other genotypes at other sites, except as cold sites. Our analyses suggests, 

that significant rank changes can be expected on cold sites with minimum temperature of the 

coldest month less than 1.6 °C (i.e. Southland- Otago and Nelson regions, and high elevation 

sites in Waikato region) 

Currently the same set of genotypes are deployed throughout New Zealand, and it is believed 

that little could be gained by a strategy of matching particular genotypes to environments to 

which they may be best adapted. Assuming that we want to deploy 10 of 24 parents examined 

in MRT analyses, there are two options: 1) a ‘Single Population’ strategy, to select genotypes 

which perform well across all environments, and 2) a ‘Regionalisation’ strategy, to select two 
clusters, which have genotypes more specifically adapted to each of the two environments. If 

selection is based on breeding values derived from BLUPs, percent gain for a single 
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population strategy, DBH genetic gain was in the order of 8%. Genetic gains for wet and cold 

sites separately were 3% and 20%, respectively. This suggests that it is feasible to increase 

plantation productivity and realise genetic gain through targeted deployment. 

While results from our analyses point to the fact that G×E is of practical importance, more 

data from new, genetically well-connected trials and more precise information on 

environmental variables (in particular soils) are needed to quantify the G×E effects and 

extend predictive ability. That will enable RPBC to make better-informed decisions on how 

genotypes may be allocated to specific sites in order to maximise productivity. It will also 

allow development of adapted genotypes for deployment in specific environments to achieve 

stable and high productivity. For deployment purposes, it will be possible to create maps for 

tree breeders and forest managers to select test sites that are representative of specific target 

planting zones for genetic trials as well as match genotypes to target environments (eg. 

Figure 21).   

Recommendations 

1. A substantial amount of G×E interaction was found in RPBC trials that may be 

exploited for better gains. 

2. A site matching approach has been proposed, where new target environments can be 

matched with environments in the MET dataset.  

3. In particular genetic gains for deployment to cold sites separately are expected to 

increase plantation productivity and realise genetic gain through targeted deployment. 

4. A framework (Cullis et al. 2014) for future work on G×E in RPBC trials has been 

established, however, more estimates of site-site genetic correlations are needed. For 

that more well-connected trials are needed. 

5. In addition, more site-specific environmental data at a finer scale are also needed, for 

the RPBC trials.  

6. The work on G×E needs to be extended to specific combining ability (SCA) and to 

other traits, including selection indices. 

7. Deciding on future planting sites should consider future climate and therefore the 

locations of genetic trials should also be representative of those climates. 

8. Based on variability of climate predictions, determine which site types may need more 

diverse genetic material. 

9. A diverse portfolio of genotypes for deployment should be established to mitigate the 

effects of climate change, and this issue should be examined in future studies.  

10. Protocols should also be established so that the traits other than growth can be 

predicted for different deployment site types. This will help deployment based on 

composite index traits in deployment tools. 
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Effects of climate change on breeding and deployment zones in 

Australia and New Zealand 

Summary  

 We analysed long-term average climate for National Plantation Inventory (NPI) 

regions in Australia and districts in New Zealand, and evaluated how well represented 

the climate of plantation areas by the existing genetic field trials  

 Representation by trials of the historic climate (i.e. average of period from 1961-1990) 

in Australia and New Zealand was variable, with some regions and districts not being 

covered at all, and some only partially covered  

 We also examined future climate scenarios to identify field trials that may not be 

representative of future climates in their area, and to identify areas where these 

currently well-tested climates may occur in the future  

 Typical climates where radiata pine is currently managed are predicted to shift relative 

to the climate at test sites during trial periods. The shifts according to the HadGEM2–
ES model for the year 2050 were significant both in Australia and New Zealand  

 A significant predicted shift will result in Tasmania becoming more like Central 

Victoria and Central Gippsland. Murray Valley and parts of Western Australian estate 

are predicted to move into a non-analogous climate, which may be a reason for 

concern. The Green Triangle region is predicted to become warmer and drier similar 

to the current climate of the MtLofty-Kangaroo Island region 

 Similarly, according to the HadGEM2–ES model, by year 2050 in New Zealand 

temperature will increase approximately by 1.9°C and precipitation will decrease 2%. 

The future climate of radiata pine plantation areas in New Zealand is predicted to shift 

significantly relative to the climate during the current trial period. The northern South 

Island plantation estate is predicted to become climatically similar to the southern 

North Island plantation region of the present. West Coast and parts of Otago-

Southland estate is predicted to become more like current Bay of Plenty  

 Most of the existing test sites in the Central North Island are not well aligned with the 

climate of future plantation areas which suggests new tests should be established in 

new areas. 
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Introduction  

It has been long recognised that G×E in radiata pine is driven by climate (e.g. Wu and 

Matheson 2005, Gapare et al. 2010, Baltunis et al. 2010, Raymond 201, Gapare et al. 2012). 

The previous studies highlight the importance of climatic drivers of G×E and therefore the 

importance of considering climate change in defining future breeding and deployment zones. 

Anticipating future changes in climate is particularly important as radiata plantations are 

managed on a 25-35 year crop rotation. The recent State of the Climate Report by Bureau of 

Meteorology and CSIRO (2014) reported that Australia’s climate has warmed by 0.9°C since 

1910, and that frequency of extreme weather has changed, with more extreme heat and fewer 

cool extremes. Australian temperatures are projected to continue to increase, with more 

extremely hot days and fewer extremely cool days. Autumn and early winter rainfall has 

mostly been below average in the southeast since 1990 and average rainfall in southern 

Australia is projected to decrease. 

In New Zealand, based on the projections by the Ministry for the Environment (2014) 

(https://www.climatechange.govt.nz/science/), temperature is expected to increase throughout 

the country. For example, temperature in the Bay of Plenty, one of the largest contiguous 

plantation areas of radiata pine in New Zealand, is likely to be at least 0.9˚C warmer by 2040 
and 2.1˚C warmer by 2090, compared to 1990, with about 30–60 extra days exceeding 25˚C 

and 20 fewer frosts per year. Rainfall is expected to decrease throughout most of the North 

Island and northern South Island but to increase in West Coast, Otago, and Southland.  

The above findings indicate that climate change has to be considered when planning future 

site type classification for genetic evaluation trials. Therefore, the general objective of this 

study was to evaluate the effects climate change on the breeding and deployment zones and 

on the representativeness of historic genetic trials in relation to plantations of radiata pine in 

Australia and New Zealand. The specific objectives were to: 

 Analyse long-term average climate for National Plantation Inventory (NPI) regions in 

Australia and districts of New Zealand and determine how well is the climate of current 

plantation areas represented by the existing genetic field trials  

 Analyse future climate scenarios and identify field trials that may not be representative of 

future climates in their area 

 Determine how representative are current progeny tests of the radiata pine plantation areas 

in Australia and New Zealand  

 Can we use current information from progeny test to select well adapted genotypes for the 

future 

 Identify new areas in which field trials should be currently planted so that they will be 

representative of the future climate 

Methods 

Geographic coordinates were available for 307 and 112 genetic trials in Australia and New 

Zealand, respectively. Those trials have measurements data stored in the DATAPLAN data 

management system of the Southern Tree Breeding Association (STBA) in Australia, and 

exSITEz data management system of Radiata Pine Breeding Company (RPBC) in New 

Zealand. Coordinates for grid centroids for radiata pine plantation areas were obtained from 

Department of Agriculture, Land use in Australia  

(http://data.daff.gov.au/anrdl/metadata_files/pa_luav4g9abl07811a00.xml) and from Land 

Resource Information Systems Portal (LRIS) website for exotic forest in New Zealand 

(https://lris.scinfo.org.nz/layer/401-lcdb-v33-land-cover-database-version-33/). 

https://www.climatechange.govt.nz/science/
http://www.mfe.govt.nz/publications/climate/climate-change-effect-impacts-assessments-may08/figure-2-8.html
http://www.mfe.govt.nz/issues/climate/about/climate-change-affect-regions/west-coast.html
http://www.mfe.govt.nz/issues/climate/about/climate-change-affect-regions/otago.html
http://www.mfe.govt.nz/issues/climate/about/climate-change-affect-regions/southland.html
http://data.daff.gov.au/anrdl/metadata_files/pa_luav4g9abl07811a00.xml
https://lris.scinfo.org.nz/layer/401-lcdb-v33-land-cover-database-version-33/
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Climate data used in the analyses for this report were obtained from the WorldClim, Version 

1.4 (Release 3) (Hijmans et al. 2005). WorldClim is a set of global climate layers (climate 

grids) with a spatial resolution of about 1 square kilometre. The data available were climate 

projections from 20 global climate models for four representative CO2 concentration 

pathways (RCPs). These are the most recent climate projections that are used in the Fifth 

Assessment IPCC report (IPCC 2013). The output was downscaled and calibrated (bias 

corrected) using as baseline long-term average climate. The variables included are monthly 

minimum and maximum temperature, precipitation, and 19 “BIOCLIM”variables derived 

from these 36 monthly values (see Xu and Hutchinson 2014, Booth et al. 2014). 

Choice of global circulation model and climate scenario 

Changes in predicted temperature and precipitation vary substantially, particularly when 

projected over long time frames. The scenarios of the fifth phase of the Coupled Model Inter-

comparison Project (CMIP5) provide a multi-model context for assessing the mechanisms 

responsible for model differences. The range of GCM using RCP4.5 scenario outputs from 

WorldClim for the radiata pine plantation estate in Australia and New Zealand expressed in 

terms of mean annual temperature (MAT) and mean annual precipitation (MAP) are shown in 

Figure 22. 

 
Figure 22. Climate change projections (CMIP5, RCP 4.5, 2050) for radiata pine estate in 

Australia (left) and New Zealand (right). The scenario HadGEM2-ES chosen for this study is 

represented by filled circles, the open circles represent other models.   

There are a number of GCMs that can be used to develop projections of future climates for 

Australia and New Zealand. It is possible to use an average of all available models, but 

combining models requires the addition of errors associated with each model, leading to very 

high levels of uncertainty. Therefore, for this initial analysis, the Hadley Global Environment 

Model 2 - Earth System (HadGEM2 –ES) was chosen. This model was selected to allow us to 

consider a relatively hot and dry future climate. The model has been used for operational 

weather forecasting and for previous climate change studies of plantation forests (e.g. 

Battaglia et.al. 2009, Kirschbaum et al. 2012). As with many climate change projection 

models and analyses on future climate envelopes for species, the target year could be reduced 

to lessen the impact of the climate model; in this project, we were exploring the pattern of 

changes expected rather than the absolute regions that consensus projections could provide.  

Variability of climate change predictions 

Rainfall is one of the most difficult phenomena to predict, but climate projections predict 

decreased rainfall in the mid-latitudes around 25–30°S in southern Australia (IPCC 2013). All 

the GCMs generally agree on this, although different models draw the boundaries at slightly 
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different latitudes. Climate models indicate that there is likely to be less rainfall in southern 

areas of Australia, especially in winter, and in southern and eastern areas in spring, caused by 

the contraction in the rainfall belt towards the higher (more southern) latitudes (Figure 23). It 

is also likely that the most intense rainfall events in most locations will become more extreme, 

driven by a warmer, wetter atmosphere. Temperature predictions have a higher degree of 

confidence than rainfall predictions. The main uncertainty in temperature projections relates 

to how much CO2 and other greenhouse gases will be emitted between now and the latter part 

of this century.  

 
Figure 23. CMIP5 multi-model projections corresponding to the IPPC Assessment Report 5 

(IPCC 2013). The top images show the average projected change of 19 models for the RCP 

4.5 scenario. The bottom images show the associated uncertainty in units of standard 

deviations, 68% of the models fall within +/- the specified (color-coded) uncertainty. 

Ordination o f long-term average and future climate  

Canonical discriminant analysis (CDA) was used for pattern recognition classifications and 

dimensionality reduction (Venables and Ripley 2002). CDA was used to represent plantation 

regions (Appendix 3) and trials in a multivariate climate space. The CDA for the current 

report was performed using the ‘candisc’ package in R V3.02 (R Development Core Team 

2013). In Australia, 11 National Plantation Inventory regions were used as categorical 

dependent variables: Tasmania, Western Australia, Mount Lofty Ranges and Kangaroo 

Island, Green Triangle, Northern Tablelands, Central Tablelands, Southern Tablelands, 

Murray Valley, Central Victoria, Central Gippsland, Bombala-East Gippsland.  

In New Zealand, the 11 following districts were used as categorical variables: Auckland, Bay 

of Plenty, Canterbury, Gisborne, Hawke's Bay, Nelson-Marlborough, Northland, Otago-

Southland, Southern North Island, Waikato, and West Coast. 

Independent variables used to explore long-term average and future (2050) climate were mean 

annual temperature (MAT), Maximum Temperature Warmest Month (MaxTWM), Minimum 
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Temperature Coldest Month (MinTCM), Annual Temperature Difference (TD), Precipitation 

November to March (PrecNM), Crop Moisture Index December to February (CmiDF), 

Annual Sum (i.e. difference) of Climate Moisture Index (CMI, Hogg 1997). CMI represents 

precipitation minus potential evapo-transpiration estimated using the simplified Penman–
Montieth method. These variables were chosen as they have proved useful for distinguishing 

between regions in previous analyses (e.g. Battagila et al. 2009, Kirschbaum and Watt 2011, 

Worrall et al. 2013).  

Results 

Analyses of long-term average climate in Australia and New Zealand 

 GIS maps were used to examine the long-term average climate in different NPI regions and 

districts in Australia and New Zealand, respectively (Figure 24). Locations where about 90% 

by area of major commercial radiata pine plantations exist are approximately: mean annual 

temperatures between 8°C and 18°C and rainfall between 500mm and 2250mm (Booth and 

McMurtie 1988, Battaglia et al. 2009). Analyses of long-term average climate showed a 

generally wider range of climate conditions in Australia then in New Zealand, especially 

considering dry periods in certain regions.  In Australian radiata plantation regions MAT 

ranged from 10.8°C to 16.4°C and MAP from 729mm to 1130mm. Wet periods were more 

widespread in New Zealand, and MAT ranged from 9.0°C to 15.2°C and MAP from 866mm 

to 3360mm. The average extreme temperatures maximum temperature warmest month 

(MaxTWM) and minimum temperature coldest month (MinTCM) ranged in Australia from = 

29.7°C to MinTCM=-0.6°C, and in New Zealand from MaxTWM = 23.9°C to MinTCM=-

0.5°C.  

    

Figure 24. Mean annual temperature (top) and mean annual precipitation (bottom), where 

radiata pine has been planted in Australia and New Zealand.  
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The plot of Canonical Discriminant climate variables in Figure 23 (left plot) shows the long-

term average plantation estate and the climate during trial periods (i.e. time from palnting to 

measurement) in Australia. The higher vertical axis means drier and warmer summers (i.e. 

increase in maxTWM); the left direction means warmer winters (i.e. increase in minTCM) 

and slightly drier overall. The top right part of the plot represents a more continental climate 

(i.e. increase in annual temperature difference – TD), while the lower left means more 

maritime climate. The upper-left indicated desert, while the lower right indicates montane 

climates. The cover of the climate space by trials was variable, with some regions not 

currently being covered at all (i.e. Bombala-East Gippsland) and some regions (i.e. Northern, 

Central and Southern Tablelands, Central Victoria, Mount Lofty and Kangaroo Island, and 

Western Australia) only partially covered.  

The plot of Canonical Discriminant climate variables of the trials in New Zealand shows the 

long-term average plantation estate and the climate in Figure 24 (upper plot). The left part of 

the plot means generally warmer temperatures (i.e. increase in maxTWM and mean annual 

temperature MAT), the upper left part in the plot represents warmer winters (i.e. minTCM) 

and drier overall. Right part of the plot represents colder and drier climate. The cover of the 

climate space by trials was variable with some regions being poorly covered (i.e. Southern 

Northern Island, Waikato, Hawkes Bay). 

Analyses of future climate in Australia and New Zealand 

The plot of canonical discriminant variables in Figure 23 (lower right panel) shows how the 

future climate of radiata pine plantation areas in Australia will shift relative to the climate 

during trial periods. The trial positions (triangles) in the Canonical Discriminant Analyses 

(CDA) coordinate system are fixed because they relate to historic time periods. However, the 

plantation areas (dots) will experience a shift in the climate.  

The shifts according to HadGEM2–ES model 2050 were significant. The most significant 

shift was of Tasmania becoming more like Central Victoria and Central Gippsland. The Green 

Triangle region moved towards warmer and drier space similar to the current climate of the 

Mt Lofty-Kangaroo Island region. Northern, Central and Southern Tablelands and parts of the 

Western Australian estate moved into a new currently unrepresented climate space, which 

may be a reason for concern. Two trial sites that are the sole representatives of genetic trials 

for many plantation locations (the red Central Tablelands cluster) under climate change 

remain the most relevant to the Central Tablelands, but will also become representative of the 

Bombala-East Gippsland (blue cluster). 

The plot of canonical discriminant variables in Figure 25 (lower-left) shows how the future 

climate of radiata pine plantation areas in New Zealand will shift relative to the climate during 

the trial periods. The shifts according to the HadGEM2 –ES model, 2050 were strong, 

reflecting mostly the large increase in MAT. For example, the Northern South Island 

plantation estate will move towards the climate space currently occupied by the Southern 

North Island plantations. West Coast and parts of Otago-Southland estate will become more 

like current Bay of Plenty. Generally, most of the existing range of test sites will be not 

representative of the climate in the plantation areas. 
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            Historic trial & current plantations    Historic trial & future plantations 

     
 Figure 25. Canonical discriminant analysis of long-term average climate (lower-left panel) 

and future (lower-right panel) in Australian plantation areas (dots) and genetic trial locations 

(triangles). Direction abbreviations mean annual temperature (MAT), Maximum Temperature 

Warmest Month (MaxTWM), Minimum Temperature Coldest Month (MinTCM), Annual 

Temperature Difference (TD), Precipitation November to March (PrecNM), Crop Moisture 

Index December to February (CmiDJF), Annual Sum (i.e. difference) of Crop Moisture Index 

(CMD). The colours in the charts below refer to the colours of different regions on the map 

above. 
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Figure 26. Canonical discriminant analysis of long-term average climate (upper panel) and 

future (lower panel) in New Zealand plantation areas (dots) and genetic trial locations 

(triangles). Direction abbreviations mean annual temperature (MAT), Maximum Temperature 

Warmest Month (MaxTWM), Minimum Temperature Coldest Month (MinTCM), Annual 

Temperature Difference (TD), Precipitation November to March (PrecNM), Crop Moisture 

Index December to February (CmiDJF), Annual Sum (i.e. difference) of Crop Moisture Index 

(CMD). The colours in the charts left refer to the colours of different regions on the map 

right. 
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Discussion 

Our current research on G×E has shown that site type definition for breeding and deployment 

of genetic stock in Australia depends on climate variables. This also confirms the results 

about the climatic drivers of G×E from the literature (e.g.  Gapare et al. 2010, Raymond 

2011). Similarly, analyses of trials in New Zealand resulted in two major groups being 

significantly different for a number of climate variables, including mean annual precipitation 

and minimum temperature coldest month (Cullis et al. 2014, Gapare et al. 2014). Those 

results have highlighted the importance of climate variables as drivers of G×E in both 

Australia and New Zealand. 

The HadGM2-ES was chosen as a future climate model for the analysis of effects of climate 

change, because it is one of the most advanced models and it combines atmospheric, ocean 

and earth systems. Although this Global Circulations Model (GCM) is relatively drier and 

warmer than the median of other model predictions for Australia and New Zealand, the 

representative concentration patterns scenario (RCP 4.5) was relatively moderate 

(Meinshausen et al. 2011). The combination of GCM and RCP is an example of what can 

potentially occur in the future, and regardless of the exact magnitude of climate change by 

2050, it is the relative shift in the plantation estate that is of interest here.  

Acording to the HadGEM2–ES model, by year 2050 in Australia temperature will increase 

approximately by 1.9°C and precipitation will decrease 8%. However, the climate shifts are 

predicted to be significant in some regions, but more subtle in other regions of Australia. For 

example, a significant predicted shift is for Tasmania to become more like Central Victoria 

and Central Gippsland. Murray Valley and parts of Western Australian estate are predicted to 

move into a new climate space, which may be a reason for concern. Green Triangle region is 

predicted to move towards warmer and drier space similar to the current climate of MtLofty-

Kangaroo Island region.  

Similarly, according to the HadGEM2–ES model, by year 2050 in New Zealand temperature 

will increase approximately by 1.9°C and precipitation will decrease 2%. The future climate 

of radiata pine plantation areas in New Zealand is predicted to shift significantly relative to 

the climate during the current trial period. The northern South Island plantation estate is 

predicted to move towards the climate space currently occupied by the southern North Island 

plantations. West Coast and parts of Otago-Southland estate is predicted to become more like 

current Bay of Plenty. Most of the existing range of test sites are not predicted to be 

representative of the climate in the plantation areas. This could be alarming, although the 

predicted future climate scenario is more extreme (i.e. relative to the present variation) in 

New Zealand than in Australia (CSIRO 2011). 

Although the geographic extent of the plantation estate may not move much, the climate will 

highly likely change. Some new plantation areas may be required to offset reduced 

productivity (e.g. Pinkard and Bruce 2011, Battaglia et al. 2009, Kirschbaum and Watt 2011, 

Pinkard et al. 2014). This paper deals exclusively with how the existing trials are 

representative of their regions in term of climate and does not address the issue of 

productivity of different locations in the future. This study helps determine where to establish 

new trials that will be representative of future climates.  
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Conclusions  

Our research on G×E has shown that site type definition for breeding and deployment of 

genetic stock in Australia and New Zealand depend largely on climate variables. However, 

the future climate of radiata pine plantation areas will shift relative to the climate during the 

lifetime periods of existing trials. Acording to HadGEM2–ES model by year 2050 in 

Australia temperature will increase approximately by 1.9°C and precipitation will decrease 

8%. Similarly, according to HadGEM2–ES model, by year 2050 in New Zealand temperature 

will increase approximately by 1.9°C and precipitation will decrease 2%. The scenario is just 

an example of what can potentially occur in the future, and regardless of the exact magnitude 

of climate change by 2050, it is the relative shift in the plantation estate that is important.  

Although the plantation estate may not move much physically, the climate space will certainly 

change. Some new plantation areas may be planted because the issue of productivity will also 

come into play. We showed that existing trials are not representative of their regions in terms 

of future climate, and that we can determine where to establish new trials that will be 

representative of future climates.  

Recommendations 

 

1. The analysis of future climate across radiata pine estate presented here suggests that 

additional climate projections should be evaluated to obtain a more complete and 

balanced representation of the effects of climate change on the radiata pine estate in 

Australia and New Zealand. Such a so called “consensus” model should be used for 
more exact breeding and deployment region delineations that would allow sensitivity 

analysis.  

2. Decisions on future planting sites should take into consideration future climate and 

therefore the locations of genetic trials planted today should also be representative of 

those future climates. 

3. Depending on the variability of climate predictions, some site types may require more 

diverse genetic material to cover the full range of possible scenarios. A diverse 

portfolio of genotypes for deployment should be established to mitigate the effects of 

climate change, and this issue should be examined in future studies (Matheson et al. 

2007). 
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Appendix 1. Genetic correlation modeling and BV prediction for 

Pinus radiata using TREEPLAN® - traits other than Dbh growth 

Modelling genetic correlations for stem straightness (Stemst) 

Correlation database version 23R was used. There were no additive correlations below zero. 

Different stem straightness traits from different organisations collected over time were 

amalgamated into a single trait. There was more variability of Type b correlations with less 

parents in common, especially < 100. However, there were no trial pairs with more than about 

160 parents in common, in contrast to DBH, where there were trial pairs with up to 450 

parents in common. Trial pairs with low number of parents in common (<20) had very high 

standard errors associated with the estimates (Figure A1.1). 

 

 
Figure A1.1 Type b correlations for Stemst (with 95% CI and smoothed loess trend). 

There were no measurements of stem straightness at different ages, so the DBH Lambeth 

age:age correlation model coefficient of 0.193 was assumed. There was a low level of GxE 

with the residual correlation of 0.93. Model results from Stemst models are given in Tables 

A1.1, A1.2 and Figure A1.2. 

 

Table A1.1 Model results from Stemst models DB23R. 

Model 
Residual 
GxE 

Wt ESS Residual ra 
Model 
No. 

Baseline: No GxE No 55.49 1 20.1 

 Yes 47.35 0.93 20.2 

AR – Temperature seasonality (Ts) No 44.33 1 22.2 

SplitVarb:Rain_sep No 38.24 1 24 

 Yes 33.33 

Dry: 0.95 

Moist:NA 

24.1 
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Figure A1.2 Stemst base model without GxE (top) and with GxE (bottom). 

Table A1.2 Stemst AR models and split on environmental variables, with the best groups of 

outlier trials (with values of the best split variables shown). 

Env Variable Wt ESS 
AR 1 

Wt ESS 
Split 1 

Split 1 Wt ESS 
AR 2 

Wt ESS 
Split 2 

In 

Trial_id  40.92 RAD148    

Trial_id 2  35.69 PT5413,PT5455    

Trial_id 3  34.57 PT5413,PT5455,R
AD211 

   

Latitude 53.42 47.82 -37.517    

Longitude 54.28 47.96 147.717    

Si_mon_c_2 50.85 47.48 71.5    

Elev 47.76 47.25 367.5    

Amt 53.77 48.30 13.605    

Mdr 50.31 49.33 13.435    

Ist 46.28 39.91 0.475    

Ts 44.33 45.79 1.57    

Mtwp 52.74 49.34 26.595    

Mtcp 48.91 48.50 0.775    

Tar 47.70 46.39 25.745    

Mtwetq 47.03 48.59 9.605    

Mtdq 52.21 48.72 18.38    

Mtwq 53.70 50.53 18.05    

Mtcq 50.39 47.92 8.72    

Ap 46.38 42.99 1105.985    

Pwp 51.81 49.90 29.15    

Pdp 50.63 47.46 10.135    

Ps 53.85 51.33 18.68    

Pwetq 51.17 49.90 336.77    

Pdq 50.57 49.90 144.765    

Pwq 49.95 48.56 161.47    

Pcq 51.34 50.62 347.395    

Amr 53.09 51.66 15.48    

Hpr 52.35 49.87 25.66    

Lpr 52.48 51.59 5.915    
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Rs 51.60 50.98 42.73    

Rwetq 52.37 51.77 18.44    

Rdq 50.57 51.41 24.16    

Rwq 53.07 51.27 23.395    

Rcq 52.64 51.58 7.71    

Ammi 50.60 50.24 0.71    

Hpmi 54.29 53.40 0.97    

Lpmi 51.82 48.94 0.265    

Mis 50.88 49.90 44.505    

Mmihq 54.65 52.78 0.955    

Mmilq 51.22 49.90 0.27    

Mmiwq 50.99 49.90 0.305    

Mmicq 52.34 48.99 0.985    

Tmax_jan 52.57 49.34 25.4    

Tmax_feb 52.66 48.93 26.35    

Tmax_mar 53.20 48.68 23.55    

Tmax_apr 53.44 48.49 20.25    

Tmax_may 53.01 49.74 16    

Tmax_jun 51.39 47.92 13.1    

Tmax_jul 50.43 47.46 11.55    

Tmax_aug 51.35 47.92 13.85    

Tmax_sep 52.62 47.31 15.85    

Tmax_oct 52.56 48.15 18.5    

Tmax_nov 52.64 47.23 21.2    

Tmax_dec 53.04 50.02 23.5    

Tmin_jan 54.51 51.03 11.55    

Tmin_feb 54.68 51.03 11.85    

Tmin_mar 53.22 47.28 10.75    

Tmin_apr 50.85 48.85 8.5    

Tmin_may 49.95 48.85 6.9    

Tmin_jun 49.72 49.50 4.5    

Tmin_jul 49.09 48.50 0.95    

Tmin_aug 49.53 49.50 4.05    

Tmin_sep 50.50 49.31 5.2    

Tmin_oct 51.96 48.40 6.9    

Tmin_nov 53.65 47.28 8.8    

Tmin_dec 54.22 48.07 10.35    

Rain_jan 49.40 42.48 65.6    

Rain_feb 50.10 48.96 43.05    

Rain_mar 50.23 49.90 46.8    

Rain_apr 49.74 49.32 83.9    

Rain_may 50.76 49.51 76.7    

Rain_jun 52.51 50.62 111.3    

Rain_jul 52.23 50.62 113.4    

Rain_aug 49.53 45.01 142.35    

Rain_sep 45.66 38.24 128.15    

Rain_oct 48.19 45.01 104.4    

Rain_nov 48.80 39.64 93.3    

Rain_dec 50.35 39.64 86.55    

Loc_state  47.96 NSW    

Tp2012_region  38.80 CTAB,DOTHI,MVA
L,NTAB 

   

Parent_Rock_Code  49.69 51    

Parent_Rock_Class  49.69 Argillaceous Group    

 

The best AR trait was Ts (Temperature Seasonality). The best split was on identifying 

outlying trials PT5413 and PT5455, with RAD211. The best environmental variable was 

almost as good using Rain September, with NFI regions CTAB, DOTHI, MVAL, NTAB next 

best, and then a few more monthly rainfall variables. Rain_sep pulls out three high rainfall 

trials as different (Q14156, RAD199 and RAD148). The other rainfall variables also pull out 

RAD148, which is the single outlier trial identified. The correlation between Dry and Moist 
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site types for Stems is only 0.40. There are no trial pairs within the moist class however, so 

the approach is only pulling out outliers trials that share a common high environmental value. 

There is no way to check if these trials are actually well correlated with each other. 

 

 
Figure 2 Best AR model for Stemst. 

 

 

Figure A1.4 Split variables for Stemst based on DB23R. 
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FigureA1.5 Map of first split for Stemst and outlier trials. 

 

 
Figure A1.6 Stemst Split on Rain_sep parameters without GxE (top) and with GxE (bottom). 
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Figure A1.7 Modelled Stemst correlations (y-axis) compared to database correlations for 

Rain_sep split 1. 

Modelling genetic correlations for branch size (Brs) 

Correlation database version 23R was used. There were no additive correlations below zero. 

Different branch size traits from different organisations collected over time were 

amalgamated into a single trait. There was more variability of type b correlations with less 

parents in common, especially < 100. However there were no trial pairs with more than about 

160 parents in common, in contrast to DBH, where there were trial pairs with up to 450 

parents in common. The correlation was not related to the number of parents in common, but 

the SE did go down as the correlations approached one (Figure A1.8. 

 

   
Figure A1.8 Type b correlations for Brs (with 95%CI and smoothed loess trend). 

There was only 1 trial with measurements of branch size at different ages, so the DBH 

Lambeth age:age correlation model coefficient of 0.193 was assumed. There were only 51 

correlations involving 15 trials.There was some level of GxE with the residual correlation of 

0.85. 
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Table 2 Model results from Brs models. 

Model 
Residual 
GxE 

Wt ESS Residual ra 
Model 
No. 

Baseline: No GxE No 100.65 1 30.1 

 Yes 78.90 0.85 30.2 

AR – Annual Precipitation (Ap) No 66.08 1 32.2 

SplitVarb:Ap No 70.09 1 34 

 Yes 61.40 
Dry: 0.90 
Moist: Na 

34.1 

 

 

 

 
Figure 39 Brs base model without GxE (top) and with Gxe (bottom). 

Table A1.4 Stemst AR models and split on environmental variables, with the best groups of 

outlier trials (with values of the best split variables shown).  

Env Variable Wt ESS 
AR 1 

Wt ESS 
Split 1 

Split 1 Wt ESS 
AR 2 

Wt ESS 
Split 2 

In 

Trial_id  78.57 BR9615    

Trial_id 2  70.09 BR9615,BR9710    

Trial_id 3  70.09 BR9615,BR9710,R
AD142 

   

Latitude 82.74 73.65 -38.411    

Longitude 95.26 77.20 147.295    

Si_mon_c_2 87.72 81.98 71.5    

Elev 82.47 77.72 63.5    

Amt 84.36 73.65 12.8275    

Mdr 82.91 73.65 10.275    

Ist 84.52 85.79 0.505    

Ts 83.83 83.57 1.155    

Mtwp 79.62 73.65 24.39    

Mtcp 81.95 75.62 4.865    

Tar 81.88 73.65 20.11    

Mtwetq 83.69 76.56 8.985    

Mtdq 88.27 76.96 17.29    

Mtwq 81.97 73.65 17.315    

Mtcq 83.14 81.54 8.05    

Ap 66.08 70.09 1031.14    
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Pwp 88.81 84.02 26.685    

Pdp 81.82 76.56 9.505    

Ps 90.67 87.57 43.15    

Pwetq 88.75 85.91 347.395    

Pdq 82.88 73.65 160.495    

Pwq 83.77 76.96 162.28    

Pcq 88.23 85.91 347.395    

Amr 79.12 73.65 14.5225    

Hpr 78.71 73.65 24.2025    

Lpr 84.14 73.65 5.265    

Rs 80.29 73.65 47.5775    

Rwetq 90.93 70.09 7.1475    

Rdq 88.94 82.19 19.665    

Rwq 77.59 73.65 22.025    

Rcq 83.60 73.65 6.9725    

Ammi 77.02 73.65 0.78    

Hpmi 99.92 99.23 0.99    

Lpmi 82.40 76.96 0.285    

Mis 81.57 73.65 31.675    

Mmihq 98.22 96.39 0.995    

Mmilq 80.61 73.65 0.4    

Mmiwq 80.15 73.65 0.435    

Mmicq 89.20 82.01 0.99    

Tmax_jan 80.82 73.65 23.4    

Tmax_feb 79.56 73.65 24.05    

Tmax_mar 82.67 73.65 21.8    

Tmax_apr 84.35 73.65 18.675    

Tmax_may 85.49 73.65 15.15    

Tmax_jun 85.45 76.56 12.35    

Tmax_jul 84.53 76.56 11.7    

Tmax_aug 83.59 73.65 12.6    

Tmax_sep 83.80 73.65 14.675    

Tmax_oct 81.02 73.65 17.475    

Tmax_nov 81.28 73.65 19.55    

Tmax_dec 80.67 73.65 21.6    

Tmin_jan 85.41 73.65 11.25    

Tmin_feb 85.38 76.82 11.7    

Tmin_mar 84.42 81.54 9.925    

Tmin_apr 84.48 81.54 7.625    

Tmin_may 83.89 81.54 5.775    

Tmin_jun 82.92 75.62 5.85    

Tmin_jul 82.21 75.62 5.05    

Tmin_aug 82.82 75.62 5.5    

Tmin_sep 82.06 75.62 6.55    

Tmin_oct 83.26 81.54 6.3    

Tmin_nov 84.88 79.39 7.9    

Tmin_dec 84.70 79.39 9.55    

Rain_jan 83.17 76.96 57.45    

Rain_feb 83.34 79.13 40.75    

Rain_mar 82.92 80.00 50.25    

Rain_apr 69.42 70.09 79.175    

Rain_may 84.20 78.70 109.7    

Rain_jun 87.55 85.91 111.3    

Rain_jul 90.27 84.02 101.95    

Rain_aug 85.90 72.18 129.95    

Rain_sep 69.05 70.09 105.55    

Rain_oct 73.09 73.65 87.9    

Rain_nov 81.99 76.96 76.4    

Rain_dec 83.56 73.65 67.9    

Loc_state  79.39 TAS    

Tp2012_region  79.39 TAS    

Parent_Rock_Code  70.38 51,91    
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Parent_Rock_Class  70.38 Argillaceous 
Group,Feldspathic 
- Micaceous Group 

   

 

The best auto-regressive (AR) trait was Ap (Annual Preccipitation), with a number of other 

rainfall variables close behind. The best split was equally on identifying outlying trials 

BR9615, BR9710, and RAD142 and environmental variable annual precipitation (Ap) and a 

number of other rainfall variables, with parent rock code not far behind. Ap pulled out the 

same three high rainfall trials identified as outliers. The correlation between Dry and Moist 

site types for Brs is only 0.48. There are no trial pairs within the moist class, however, so the 

approach is only pulling out outliers trials that share a common high environmental value. 

There is no way to check if these trials are actually well correlated with each other. 

 

 

 
 

Figure A1.10 Best AR model for Brs.  

 

Figure A1.10 Split variable annual precipitation (Ap) for Brs. (RAD142 is grayed as it has no 

type b correlations, only type a). 
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Figure A1.11 Map of first split for Brs and outlier trials.  
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Figure A1.12 Brs split on Ap parameters without GxE (top) and with GxE (bottom). 

  

Figure A1.13 Modelled brs correlations (y-axis) compared to database correlations for Ap 

split 1. 
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Appendix 2 

G×E for compound traits: relationship between mean and variance for 

traits other than growth 

Summary 

 

 To account for G×E in composite traits (i.e. selection index) absolute values of 

component (i.e. breeding-objective) traits are necessary for application in deployment 

tools such as SEEDPLAN® 

  At the same time the relationship between mean and variance for breeding-objective 

traits is important for scaling the breeding values of entries in TREEPLAN® 

 Based on resource evaluation studies in Green Triangle Region, Western Australia 

(WA) and Tasmania (TAS) the relationships between mean and variance were 

established, as follows: 

o Sweep had strong positive relationship between mean and variance that did not 

differ much between log height-classes 

o Maximum Branch Size measured on logs (GTR study) differed markedly 

between log height classes, ranging from: negative for 1st log to positive upper 

logs. Visually assessed Branch Size or Branch Index (WA and TAS studies) 

had an overall curvilinear relationship, mainly due to lower variance estimates 

for upper logs (possibly biased).  

o Stiffness estimated on logs using HM200 – Hitman instrument differed 

markedly between log height classes, ranging from: negative for to slightly 

positive for upper logs (GTR and TAS studies). Stiffness on standing trees 

estimated using ST300-Director instrument (WA study) the relationship 

between the mean and variance behaved similarly to HM200 measurements 

taken on 1st logs.  

 Protocols should be established so that the traits other than growth can be routinely 

measured and predicted for different site types.  
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Introduction 

Since genotypes are selected based on a composite index value rather than individual trait 

values (either on an index or more arbitrary independent culling), it is important to investigate 

if there would be GxE interaction for the index values. Although there may not be GxE for 

individual traits, there still may be G×E for index value, because of different economic 

weights for traits for different sites. The relative sizes of trait economic weights can influence 

the size and the sign of difference between genotypes in index values at different sites 

(Namkoong 1984, Gapare et al. 2009). In addition, genetic variances may change between 

sites in relation to the site means, giving different effective index weights even when the 

absolute weights may be the same. Therefore, it is important to quantify, in absolute terms, 

the expected site means and variances for productivity, form, branching and wood quality 

traits. 

If breeding objective traits (i.e. mean annual increment, stem straightness, branch size, and 

wood stiffness) are scaled to an average site type, then gains are likely to be overestimated for 

low quality sites, or underestimated for higher productivity sites. Thus it is important for users 

of SEEDPLAN® to scale breeding objective traits according to the site types used in their 

organisation. We reviewed models that can predict form, branching and wood quality based 

on measured data in stands. Input data requirements vary between different models, but rapid 

development new data acquisition technologies make these requirements feasible. 

At the same time, TREEPLAN® system defines variances on a unit additive genetic standard 

deviation scale. Breeding objective trait values are transformed onto an observed scale at the 

point of retrieval, or when a new selection index is created. The scaling factor typically cannot 

be estimated directly, due to the absence of pedigreed, harvest age data. However, the scaling 

factor can be estimated as a function of the site phenotypic mean and variance. The purpose of 

this section is to 1) determine the relationship between mean and variance for breeding 

objective traits, in particular, form (sweep), branching and wood quality; and 2) make 

recommendations regarding data acquisition for breeding objective traits other than growth 

increment. 

Methodology 

We used data from the resource evaluation studies to evaluate variability in site means and to 

develop models of relationship between site mean and variance (McKinley et al. 2003, Cown 

et al. 2006, Blakemore et al. 2010). The major objectives of the resource evaluation studies 

were to assess Australian (i.e. Green Triangle Region, Tasmania and Western Australia) and 

New Zealand softwood plantation to determine the extent of variation in stem and wood 

quality characteristics. The studies also attempted to link such variations to site and/or 

silvicultural practices. The studies used standing tree tools (i.e. increment cores for wood 

density, ST300 for acoustic velocity, visual branch and resin assessment) to document within-

stand and between stand variation and provide data to assist prediction of timber quality. A 

subsequent processing study related stem and log features to grade recovery and value. These 

studies were used here to estimate relationship (i.e. linear and non-linear regression) between 

mean and variance for breeding-objective traits close to harvest age. 

Resource evaluation study in Green Triangle Region 

An outerwood density survey was undertaken across 58 sites in the Mt Gambier region, 

(McKinley et al. 2003) involving forest plantations owned by Auspine, Forestry SA, Green 

Triangle Forest Products and Hancock Victorian Plantations. 30 individual trees were 
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identified at each site and assessed for tree characteristics (Dbh, branching and internodes) 

and sampled for an outerwood density core. 

Ten sites were selected (2 or 3 per company) for a joint study of wood properties and sawing 

recoveries. Site selection aimed to include the range of regional variability in outer-wood 

density and assessed tree characteristics (Dbh, branch size and internodes). Six of the sites 

were chosen to represent the low and high outer-wood density extremes (<450kg/m3 and 

>500 kg/m3 respectively) and four sites for medium outer-wood density (451kg/m3 to 

499kg/m3). The sample sites were also chosen to represent an age range from < 25 years to > 

35 years (Table A2.1).  

 

 

Table A2.1 Summary of 10 selected sites with their age and density class selected for detailed 

wood property survey from McKinley et al. (2003) 

 Outerwood density class (kg/m
3
) 

Age (years) Low ( 450) Medium (451 – 499) High ( 500) 

 25 L (23) - HVP Porter’s M (25)- Auspine 

Nangeela 

NA 

26 - 30 L (26) - HVP Emerson’s M (28) - GTFP 

Kongorong 

H (27) - Auspine Byduke 

31 - 35 L (33) -GTFP Myora 

HQ 

M (31) - GTFP Kentbruk H (32) - FSA McGillivray’s 

 36 NA M (37) - FSA Long’s H (44) - FSA Caroline HQ 

 

Based on tree characteristic information collected during the outerwood density survey, 9 to 

16 trees were selected per site. The selected trees were felled, and the whole stem length was 

recorded and a DIRECTOR HM200 acoustic measure was made prior to sectioning the stem 

into 4.9m logs for the sawing study, and collecting discs for measurement of wood properties. 

One complete set of discs from all sampling heights (0m, 5m and subsequent 5m intervals 

down to a SED of approximately 100mm) was removed for basic density and spiral grain 

assessment 

Resource evaluation study in Western Australia  

Results of the forest survey of wood quality in Western Australian radiata pine, including 

information on Dbh, branching, outerwood density, and standing tree acoustics are given in 

Blakemore et al. (2010). The survey was conducted in the south-west of Western Australian, 

encompassing major site types, silvicultural regimes and crop ages. This approach is similar 

to that used in the Green Triangle and Tasmanian studies (McKinley et al. 2003; Cown et al. 

2006). The Western Australian softwood resource was divided into eight distinct regions 

(Sunklands, Harvey Coast, Hills, Blackwood Valley, Grimwade, Warren) from north of Perth 

to Pemberton and 42 P. radiata stands were assessed for sampling purposes. The sites 

sampled were selected from mid-rotation (17 – 24 years-old) and mature stands (25+years-

old). 

 At each location, 30 standing “crop” trees were selected (avoiding severely suppressed, 
severely swept, malformed, double leaders and dead trees). The following stem characteristics 

were assessed: 

• Dbh – Diameter at breast height over bark was measured (mm)  



64 

 

• Outerwood density - Two 5mm outerwood cores, 50mm in length, were collected at breast 

height  

• Standing tree acoustics - Two measurements per tree were undertaken using an ST300 time-

of-flight tool. 

• Branch Size - Thirty stems per plot were visually scored for branching in the butt, second, 

third and fourth logs assuming 5m log lengths using 0 (0), 1 (<3cm),2 (3-6cm), 3(6-9cm) and 

4(>9cm) scores 

 

Twelve trees were selected from each of four plots representing two mid-rotation and two 

late-rotation stands with contrasting branch size classification, based on Dbh and ST300 

classifications. In each plot, the total height of the tree, height to crown base, pruned height 

and stump height were measured on each of the selected trees after they were felled. Acoustic 

velocity of the whole stem was measured using the HM200 (FibreGen, Auckland, New 

Zealand) before logs, 4.85 m long, were prepared and discs were cut at the base and at the top 

of each log to allow density determinations. Knots were avoided where possible. Acoustic 

velocity was again measured with a HM200 tool on each log before maximum branch size 

and location was recorded. 

Benchmarking study in Tasmania 

The major objective of this study was to identify the sources of variation in wood properties 

affecting structural lumber recoveries across Tasmania (within and between sites) in crops 

within 10 years of harvest. The sources of variation sampled were environmental effects 

(latitude, altidude, rainfall, soil type) and between and within stem variation. 

Twenty-six sites of the two major companies, Rayonier and Norske Skog within ten years of 

harvest (20 to 31 years old) were selected for non-destructive field sampling across the main 

plantation forest areas of Tasmania. The assessments of 30 trees per site included visual 

observations of crown characteristics (branch size and distribution) and breast height 

diameter, standing tree acoustics (ST300 and IML Hammer) and wood density cores (5mm). 

Across twenty sites, a sample of five stems was felled for the measurement of stem and log 

acoustics (5m logs). In addition, wood discs (from breast height and 5m intervals from the 

butt to 100mm top diameter) were collected. 

Results and Discussion 

Mean-variance relationship 

The detailed results on variability of the stand means and the relationship between the mean 

and the variance in the Green Triangle Region (GTR), Tasmania (TAS) and Western 

Australia (WA) were given in the confidential report for the Milestone 7 of this project.  

Strong positive relationship between mean and variance was observed for sweep, and the 

relationship did not differ between log height-classes. Overall relationship was y=6.3x+5.2 in 

the GTR study. Maximum Branch Size measured on logs (GTR study) differed markedly 

among log height classes, ranging from: negative for 1st log to positive upper logs. Visually 

assessed Branch Size or Branch Index (WA and TAS studies) had an overall curvilinear 

relationship, mainly due to lower variance estimates for upper logs (possibly biased). Stiffness 

estimated on logs using HM200 – “Hitman” instrument differed among log height classes, 
ranging from: negative for to slightly positive for upper logs (GTR and TAS studies) (Figure 

20).  
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Figure A2.1 Relationship between phenotypic mean and variance for sweep in GTR study 

(upper), branch size score in WA study (middle), and Hitman velocity in TAS study (lower 

panel).   
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Data acquisition for breeding objective traits other than growth increment 

Stem form is routinely assessed visually, as a 4 or 6 point score, but absolute scale 

measurement of stem shape can be obtained using laser, theodolite or digital camera systems. 

The photographic system gives a quick and reliable measure of the three dimensional (3D) 

stem profile. However, the new ‘Zebedee’ 3D mapping device developed by CSIRO 

(https://wiki.csiro.au/display/ASL/Zebedee) is an accurate handheld laser device. Zebedee 

enables a user to generate a 3D map simply by walking through a desired location. Using 3D 

profiles of trunks, a series of indicators which characterize the form in the longitudinal 

direction can be developed.  

Branching traits in genetic trials are routinely assessed visually, as a score or as a branch 

cluster frequency to a certain height along the stem. In the past MARVL was routinely used in 

pre-harvest assessments of plantations. In new tools such as ATLAS Cruiser® tree description 

method takes stem assessment from a subjective to objective, and features of the stem are 

recorded quantitatively. Branch size is modelled over time using branch data from the 

assessments to obtain repeatable and consistent estimates. Absolute-scale of branch size is 

obtained, the probable error limits are reported for all estimates.  

More recently, new remote sensing measurements on trees and stands can provide previously 

unavailable data for site characterisation, precision silviculture and genetic deployment. For 

example, LIDAR can create topographical maps and reveal the slopes and sun exposure of 

land. Topographical information can be matched with the yield results. From this information, 

and using information on GF rating in New Zealand (Dungey et al. 2013), the land is 

categorized into high-, medium-, or low-yield zones. This technology is valuable to forestry 

managers because it also can indicate which areas can achieve the highest crop yield, or 

which areas are susceptible to pests and diseases.  

In addition to laser technology, measurement on logs at harvesting, including harvester data, 

or before processing (log scanners) can provide detailed information for site characterisation. 

Information on sweep can also be sourced from optical log scanner data. For example Ivkovic 

et al. 2006 obtained data from Tarpeena Sawmill (Auspine, Mount Gambier SA). The data 

sets included logs scanned in October and November 2003, and contained pattern-sorted logs 

and associated recovery, from logs of two lengths: 4.8 m and 6.0 m. All logs originated from 

clear-fall operations at two sites: Byjuke and Kongorong.  

Wood quality information can also be obtained from harvesters equipped with acoustic 

measurement of MoE (Dungey et al. 2013). Log yard measurements that are used for 

classification of logs can also be used for site characterisation, if the log site of origin is 

traced. Using all available data breeding and deployment zones (i.e. site types) can be defined 

for growth, form, branching and wood quality and the information supplied into optimisation 

tools such as SEEDPLAN® (STBA) or ATLAS®, Genotype Deployment (RPBC). 

Conclusions  

Based on the resource evaluation studies the relationship between mean and variance for 

breeding objective traits can be summarised: 1) The strongest positive linear relationship 

between mean and variance was found for sweep; 2) the relationship for maximum branch 

size was positive, but for visually scored branch size it was weak (and possibly biased) for 

upper logs, and 3) the relationship for Hitman velocity was generally weak, but slightly 

negative for the first log and weakly positive for logs 2-4.  

Management tools can be used to predict impacts of site, silviculture and genetics on tree 

growth, branching, wood properties, and hence on aggregated wood value. The predictive 

https://wiki.csiro.au/display/ASL/Zebedee
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models can project not only the size of individual stems, but also quality factors such as wood 

density, and position and size of branches. These models can be calibrated using actual 

measurements obtained from inventories. Several models to predict radiata pine properties 

other than growth were reviewed, and relationships between means and variance over a range 

of site types have been established. Such models are necessary for breeding (i.e. 

TREEPLAN®) and deployment tools (i.e. SEEDPLAN® and ATLAS®, Genotype 

Deployment). 

Recommendations 

1. Protocols should be established so that the traits other than growth can be predicted for 

different deployment site types 

2.  For standing tree form and branching ground based laser measurements will soon be 

feasible    

3. For wood quality acoustic stiffness measurements on logs at harvesting or in log yards 

are possible 

4. This information should be used in customised breeding value estimation by 

TREEPLAN® and site matching based on composite index traits in deployment tools 

such as SEEDPLAN® 
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Appendix 3.  Description of regional climates in Australia and 

New Zealand 

 
Figure  A3.1 Walter & Lieth climate diagrams of radiata pine plantations in Australia. The plots report region 

and the 10th to 90th percentile of the elevation range of plantations in the title. Below the title, mean annual 

temperature (MAT) and mean annual precipitation (MAP) are reported. Mean maximum temperature of the 

warmest month (MaxTWM) and mean minimum temperature of the coldest month (MinTCM) are shown next to 

the y-axis.  
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Figure A3.2 Walter & Lieth climate diagrams of radiata pine plantations in New Zealand. The plots report 

region and the 10th to 90th percentile of the elevation range of plantations in the title. Below the title, mean 

annual temperature (MAT) and mean annual precipitation (MAP) are reported. Mean maximum temperature of 

the warmest month (MaxTWM) and mean minimum temperature of the coldest month (MinTCM) are shown 

next to the y-axis.  
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