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Executive Summary 
 
How forest actual evapotranspiration (AET) rates compare to those of other land-uses in 
catchments containing plantations is highly contested.  This project aimed to develop a time 
series of remotely sensed AET grids with suitable spatial resolution and temporal frequency 
characteristics to adequately determine the relative and volumetric water-usage across two 
study sites that include forestry-managed plantations.  We develop this dataset by ‘blending’ 
information from high-spatial resolution (yet low temporal repeat, especially when 
considering clouds) Landsat imagery with the high-temporal frequency (yet low-spatial 
resolution) MODIS imagery.  The output series has high-spatial resolution and high-temporal 
frequency (i.e., the ‘best of both worlds’).  This series is then input to a remote sensing AET 
algorithm that allows AET to be estimated across the entire study sites at high-spatial 
resolution and high-temporal frequency.  The study sites are: (i) the Tumut region in NSW 
(27,170 km2); and (ii) the Green Triangle straddling the SA-Vic border (25,184 km2).  
Validation against all available in situ AET observations and stream-flow data demonstrated 
that the resultant Landsat-MODIS blended AET grids were highly accurate.  Evaluation with 
forestry management and ‘environmental variability’ datasets revealed that the blended AET 
grids were fit-for-purpose to extract land-use-specific water-usage time series from. 
 
Results showed that, volumetrically (GL/d), both agricultural and native vegetation areas used 
more water than forestry plantation at both study sites.  We found that the main forestry 
plantation land-use classes had the highest relative rates of AET (mm/d) at both sites, but that 
this assessment was biased due to the plantations being planted in high precipitation (P) areas.  
When land-uses were summarised by AET/P, the forestry plantation land-uses were found to 
be low water users at the NSW site (6th and 8th out of 9), which indicated that forestry 
plantation water use needs to be considered on a site-by-site basis and within hydrological 
context.  Further, we found that there was high variability of AET/P across the forestry 
plantations, so forestry water use should not be treated uniformly even over a single study 
site. 
 
These findings allow the forest industry to lead an ‘evidence-based’ informed debate 
regarding the role of forestry activity on water-usage at two key sites.  Having access to this 
information will allow the forestry industry to proactively work with Federal and State 
regulators to produce well-reasoned and quantitatively informed policy and management 
outcomes.  This will require well-targeted messages being developed as some regulators may 
have pre-conceived perceptions about forestry water-use.  Thus, highly transparent, 
scientifically-based evidence should help to move the discussions to a quantitative ‘evidence-
based’ footing.  Additionally, integrating the resultant Landsat-MODIS blended AET time 
series with forestry management and planning information should allow the forest industry to 
better understand: (i) water use efficiency; (ii) surface water and groundwater usage; (iii) the 
AET contribution from ephemeral water bodies; and (iv) the water-usage from a variety of 
forest management actions. 
 
To gain benefit from this research the forest industry could implement a range of activities.  
Firstly, to influence policy, the outcomes of this research need to be effectively 
communicated with relevant Federal and State regulators to ensure they understand the 
nuances of the output, especially with respect to normalised water-use and volumetric water-
use.  Secondly, the data can be used internally by the industry to develop water-accounts for 
forestry management practices, among others.  Thirdly, if the industry wishes to cross-check 
the regional AET estimates for these two sites then thermal-based surface energy balance 
methods could be implemented.  Fourthly, the method developed here could be applied to 
other forestry regions. 
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1 Introduction 
 
Evaporation is the phase change from liquid to gas.  Evaporation of water may occur from the 
Earth’s surface (e.g., the soil or a water body), through plant leaves (termed transpiration) or 
from rainfall intercepted by objects above ground (primarily vegetation in natural 
environments).  The combined term evapotranspiration (ET) covers these three components, 
though interception is not explicitly used in the compound word.  ET, like precipitation, has 
the dimensions of depth per time, and common units of mm/d.  When spatially integrated over 
an area (m2, such as a paddock, catchment, basin or country), the dimensions of ET become 
volume per time, and common units are m3/d or GL/d. 
 
The distinction between different forms of ET is important (McMahon et al., 2013).  Potential 
ET (PET) and pan evaporation are estimates and measurements, respectively, of atmospheric 
evaporative demand under environmental conditions having limitless access to water.  This 
means they are not representative of the actual ET (AET) when and where the surface is not 
saturated and/or when transfer from the surface limits AET rates.  PET can be readily 
calculated using commonly measured meteorological variables (Donohue et al., 2010), and 
pan evaporation can be readily measured (Roderick et al., 2009a, 2009b). 
 
AET, on the other hand, is time consuming to measure at a single location (Leuning et al., 
2012), with flux tower energy-balance closure being in the order of 30%. It is challenging to 
accurately estimate AET both spatially and temporally over large areas.  AET can be 
conceptualised as a two-stage process (Budyko, 1974; Donohue et al., 2007; Philip, 1957; 
Ritchie, 1972).  In the first stage, water is freely available (e.g., following sufficient 
precipitation or irrigation) and AET is limited largely by energy.  Energy-limited AET is 
primarily determined by meteorology, specifically the four principal meteorological drivers: 
(i) net radiation, (ii) air temperature; (iii) relative humidity and (iv) wind (McVicar et al., 
2012a; McVicar et al., 2012b; Penman, 1948).  In the second stage, water is the limiting 
factor.  As the soil dries and plants possibly close their stomata, AET de-couples from 
available energy.  The water-limited AET process is complex, depending more on biology 
and soil water content than energy-limited AET.  For most places and most times in Australia, 
AET is in the more complex water-limited stage. The concept of water-limited and energy-
limited evaporation has long been used to understand the role of evaporation in the water 
balance at both hydroclimatologic (Budyko, 1974; Donohue et al., 2007) and agronomic 
(Philip, 1957; Ritchie, 1972) space and time scales.  Herein the hydroclimatological terms 
‘energy-limited’ and ‘water-limited’ are used in preference to the equivalent agronomic terms 
of ‘constant rate stage (stage 1)’ and ‘falling rate stage (stage 2)’, respectively.  This is, 
because the energy-limit – akin to the concept of PET – is not constant as it is both temporally 
variable (influenced by both seasonal variability and climate-change related trends: e.g., 
Donohue et al., 2010) and spatially variable (related to topographic position: e.g., McVicar et 
al., 2007b). 
 
AET is the largest consumptive term of the catchment water balance in Australia (Zhang et 
al., 2016), so characterising its spatial and temporal variation is important for improved 
understanding of the catchment water balance.  This is especially the case for high water 
yielding catchments containing a variety of land-uses, like those containing forestry 
plantations. Fully understanding multiple land-use’s water-use, especially when land-use is 
changing, is important in Australia (e.g., Webb, 2012 and the references therein) and is a key 
issue in many other regions / countries with limited water resources including: (i) India 
(Calder, 1986; Calder et al., 1993); (ii) South Africa (Dye, 2013; Dye & Versfeld, 2007; 
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Everson et al., 2011); (iii) Brazil (Ferraz et al., 2013; Rodriguez-Suarez et al., 2011); and (iv) 
China (McVicar et al., 2007a; Zhang et al., 2008). 
 
van Dijk and Keenan (2007) reviewed the scientific basis for estimating plantation water use 
and its influence on the water balance, especially for catchments containing multiple land-
uses, and they concluded that the perceived negative impacts tend to be overstated.  To 
sensibly inform policy and management decisions (and public perception) of the hydrological 
impact of different land-uses on the catchment water balance (e.g., McVicar et al., 2007a; van 
Dijk & Keenan, 2007) land-use-specific AET estimates at a suitable spatial and temporal 
scale are required over catchments containing plantations.  Considering the size of catchments 
containing plantations and the long time series required to adequately characterise land-use-
specific AET dynamics, remote sensing analyses are needed (Everson et al., 2011).  Noting it 
is best if remotely sensed estimates, of any variable, are validated using independent good-
quality field data, the errors of which also have been characterised. 
 
There are three general remote sensing approaches to estimate catchment AET, including: (i) 
vegetation-index based methods (Glenn et al., 2010); (ii) thermal approaches (Kalma et al., 
2008); and (iii) hybrid approaches that combine information about vegetation vigour and 
environmental moisture to scale PET to AET (Guerschman et al., 2009).  In an Australia-wide 
intercomparison of eight AET products against two independent evaluation datasets (i.e., 
catchment water balance and flux tower measurements), with representative products from 
each of the three groups identified above, the hybrid approach was objectively determined to 
provide the optimal accuracy against the independent evaluation datasets (Glenn et al., 2011; 
King et al., 2011). 
 
Previously, the hybrid AET algorithm has only been implemented using a single-sensor 
satellite monitoring system, like Landsat (containing the TM or ETM+ sensors) or Terra 
(containing the MODIS sensor).  All single-sensor monitoring systems have inherent 
‘domain-characteristics’ in the spectral, radiometric, spatial and temporal domains.  The 
remotely sensed data are defined by the extent, resolution and density in each domain, 
resulting in a high level data summary (Table 1).  The high-level relevant ‘domain-
characteristics’ for both Landsat and MODIS are illustrated in Figure 1.  Landsat and MODIS 
sensor specific details for the bands relevant for the AET algorithm used here are provided in 
the Methods section (see Table 4 of Emelyanova et al., 2012 for reflective 'domain-
characteristic' information for both Landsat and MODIS). 
 
Table 1. Domain-characteristic elements of remote sensing data arrays; from Emelyanova et 
al. (2013), modified from McVicar et al. (2002). 
Domain  Characteristic 

   Extent Resolution Density 
Spectral   

Portion(s) of the EMS 
being sampled 

 
Bandwidth(s) a 

 
Number of bands in a 
particular portion of the 
EMS b 

Radiometric  Dynamic range of 
radiances (min and max 
radiance per band) 

Change in radiance due 
to change by one 
digital number 

Number of bits used 
across the dynamic 
range of radiances 

Spatial  Area covered by the 
image 

Pixel size acquired c Complete d 

Temporal  Recording period over 
which the data are 
available e 

Period of data 
acquisition f 

Satellite repeat 
characteristics g 

a The narrower bandwidth the higher the spectral resolution 



 

3 
 

 b For example, hyperspectral sensors (e.g., Hyperion) have higher spectral density than broadband 
instruments (e.g., Landsat TM/ETM+) though they sample similar EMS extents. 
c The smaller the pixel size the higher spatial resolution. 
d This contrasts with the low spatial density of ground-based sampling, for example, meteorological stations. 
e For some remotely sensed systems (e.g., AVHRR and Landsat TM) data have been recorded near-
continuously for ~30 years. 
f For remotely sensed images this is a matter of seconds, which contrasts with meteorological data such as 
daily rainfall totals. 
g For some applications using optical (i.e., reflective and thermal) data the availability of cloud-free images 
is an important consideration.  Whereas the satellite repeat characteristics do not change, cloud cover will 
change the effective temporal density of a site over time. 

 

Figure 1. MODIS vs. Landsat TM data domain-characteristic elements: (a) temporal density 
and spatial resolution; (b) spectral extent, resolution and density (darker colours represent the 
MODIS bands and lighter colours the Landsat TM bands); (c) radiometric extent, resolution 
and density for the TM and MODIS red bands. 
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Ultimately all single-sensor monitoring systems are constrained by the ‘domain 
characteristics’ expressed in Table 1 (e.g., Ludwig et al., 2007; Phinn, 1998).  To overcome 
this constraint, two or more remotely sensed data sources with complementary data 
frameworks can be combined.  This process is often called data ‘blending’ or data ‘fusion’.  
When the data are remote sensing images, the word ‘data’ is often replaced with the word 
‘image’. 
 
A number of image blending algorithms have recently been developed that exploit multi-
sensor remote sensing data to better capture changes of surface reflectance.  Some examples 
include: (i) Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM; Gao et al., 
2006); and (ii) the Enhanced version of STARFM (ESTARFM; Zhu et al., 2010).  These 
algorithms blend high spatial resolution imagery (e.g., Landsat TM/ETM+) with high 
temporal density imagery (e.g., MODIS or AVHRR) resulting in a simulated image with high 
spatial resolution and high temporal density characteristics to better capture spatial and 
temporal dynamics (i.e., the blending algorithms seek to gain the “best of both worlds”).  The 
blending algorithms assume that any spectral and radiometric differences between sensors 
introduce negligible differences, and this assumption is extended to all algorithms used 
herein.  A high level overview of the interactions between the Landsat and MODIS imagery 
to blend or simulate a Landsat-like image is provided in Figure 2. 
 

time

Landsat(t2)

5 Oct 2000 9 Jan 2001 30 Mar 2001
2tst1t

simulated Landsat(ts)Landsat(t1)

MODIS(t1) MODIS(ts) MODIS(t2)

(a)

Spatial resolution

500 m

25 m

 
 
Figure 2.  Generic overview of Landsat-MODIS blending.  Simulation of a Landsat-like 
image is performed from two Landsat-MODIS pairs (t1 and t2) and one MODIS image 
observed at ts: t1 < ts < t2.  The simulated image is indicated by the yellow border.  The 
direction of information flow is represented by the arrows. 
 
When the blending algorithms are run multiple times this allows the generation of a 
temporally dense time-series of Landsat-like simulated images that can be used to in-fill gaps 
present in the Landsat data time-series.  These gaps are due to both the: (i) 16-day revisit 
characteristics of the Landsat series of satellites; and (ii) more relevant for most areas where 
(non-irrigated) forestry activity is conducted is the high likelihood of optical remote sensing 
being corrupted by cloud. 
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The two-fold objective of the project was to develop a Landsat-MODIS (LM) blended AET 8-
day time-step dataset from February 2000 through December 2011, validated and evaluated 
against available field data to assess: (i) the magnitudes and dynamics of land-use-specific 
water use for entire catchments containing plantations; and (ii) whether there are other high-
water use activities in the selected catchments/regions that use as much, or possibly even 
more, water as plantation forestry but are yet not explicitly considered under the National 
Water Initiative (Sinclair Knight Merz et al., 2010).  Blending Landsat and MODIS data will 
result in optimal domain characteristics, (i.e., high spatial resolution and temporal density). 
 
Inherent in the above objective statements is that these improved domain characteristics 
should be obtained without decreasing AET accuracy.  To assess any potential accuracy loss, 
the blended AET model, the Landsat-only AET model, and the MODIS-only AET model will 
be assessed against validation and evaluation datasets.  It is important to note, that the domain 
characteristics of Table 1 and Figure 1 are not the same as accuracy.  Accuracy is calculated 
by comparing model output to some reference, or validation datasets.  Given our AET focus, 
here, we define validation data as measurements that are representative of AET to first-order 
and in the same physical units, like flux tower observations, for example (discussed in detail 
below).  We define evaluation data as measurements that are not acquired in the same 
physical units as AET yet are related to the process of AET and provide a means of assessing 
AET from a catchment management and/or forestry perspective. 
 
To date, most blending research using STARFM or ESTARFM, has focused on: (i) the 
performance of blending algorithms in typical remote sensing units (e.g., surface reflectance); 
or (ii) generating simulated images to better characterise vegetation dynamics (Emelyanova et 
al., 2013; their Table 8).  Only nine papers used either the STARFM or ESTARFM 
algorithms to generate high temporal-frequency and high spatial-resolution AET grids (Table 
X).  All these papers use daily AET grids at the high and low spatial resolutions as input to 
the blending algorithm, these AET grids are generated from thermal-based remotely sensing 
AET models, including the DisALEXI model (Anderson et al., 2012; Anderson et al., 2007; 
Norman et al., 2003), or for ETWatch SEBS (Surface Energy Balance System, Su, 2002, to 
generate the AET grids using MODIS and AVHRR data) or SEBAL (Surface Energy Balance 
Algorithm for Land, Bastiaanssen et al., 1998, to generate the AET grids using Landsat and 
ASTER data) algorithms.  The review presented in Table 2 highlights three novel aspects of 
our research.  Firstly, ours is the first research to use simulated reflective data, in this case 
indices, as input into an AET algorithm (all other applications blended thermal-based AET 
grids). Secondly, ours is the first research to use ESTARFM when producing high temporal-
frequency and high spatial-resolution AET grids (others have used ESTARFM for input to 
heavy-duty biophysical modelling).  While no other papers have used ESTARFM in AET 
modelling, it has been used to generate input for several other papers modelling complex 
biophysical processes including: (i) gross primary productivity (GPP; Chen et al., 2010); (ii) 
net ecosystem exchange (NEE; Fu et al., 2014); and (iii) Leaf Area Index (LAI) and above-
ground biomass (Dong et al., 2016).  Additionally, when compared with four other blending 
algorithms (including STARFM) in a study site with complex terrain ESTARFM generated 
the most accurate results (Wu et al., 2014); though this finding is not universal as blending 
algorithm performance depends on the relative amounts of spatial and temporal variance 
(Emelyanova et al., 2013; Jarihani et al., 2014).  Thirdly, our study sites cover a much larger-
longer spatial-temporal domain than all previous studies.  In that, our study sites are larger 
than all previous studies and we cover a longer temporal extent than all previous studies and 
we use a greater number of high-resolution input grids than all previous studies (see Table 2 
for full details). 
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Table 2. Review of studies that have used STARFM or ESTARM when generating high temporal-frequency and high spatial-resolution AET grids. 
Records are sorted chronologically then alphabetically.  When there are two study sites reported in a single paper these are identified with an (A) and 
(B) in the relevant columns as required. 
 
N Reference / Blending 

Algorithm 

Region / Landscape specifics Remote Sensing input / Study period / 

study area (km2) 

RSing Approach to 

estimate / AET Model 

Key results for AET accuracy 

1 Anderson et al. (2011 

/ STARFM, their 

Figure 4) 

Orlando, Florida, USA / Irrigated 

fields, urban and wetland areas 

Thermal-based AET estimates from 2 
Landsat-MODIS pairs, 9 daily MODIS 
images / Nov–Dec 2002 / 8432 

Thermal / ALEXI-

DisALEXI 

Visual comparison with MODIS based DisALEXI output 

2 Liu et al. (2011 / 

STARFM, their 

Section 2.3.4) 

Miyun county, Beijing, China / 

Forest, Reservoir and farmland 

Thermal-based AET estimates from 9 
MODIS images and 1 Landsat image / May 
2007 / 2229 

Thermal / ETWatch 30 m monthly AET estimates had r2 = 0.91 when compared to 1km 

MODIS monthly AET estimates (their Figure 4).  STARFM better 

captures both 30m AET spatial range when compared to 3 other 

blending approaches (their Table 2). 

3 Jia et al. (2012 / 

STARFM, their 

Figure 2) 

Hai River Basin, China / 

Farmland, forest and grassland 

Thermal-based AET estimates from MODIS 
and AVHRR Penman Re-scaled daily AET 
(cloudy days) and TM and ASTER daily 
AET (clear days) / 2002 to 2009 / 15,619 * 

Thermal / ETWatch Three flux towers, 30 m monthly AET estimates r2 = 0.88 (their 

Figure 7d) 

4 Wu et al. (2012 / 

STARFM, their 

Section 2.2.3) 

Hai River Basin, China / 

Farmland, forest and grassland 

Thermal-based AET estimates from MODIS 
and AVHRR Penman Re-scaled daily AET 
(cloudy days) and TM and ASTER daily 
AET (clear days) / 2002 to 2009 / 100 # 

Thermal / ETWatch Five flux towers, the daily and monthly absolute deviations 

between field measurements and ETWatch calculations were -

3.8% and -2.8%, respectively.  Using three large aperture 

scintillometers the daily and monthly absolute deviations between 

field measurements and ETWatch calculations were -1.9% and 

8.2%, respectively (their Table 8). 

5 Cammalleri et al. 

(2013 / STARFM, 

their Figure 2) 

Walnut Creek catchment, central 
Iowa, USA / Farmland (corn and 
soybean) 

Thermal-based AET estimates from MODIS 

AET 1km daily and 5 cloud-free Landsat 

30m / May–Sep 2002 / 51 

Thermal / ALEXI-

DisALEXI 

At 8-sites Landsat only AET estimates had a relative error and 

seasonal cumulative AET of 14.2% and -20.2 mm, respectively. 

For Landsat-MODIS AET estimates these reduced to 11.0% and -

7.5 mm. Landsat-MODIS blended AET estimates (bias 2%) 

outperformed Landsat only AET estimates (bias -10%) of 

cumulative AET at 8 sites (their Figure 7 and paragraph 40) 
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N Reference / Blending 

Algorithm 

Region / Landscape specifics Remote Sensing input / Study period / 

study area (km2) 

RSing Approach to 

estimate / AET Model 

Key results for AET accuracy 

6 Cammalleri et al. 

(2014 / STARFM, 

their Figure 1) 

(A) Bushland, Texas, USA / 
Farmland (irrigated and rainfed 
cotton) 
(B) Mead, Nebraska, USA / 
Farmland (corn) 

(A) Thermal-based AET estimates from 

MODIS 1km daily and 5 cloud-free Landsat 

30m / Jun-Aug 2008 / 0.047 

(B) Thermal-based AET estimates from 

MODIS 1km daily and 6 cloud-free Landsat 

30m / May-Sep 2003 / 1.67 

Thermal / ALEXI-

DisALEXI 

(A) Relative error (RMSE / Mean of observations) of daily AET 

from 5 dates for 3 flux towers = 10.1% (their Table 1) 

(B) Relative error (RMSE / Mean of observations) of daily AET 

from 5 dates for 3 flux towers = 12.3% (their Table 1) 

7 Ring (2014 / 

STARFM, their page 

25) 

(A) Tonzi Ranch, California, USA 
/ Oak savannah, farmland and 
urban 
(B) Metolius Intermediate Pine 
Forest, Oregon, USA / Ponderosa 
pine forest, dwarf shrub, farmland 
and urban 

(A) Thermal-based AET estimates from 12 

Landsat scenes and numerous MODIS 

scenes / 28 Jun to 2 Oct 2013 / 1600 

(B) Thermal-based AET estimates from 4 

Landsat scenes numerous MODIS scenes / 

10 Jun to 13 Aug 2013 / 1240 

Thermal / ALEXI-

DisALEXI 

(A) Daily AET bias compared at two flux towers was -2.6 mm/day 

(their Tables 3.1 and 3.2). 

(B) Daily AET bias compared at one flux tower was -2.4 mm/day 

(their Table 3.3). 

8 Semmens et al. (2016 

/ STARFM, their 

Figure 1) 

Central Valley, California, USA / 
Wine grapes 

Thermal-based AET estimates from 22 

Landsat-8 scenes and MODIS imagery / 

Apr-Oct 2013 / 16 

Thermal / ALEXI-

DisALEXI 

Compared with flux tower AET, the fusion estimates had r2 values 

of 0.67 (daily) and 0.76 (weekly) for Site 1 and r2 values of 0.46 

(monthly) and 0.49 (weekly) for Site 2 (their Table 2). 

9 Yang et al. (2016 / 

STARFM, their 

Section 2.2.2 and 

their Figure 2) 

Parker Tract, lower coastal plain, 

North Carolina, USA / 

Commercially managed loblolly 

pine (Pinus Taeda) plantation and 

AET compared with other land-

uses 

Thermal-based AET estimates from 8 

Landsat scenes (1 Landsat-7 and 7 Landsat-

8) and numerous MODIS scenes / Feb-Nov 

2013 / 822 (their Figure 3 and 11) 

Thermal / ALEXI-

DisALEXI 

Two sites with flux towers.  NC1 (established in 1991 and thinned 

in 2010) provided relative errors of AET over the study period of 

0.9%, 1.3%, 2.7% and 3.2%, respectively for STARFM, Landsat 

only, MODIS smoothed and ALEXI.  For NC2 (harvested in 2012 

and established in 2013) these statistics were 5.8%, 9.7%, 84.8% 

and 58.0%.  Their Table 3. 

* While the Hai River Basin covers 318,000 km2, using STARFM the high resolution AET grids were only developed for 16 counties (their paragraph 15) covering 15,618.85 km2 (pers. comm. Shaomin Liu, Beijing Normal 
University, 26 June 2016). 

# While the Hai River Basin covers 318,000 km2, in their Table 1 the largest spatial extent reporting both resolutions of imagery is the watershed with cover 10,000 m, so assuming this direction is covered in both directions 

the largest area STARFM was used to generate high resolution AET grids is 100 km2. 
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2 Methodology 
 
A general overview of the major steps of the study is shown in Figure 3.  These steps also 
provide a general outline of the current report.  We aim to keep the details of this report at a 
higher level, providing the scientific details.  A companion report provides the technical 
details required to implement the study (Van Niel et al., 2016). 
 

 
Figure 3.  The general overview of the major steps of this study are shown. 
 
There were six main steps conducted to complete this study; they are briefly outlined below. 

1. Select the study sites which given the objectives of the study means selecting 
catchments that contain plantations and other land-uses allowing for land-use-specific 
rates of AET to be calculated.  To reflect the range of plantation activity in Australia, 
and to maximise the range of environments where the project was performed, two 
contrasting study sites where identified.  Briefly they are: (i) in the vicinity of Tumut, 
NSW; and (ii) the Green Triangle area straddling the South Australia and Victoria 
border. 
 

2. Pre-process the datasets.  The main data sets involved in the project were: (i) remotely 
sensed data (comprised of Landsat and MODIS); and (ii) field data (comprised of 
validation data and evaluation data).  The validation datasets included a flux tower 
located in the Tumut study site, stream gauge data located in both study sites, and in 
situ measurements of AET in the Green Triangle site.  Evaluation datasets included 
fire scars, forestry management and age class datasets.  More emphasis is placed on 
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validation than evaluation in this report. 
 

3. Topographic correction needed to be performed on the high resolution Landsat data 
that was obtained from Geoscience Australia.  Without performing this topographic 
correction the resulting AET were heavily impacted by artefacts due to topography, 
whereas once performed the AET results were not driven by topography. 
 

4. The topographically corrected Landsat imagery and MODIS imagery were used to 
calculate two remotely sensed indices needed in the AET algorithm and these were 
then blended to provide high-spatial-resolution and high-temporal-frequency indices 
that were input to the AET algorithm.  If there is cloud present in any of the five input 
images used to simulate the Landsat-like indices then data-gaps are present in the 
resultant blended output.  To overcome this problem we developed a ‘hierarchical 
blending approach’ using input imagery with minimal amounts of cloud cover (yet 
recorded with a long gap between them) as input to the blending to infill the imagery 
which had more substantiative amounts of cloud cover (yet with as short a period 
between images as possible).  The output from this step were 8-day AET estimates 
covering both study sites. 
 

5. Next the 8-day 25-m AET grids were validated (assessed against field observations 
with the same units) and evaluated (compared with field observations with related 
units).  The validation provides a means of assessing the accuracy of the 8-day 25-m 
AET grids.  The evaluation provides examples of how these grids can be used to 
monitor forestry practices and to inform forestry management decisions. 
 

6. Finally, land-use-specific AET rates were determined for the two study sites.  These 
are presented relatively (normalised for the different areas of different land-use) and 
are also volumetrically (taking into account the different areas of different land-use). 

 
More detail about these major steps is provided below. 

2.1 Study sites 
This project has two study sites purposefully chosen (in consultation with the project steering 
committee) to have different terrain and catchment characteristics to test the blending-AET 
algorithms over the wide range of environmental conditions that plantations are grown in 
Australia.  Their locations are shown Figure 4.  To ensure that we had a wide-range of land-
covers, each site comprised parts of two Landsat scenes (Figure 4), and as MODIS imagery is 
Australia-wide there was no need to consider MODIS imagery when defining the 
geographical extent of the two study sites.  These study sites are generally much larger than 
sites used to test AET-blending algorithms, as pointed out previously (Table 2), and hence 
required some ‘industrial-strength’ near-operational computing solutions to be implemented 
to process the large numbers and to store the large volumes of imagery used and generated in 
the project. 
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Figure 4.  Study site locations for the: (a) NSW site and (b) SA site.  The green rectangles 
define each study site, whereas the numbered blue and red rectangles are the images Landsat 
with the ‘Path/Row’ coordinates provided.  For both sites forestry land-use areas (State Forest 
for NSW and gross plantations for SA) are shaded pink.  In (a) the location of the 
Tumbarumba flux tower is indicated by the blue star.  In (b) the locations of the site water use 
studies are indicated by green dots (for those studies performed in Pine plantations) and blue 
dots (studies performed in Blue Gum plantations).  The inset map shows the locations of the 
two study sites (the green rectangles) relative to Australia with plantations coloured red. 
 
 
The first site (Figure 4(a)) is centred on the plantation forestry catchments in the vicinity of 
Tumut, NSW.  In this report it is called ‘Tumut’ or ‘NSW’ interchangeably.  This site is 190 
km north-south and 143 km east-west, covering 27,170 km2.  The majority (26,252 km2) is 
located in NSW, with minor parts being located in the Australian Capital Territory (641 km2) 
and Victoria (277 km2).  This study site is located in upland catchments that form the eastern 
edge of the Murray-Darling Basin, the majority of the study site is located in the 
Murrumbidgee catchment, with rivers predominately draining west.  The study site extends 
from Temora in the north-west to Adaminaby in the south-east.  The elevation of the NSW 
site ranges from 171 to 1,896 m, the mean elevation is 574 m, with a standard deviation of 
334 m; see Figure 5(a).  Aspects are primarily east and west given the primarily north-south 
linear geological features contained in the NSW site (Figure 5(b)).  The mean slope is 7.03°, 
with a standard deviation of 6.94°, the maximum slope is almost 70° located in the 
mountainous south-east of the NSW site (Figure 5(c)). 
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(a) DEM (b) Aspect 

  
173 1894 

m 
0 360° 

(c) Slope  

 

 
 
 
 
 
 
 
 
 
 

0 69.3° 
 
Figure 5. Topographic characteristics for the NSW site.  Part (a) shows the elevation (m 
above mean sea level), (b) is the aspect (° from north) and (c) is the slope (° from horizontal).  
The elevation data are the Shuttle Radar Topographic Mission (SRTM) Digital Elevation 
Model (DEM-S) as processed by Gallant et al. (2011). 
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Using all-Australian climatic grids, which are subject to observational errors and geostatistical 
uncertainty (Jones et al., 2009), from 2000 to 2011, Figure 6 shows the mean annual site 
precipitation (P) ranges from 430 to 1500 mm/year.  There is a strong P gradient across the 
site; the maximum P is associated with the Great Dividing Range and minimum P is around 
Temora.  The mean annual Priestley-Taylor PET (Donohue et al., 2010) for the study site 
ranges from about 1250 to 1700 mm/year.  The Aridity Index (AI), calculated as PET/P, 
ranges from 0.83 to 3.66 (Figure 6).  If an area has an AI value greater than 1.0, then the AET 
from this place is deemed to be ‘water-limited’ (as P < PET).  In contrast when AI is below 
1.0, then the AET is said to be ‘energy-limited’ (as P > PET); see Donohue et al. (2007) and 
McVicar et al. (2012b) for an introduction to the Budyko framework which is built on the 
premise of limits to AET.  Seasonally, the climate for the NSW site is relatively drier in 
summer and autumn with wettest conditions experienced in winter and early spring 
(especially in the higher elevation areas in the study site), with PET again increasing by late 
spring.  This is clearly shown in Figure 7 and the long-term seasonal study site ranges for P, 
PET and AI are provided in Table 3. 
 
Table 3. Mean seasonal climate data ranges for the NSW site; for images see Figure 7. 
 
Season P Range 

(mm / season) 
PET Range 
(mm / season) 

AI Range 
(PET/P) 

DJF 117 – 334 561 – 726 1.693 – 5.558 
MAM 69 – 258 239 – 329 0.929 – 4.561 
JJA 111 – 478 82 – 153 0.180 – 1.162 
SON 110 – 452 352 - 495 0.789 – 4.147 
 
Next we briefly characterise the vegetation dynamics of the NSW site.  This is performed by 
temporally decomposing (Donohue et al., 2009) the time-series of monthly MODIS 250 m 
Collection 5 imagery.  This decomposition splits the monthly time-step vegetation coverage 
signal (derived from the Normalised Difference Vegetation Index (NDVI); Donohue et al., 
2008) into the persistent and recurrent components.  Respectively, these components 
generally represent trees and grasses, though perennial pastures will be identified as persistent 
and they don’t have a strong seasonal signal like other grasses such as rain-fed crops and 
pastures.  In Figure 8(a) the forested areas (both native and plantations) are clearly shown by 
the high vegetation cover in the annual persistent signal, and it also shows the pasture and 
cropping land-use classes which have a low annual persistent component (Figure 8(a)) and 
moderate coverage in the annual recurrent signal (Figure 8(b)).  The seasonal dynamics are 
also shown for the recurrent component.  The annual cycle of low recurrent coverage in 
summer (Figure 8(c)), slightly increasing in autumn (Figure 8(d)), with more growth 
occurring in winter (Figure 8(e)) and most growth in spring (Figure 8(f)) are clearly visible.  
Note: similar seasonal dynamics are not shown for the persistent component, which by 
definition, is persistent throughout the year, so there is negligible (essentially none) temporal 
variability to illustrate. 
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(a) P (b) PET 

  
432 1707 

mm / year 
432 1707 

mm / year 
(c) AI  

 

 
 
 
 
 
 
 
 
 
 

0.83 3.66 
 
Figure 6. Mean annual climate data for the NSW site.  Part (a) shows the 2000 to 2011 mean 
annual site precipitation (P), (b) is the mean annual Priestley-Taylor PET, and (c) is the mean 
annual Aridity Index (AI=PET/P).  To enable direct comparison P and PET have the same 
stretch. 
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Season P PET AI 

 
 
 

DJF 

   
 
 
 

MAM 

   
 
 
 

JJA 

   
 
 
 

SON 

   
 69 726 

mm / season 
69 726 

mm /season 
0.18 5.56 

 
Figure 7. Mean seasonal climate data for the NSW site.  Part (a) shows the 2000 to 2011 mean 
seasonal site precipitation (P), (b) is the mean seasonal Priestley-Taylor PET, and (c) is the 
mean seasonal Aridity Index (AI=PET/P).  To enable direct comparison P and PET have the 
same stretch. 
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 (a) Annual fraction persistent (b) Annual fraction recurrent 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

0.95 

 
0 
 

  
(c) DJF fraction recurrent (d) MAM fraction recurrent 

  
(e) JJA fraction recurrent (f) SON fraction recurrent 

  
 
Figure 8. MODIS-based vegetation dynamics of the NSW site.  Parts (a) and (b) show the 
annual persistent and recurrent components, respectively.  Parts (c) to (e) are the seasonal 
recurrent components, for summer, autumn, winter and spring, respectively. 
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The second site is the Green Triangle area that straddles the South Australia and Victoria 
border; with Mount Gambier being a major regional centre located in the study site.  In this 
report it is called ‘Green Triangle’ or ‘SA’ interchangeably.  This site is 151 km north-south 
and 217 km east-west covering 32,767 km2.  There is 7,583 km2 of ocean in the site (which is 
masked out in all processing), and the remaining land area (i.e., 25,184 km2) is split across 
South Australia (9,732 km2) and Victoria (15,452 km2).  This study site is located in lowland 
catchments with a relative flat topography; there are exceptions in both SA and Victoria with 
‘The Grampians’ (located in western Victoria the eastern part of our study site) having the 
highest local relative relief in this study site.  The study site extends from Robe in the north-
west to Warrnambool in the south-east.  The elevation of the SA site ranges from sea-level to 
540 m, the mean elevation is 103 m, with a standard deviation of 75 m; see Figure 9(a).  
Aspects are well distributed, primarily controlled by the north-west to south-east linear 
geological features (both mountainous and due to the receding coastline in the Quaternary 
geological period) contained in the SA site (Figure 9(b)).  The mean slope is 2.57°, with a 
standard deviation of 3.52°, the maximum slope is almost 90° located in the mountainous 
north-east of the SA site (in other words western Victoria; Figure 9(c)). 

(a) DEM (b) Aspect 

  
0 539 

m 
0 360° 

 
(c) Slope  

 

 

0 90°  

Figure 9. Topographic characteristics for the SA site.  Part (a) shows the elevation (m above 
mean sea level), (b) is the aspect (° from north) and (c) is the slope (° from horizontal).  The 
elevation data are the Shuttle Radar Topographic Mission (SRTM) Digital Elevation Model 
(DEM-S) as processed by Gallant et al. (2011). 
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Summarising the all-Australian climatic grids (Jones et al., 2009) from 2000 to 2011, Figure 
10 shows the mean annual site P ranges from 450 to 850 mm/year.  There is an influential P 
gradient across the site, with higher P received near the coast and declining inland to the 
north-east of the site.  The mean annual Priestley-Taylor PET (Donohue et al., 2010) for the 
study site ranges from about 1100 to 1600 mm/year.  The Aridity Index (AI; introduced above 
in the NSW site introduction), calculated as PET/P, ranges from 1.24 to 3.43 (Figure 10).  
Seasonally, the climate for the SA site is, climatological, much drier in summer and autumn 
with wettest conditions experienced in winter and early spring, with PET again increasing by 
late spring.  This is clearly shown in Figure 11 and the long-term seasonal study site ranges 
for P, PET and AI are provided in Table 4. 
 
Table 4. Mean seasonal climate data ranges for the SA site; for images see Figure 11. 
 
Season P Range 

(mm / season) 
PET Range 
(mm / season) 

AI Range 
(PET/P) 

DJF 74 - 148 440 – 699 3.663 – 7.900 
MAM 76 – 178 197 - 316 1.211 – 3.817 
JJA 152 – 341 89 - 180 0.268 – 0.820 
SON 113 - 211 320 - 477 1.597 – 3.954 
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(a) P (b) PET 

  
450 1609 

mm / year 
450 1609 

mm / year 
(c) AI  

 

 

1.23 3.43  

 
Figure 10. Mean annual climate data for the SA site.  Part (a) shows the 2000 to 2011 mean 
annual site precipitation (P), (b) is the mean annual Priestley-Taylor PET, and (c) is the mean 
annual Aridity Index (AI=PET/P).  To enable direct comparison P and PET have the same 
stretch. 
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Season P PET AI  
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MAM 

   
 
 
 

JJA 

   
 
 
 

SON 

   
 74 699 

mm /season 
74 699 

mm /season 
0.27 7.90 

 
Figure 11. Mean seasonal climate data for the SA site.  Part (a) shows the 2000 to 2011 mean 
seasonal site precipitation (P), (b) is the mean seasonal Priestley-Taylor PET, and (c) is the 
mean seasonal Aridity Index (AI=PET/P).  To enable direct comparison P and PET have the 
same stretch. 
 
Next we briefly characterise the vegetation dynamics of the SA site.  Again, this is performed 
by temporally decomposing (Donohue et al., 2009) the time-series of monthly MODIS 250 m 
Collection 5 imagery.  This decomposition splits the monthly time-step vegetation coverage 
signal (derived from the Normalised Difference Vegetation Index (NDVI); Donohue et al., 
2008) into the persistent and recurrent components.  In Figure 12(a) the forested areas (both 
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native and plantations) are clearly shown by the high vegetation cover in the annual persistent 
signal, and it also shows the pasture and cropping land-uses which have a low annual 
persistent component (Figure 12(a)) and moderate coverage in the annual recurrent signal 
(Figure 12(b)).  The seasonal dynamics are also shown for the recurrent component.  The 
annual cycle of low recurrent coverage in summer (Figure 12(c)), slightly increasing in 
autumn (Figure 12(d)), with more growth occurring in winter (Figure 12(e)) and most growth 
in spring (Figure 12(f)) are clearly visible.  Again, the seasonal dynamics are not shown for 
the persistent component, which is persistent throughout the year. 
 

 (a) Annual fraction persistent (b) Annual fraction recurrent 
 
 
 
 
 
 
 
 
 
 
 
 
 

0.95 

 
0 
 

  
(c) DJF fraction recurrent (d) MAM fraction recurrent 

  
(e) JJA fraction recurrent (f) SON fraction recurrent 
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Figure 12. MODIS-based vegetation dynamics of the SA site.  Parts (a) and (b) show the 
annual persistent and recurrent components, respectively.  Parts (c) to (e) are the seasonal 
recurrent components, for summer, autumn, winter and spring, respectively. 
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2.2 Datasets 
The three characteristics of remote sensing data of most relevance to this report are: (i) 
temporal density; (ii) spatial resolution; and (iii) spectral density, see Table 1 and Figure 1 for 
details.  Remote sensing datasets are available at regular time intervals, which define their 
temporal density (e.g., 16-day repeat cycle for Landsat).  They are also made available on a 
regular spatial interval at some nominal spatial resolution (e.g., 25 m by 25 m for Landsat 
data available within Australia).  For optical sensors, multiple spectral wavebands of data are 
also usually collected from three sensors observing the visible (VIS) and near infrared (NIR), 
the shortwave infrared (SWIR) and the thermal infrared (TIR) regions, respectively, thus 
defining the spectral density (the number of bands over a particular portion of the electro-
magnetic spectrum) and spectral resolution (the width of each of the bands).  Here, we adapt 
the general nomenclature of Sun et al. (2010), where a multi-spectral spatio-temporal remote 
sensing dataset of surface reflectance is expressed as a three-dimensional array: 

ijw m n q
ρ

× ×
 =  ρ , 

(1) 

where i=1,m time intervals, j=1,n spatial cells, and w=1,q spectral wavebands.  The bolded 
variable denotes an array, and the symbol ρ expresses surface reflectance (proportion).  Eq. 
(1) results in a data array useful for describing any given remote sensing platform, having 
various specifications of m, n, and q.  That is, having specific temporal density, spatial 
resolution, and spectral density.  Different sensors also have specific radiometric 
characteristics (extent, resolution, and density) and spectral resolution, but these 
characteristics are not expressed in the equation.  Spatial extent is defined by the study site 
boundary and temporal extent is limited by the lifespan of the sensor.  For ease of 
interpretation, the indexes (i, j, and w) will be left off of symbolic notation whenever possible, 
except where they are explicitly required to improve communication.  Herein, bolded 
variables represent some form of data array whereas variables that are unbolded represent a 
scalar value, which allows better interpretation of the equations used in this report.  Not all 
data arrays expressed in this report contain the spectral dimension.  For example, the spatio-
temporal array of precipitation has only the spatial and temporal dimensions and would be 
expressed by ij m n

P
×

 =  P .  In these cases, the representation of such an array will also simply 
be presented as a bolded variable.  It was deemed a suitable level of discrimination to allow 
immediate discrimination of arrays from scalar values.  Specifics of the arrays will be noted in 
the appropriate place as the variables are presented. 
 

2.2.1 Remote sensing data 
The Landsat data used were from the Australian Reflectance Grid 25 (ARG25) product v1 
(http://www.ga.gov.au/corporate_data/75062/Australian_Reflectance_Grid_ARG25_Product_
Description_V1-0.pdf, accessed 31-July-2015).  ARG25 v1 provides a standardised surface 
reflectance of Landsat TM/ETM+/OLI data over the entire Australian landmass.  The data are 
atmospherically and bi-directional reflectance distribution function (BRDF) corrected using 
the physics-based algorithm described in Li et al. (2012).  These type of data are commonly 
termed view angle corrected Nadir BRDF-Adjusted Reflectance (NBAR, proportion).  
Importantly (as shown later) ARG25 v1 was not topographically corrected.  Figure 13 shows 
the percentage of valid pixels for each Landsat scene comprising the NSW site.  For the 
northern image the largest data gap is 64 days and for the southern image the largest data gap 
is 48 days.  These gap calculations only take into account an image if it was present, they do 
not consider the number of valid pixels within an image, which would increase the gap length. 

http://www.ga.gov.au/corporate_data/75062/Australian_Reflectance_Grid_ARG25_Product_Description_V1-0.pdf
http://www.ga.gov.au/corporate_data/75062/Australian_Reflectance_Grid_ARG25_Product_Description_V1-0.pdf
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Figure 13. Time series of percentage valid Landsat data for the NSW site.  The top plot 
represent the northern Landsat scene (i.e., 91/84 see Figure 4(a)) and the bottom plot is the 
southern Landsat scene (i.e., 91/85).  The valid cells calculation is only performed for the part 
of the Landsat scene that comprises the NSW site.  The number of Landsat-7 ETM+ and 
Landsat-5 TM scenes are provided in parenthesis on the top of each sub-plot.  Basic 
descriptive statistics of the intervals (or gap length) between are provided in units of days. 
 
Figure 14show the percentage of valid pixels for each Landsat scene comprising the SA site.  
For the eastern image the largest data gap is 128 days and for the western image the largest 
data gap is 144 days.  These gap calculations only take into account an image if it was 
present, they do not consider the number of valid pixels within an image, which would 
increase the gap length.  Obviously the SA site is considerably cloudier than the NSW site 
and being able to reduce a gap of missing data from approximately 130 days to 8 days while 
maintaining 25 m resolution AET estimates highlights the utility of Landsat-MODIS 
blending. 
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Figure 14. Time series of percentage valid Landsat data for the SA site.  The top plot 
represent the eastern Landsat scene (i.e., 95/86 see Figure 4(b)) and the bottom plot is the 
western Landsat scene (i.e., 96/86).  The valid cells calculation is only performed for the part 
of the Landsat scene that comprises the SA site.  The number of Landsat-7 ETM+ and 
Landsat-5 TM scenes are provided in parenthesis on the top of each sub-plot.  Basic 
descriptive statistics of the intervals (or gap length) between are provided in units of days. 
 
The MODIS data used were the MCD43A4 product, which is also view angle corrected nadir 
BRDF-adjusted surface reflectance 
(https://www.umb.edu/spectralmass/terra_aqua_modis/v006/mcd34a4_nbar_product, 
accessed 31-July-2015).  As provided, the MCD43A4 data are composited to 8-day time step 
and represent the reflectance at solar noon.  MCD43A4 are also not topographically corrected. 
 
As will be described below, topographic correction was applied to both the Landsat and 
MODIS data.  This correction required the terrain slope and aspect at both study sites.  We 
used the Shuttle Radar Topographic Mission (SRTM) Digital Elevation Model (DEM-S) as 
processed by Gallant et al. (2011).  The DEM-S data were clipped to the study site extents, 
reprojected from geographic to UTM projection, and the spatial resolution was resampled 
from 27 m to 25 m using the Geospatial Data Abstraction Library (GDAL, www.gdal.org).  
The terrain slope and aspect were calculated as per Wilson and Gallant (2001) using the 
Interactive Data Language (IDL) software.  The 25 m data were used to topographically 
correct both the Landsat and MODIS data.  For MODIS, bilinearly re-sampled NBAR 
reflectances were used. 
 

https://www.umb.edu/spectralmass/terra_aqua_modis/v006/mcd34a4_nbar_product
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2.2.2 Land use data 
 
The original land-use data was from the Australian Land Use and Management Classification 
(version 7), provided in  (ABARES, 2011).  We used the catchment scale land use data, which 
vary in scale from 1:25,000 to 1:250,000.  The source of these data are varied, coming from 
state, public land, satellite, and field data (ABARES, 2011).  The Australian Land Use and 
Management Classification (version 7) data offers the benefit of avoiding classification 
artefacts due to State boundaries and is the land-use data used in many national summaries. 
 
The original classes were adapted, resulting in 9 land-use classes utilised in the current study 
(see Figure 16).  The 9 classes relate to the original classification from  as follows: 

1. Native vegetation: comprised of all classes in “1 Conservation and Natural 
Environments” as well as “2.1.0 Grazing native vegetation”; 

2. Plantation unknown: all classes in “2 Production from Relatively Natural 
Environments” except “2.1.0 Grazing native vegetation”; 

3. Plantation hardwood: “3.1.1 Hardwood plantation”; 
4. Plantation softwood: “3.1.2 Softwood plantation”; 
5. Dryland Cropping: all classes in “3 Production from Dryland Agriculture and 

Plantations” except 3.1.1, 3.1.2 and 3.2.0 – 3.2.5; 
6. Irrigation: all classes in “4 Production from Irrigated Agriculture and Plantations” 
7. Urban: all classes in “5 Intensive Uses”; 
8. Water: all classes in “6 Water”; and 
9. Grazing Modified Pasture: classes 3.2.0 – 3.2.5 in “3 Production from Dryland 

Agriculture and Plantations”. 
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Figure 15. The Australian Land Use and Management Classification (version 7) criteria are shown. 
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Figure 16.  Land-use data for the (a) NSW site and (b) SA site.  The green rectangles are the 
study sites and the white rectangle in (a) describes an assessment area of the topographic 
correction, discussed in detail below.  The legend in (b) also applies to (a).  The light green 
points show the average locations of the paired analysis between the Softwood Plantation and 
Native Vegetation land-use classes, described in detail later.  The dark green points show the 
average locations of the paired analysis between the Softwood Plantation and Grazing 
Modified Pasture land-use classes, described in detail later. 
 

2.2.3 Validation data 
We define validation as the comparison between modelled AET and measurements that are 
representative of AET to first-order and in the same physical units.  There were three types of 
validation datasets available across our two study sites: (i) water balance in catchments 
(reaches) where precipitation and stream flow were measured (calibrated); (ii) observations of 
actual evaporation at an eddy covariance flux tower; and, (iii) site water use from sap-flow 
and site water balance measurements.  Here, the validation and evaluation datasets are 
described, along with the description of processing that was performed prior to our obtaining 
the data.  The processing we performed on these data is described in the methods section, 
below. 
 
At both sites, precipitation from the Bureau of Meteorology (BoM) as described in (Jones et 
al., 2009) was available.  Stream flow data (Q, mm) for the Forestry Corporation NSW 
(FCNSW) unimpaired catchments and 16 additional gauges from the BoM all-Australia 
unimpaired Q dataset (Zhang et al., 2013) were available within the NSW study area and time 
period, see Table 5 and Figure 17a.  Precipitation and stream flow values were adjusted for 
nested catchments (Table 5).  Streamflow data were also available as calibrated output from 
the AWRA-R model for 5 river reaches (as opposed to catchments) where stream gauges 
could be used along with the contributing areas to perform water balance, see Figure 17a and  
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Table 6 below.  In AWRA-R, river reach streamflow was calibrated independently in each 
reach from upstream to downstream reaches following the order dictated by the node-link 
network defined for the AWRA-R model (Lerat et al., 2013). During calibration, the upstream 
inflows were set to the observed stream flow data.  Outside of this period, or during periods 
with no stream flow data, upstream simulated inflows were used instead (Lerat et al., 2013).  
Model parameters for every reach were optimised at the downstream main gauge of the reach 
using the Nelder‐Mead optimiser (Nelder & Mead, 1965).  Observed daily stream flow data at 
the downstream gauge corresponding to the main stem outflow of the reach was used for 
parameter optimisation (Dutta et al., 2015).  The reach contributing area was defined from 
flow accumulation and direction rasters and pour points from DEM analysis (Dutta et al., 
2015).  The purpose for which AWRA-R was originally developed was to provide 
retrospective information on fluxes (e.g., streamflow, diversions) and stores (e.g., in-stream 
volumes, lakes, reservoirs) in both regulated and unregulated systems and in order to support 
the production of national water accounts by the Bureau of Meteorology (Dutta et al., 2015).  
Here we use it as a form of validation as it is based on observed river streamflow.  
Unimpaired catchment water balance data were also available at the SA site and time period 
for 9 catchments from the BoM dataset (Zhang et al., 2013), see Table 7 and Figure 17c. 
 
Table 5.  Catchments within the NSW site where nearly complete precipitation and stream 
flow data were available.  Some catchments have nested contributing areas, and completeness 
is based on daily data.  Start date is the later of the stream flow data start date or our modelled 
AET data start date.  End date is the earliest of the stream flow record end date and the end 
date of modelled AET data.  Nested catchment areas that include another catchments’ 
contributing area are denoted with an asterisk.  An (F) in brackets in the Gauge name column 
means that the data were provided by Forestry Corporation NSW (FCNSW). 

Count Station ID Gauge Name Start Date End Date Complete 
(%) Area (km2) 

1 410997 Kiley’s Run (F) 1/12/2000 31/10/2011 88 1 
2 410998 Red Hill (F) 1/03/2000 31/10/2011 90 2 
3 410999 Sawmill Ck (F) 1/12/2000 31/10/2011 88 12* 
4 ― BagoG3 (F) 1/03/2000 26/11/2007 100 53* 
5 ― BagoG4 (F) 1/03/2000 26/11/2007 100 1 
6 ― BagoG5 (F) 1/03/2000 26/11/2007 100 1 
7 401008 Tooma 1/03/2000 17/06/2011 94 512* 
8 401009 Maragle 1/03/2000 18/04/2011 97 216 
9 401013 Jingellic 1/03/2000 21/06/2011 99 395 

10 401017 Yarramundi 1/03/2000 18/04/2011 95 194 
11 410024 Wee Jasper 1/03/2000 13/04/2011 100 990* 
12 410038 Darbalara* 1/03/2000 29/04/2011 100 391 
13 410044 Coolac 1/03/2000 29/04/2011 100 1072 
14 410047 Old Borambola 1/03/2000 1/04/2011 100 1653 
15 410048 Ladysmith 1/03/2000 5/05/2011 93 548* 
16 410057 Lacmalac 1/03/2000 4/05/2011 100 668 
17 410061 Batlow Rd 1/03/2000 8/12/2010 100 148 
18 410088 Brindabella 1/03/2000 17/05/2011 100 432 
19 410097 Aberfeldy 1/03/2000 20/04/2011 94 351 
20 410107 Mountain Ck 1/03/2000 24/02/2011 95 185 
21 410156 Book Book 1/03/2000 23/02/2011 100 145 
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22 410730 Gingera 1/03/2000 31/10/2011 100 130 
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Figure 17. The water balance validation datasets are shown.  In (a) are the NSW catchment 
boundaries for the Viney-Zhang BoM dataset and the FCNSW Bago and Redhill catchments; 
in (b) the five reaches used in this study and the stream flow gauges used to define them are 
shown; and in (c) the SA Viney-Zhang BoM dataset is shown.  The location of the reaches 
within the NSW study site are also shown in (a) for completeness. 
 
Table 6. Reach and streamflow gauge associations are shown.  The outlet gauge is bolded 
while the upstream gauges are in normal font.  The reach mass balance was determined by 
subtracting the sum of all upstream gauge streamflow from the downstream (outlet) gauge’s 
streamflow.  See  for spatial distribution of gauges around each reach. 

Number Name of outlet gauge Reach ID Gauge ID 
1 Murrumbidgee@Wagga Wagga 4100010 410001 

   410004 
   410043 
   410045 
   410047 
   410048 
   410061 
2 Murrumbidgee@Gundagai 4100040 410004 
   410025 
   410038 
   410039 
   410044 
   410068 
3 Tumut@Tumut 4100060 410006 
   410057 
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   410073 
4 Tumut@Brungle Br 4100390 410039 
   410006 
   410059 
   410070 
   410071 
5 Murrumbidgee@Glendale 4100680 410068 

   410008 
 
Table 7.  Catchments within the SA/VIC site where nearly complete precipitation and stream 
flow data were available are shown.  Completeness is based on daily data.  Start date is the 
later of the stream flow data start date or our modelled AET data start date.  End date is the 
earliest of the stream flow record end date and the end date of modelled AET data. 

Count Station ID Gauge Name Start Date End Date Complete 
(%) Area (km2) 

1 237202 Heywood 1/03/2000 18/02/2009 100 268 
2 237205 Homerton Br 1/03/2000 12/03/2009 100 714 
3 237207 Heathmere 1/03/2000 17/02/2009 100 312 
4 238220 Cavendish 1/03/2000 13/02/2009 99 214 
5 238223 Wando Vale 1/03/2000 23/03/2009 100 180 
6 238229 Chetwynd 1/03/2000 16/03/2009 100 69 
7 238230 Teakettle 1/03/2000 25/02/2009 100 197 
8 238235 Lower Crawford 1/03/2000 18/02/2009 100 601 

9 239523 Woakwine 
Range 1/03/2000 18/03/2011 100 485 

 
Hourly actual evapotranspiration data were measured at the long-term eddy covariance flux 
tower site at Tumbarumba, New South Wales (35.650°S, 148.151°E), see the blue star in 
Figure 4a.  Hourly measurements were made at Tumbarumba over 3965 days between 
February 2001 and December 2011, see Table 8 for seasonal and overall average flux 
summaries.  Tumbarumba is located in a native wet sclerophyll forest with no distinct 
seasonality in precipitation.  Instrumentation, data quality, and data processing of the flux 
tower data have been described in detail previously (Guerschman et al., 2009; Leuning et al., 
2005; Van Gorsel et al., 2007).  Energy balance closure is a frequently used diagnostic at 
eddy covariance flux sites.  The daily averaged hourly energy balance closure is within 10% 
at Tumbarumba (Leuning et al., 2005), which indicates the data are of high quality. 
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Table 8. Overall and seasonal mean fluxes are shown for the Tumbarumba flux site, expressed 
as hydrological equivalent units of mm d−1.  Flux densities were averaged over seasons of 
December, January, and February (DJF); March, April, and May (MAM); June, July, and 
August (JJA); September, October, and November (SON); and January – December (Annual). 

 Tumbarumba (mm d−1) 
Time Actual ET Available Energy Precipitation 

DJF 3.9 6.2 3.0 
MAM 2.1 3.0 2.3 
JJA 1.1 1.5 4.7 
SON 2.6 4.9 3.9 
Annual 2.5 4.1 3.5 
 
Site water balance data were available over the SA area, described in detail in (Benyon & 
Doody, 2015; Benyon et al., 2006).  Briefly, forestry plantation water balance components 
were measured in 20 by 20 m experimental plots, 18 of which had valid data during our 
project temporal extent when intersected with valid remotely sensed data (Table 9 and Figure 
18).  The experimental design of the site water balance collection assumed surface water flow 
and subsurface lateral flow within the vadose zone were negligible, estimating the site water 
balance from measured evapotranspiration, rainfall, and changes in root-zone soil water 
(Benyon et al., 2006).  Sites varied by species, age, depth to watertable, slope, soils, and 
stocking rates (see Benyon et al., 2006 for details) as well as by distance from edge of the 
stand.  Interception was measured by 8 collection troughs per site, soil evaporation was 
measured with 5-9 mini-lysimeters per site, and transpiration was measured by heat-pulse 
with sapflow sensors (Benyon et al., 2006).  Observed soil evaporation data from the 
lysimeters were used when soil water content in the top 0.3 m of soil outside the lysimeters 
was greater than 50% of the maximum water content.  When the soil water content was lower 
than 50% of the maximum, soil evaporation was estimated from average soil water conditions 
and a linear model between daily evaporation rate and soil water content in the top 0.3 m of 
the soil profile (Benyon et al., 2006).  This relationship was used in an attempt to account for 
potentially underestimating the site soil water depletion due to exclusion of live roots in the 
lysimeters.  The impact of applying this adjustment factor was not formally assessed.  The site 
water balance data were collected, roughly, on a fortnightly basis.  In our study, these data 
and the modelled AET data were aggregated to monthly values, so they could be compared 
(Table 9). 
 
Table 9. The site water balance dataset points are summarised.  The Identification (ID) code is 
that of Benyon et al. (2006).  The valid number of months for each site (N) are shown when 
these field data were intersected with the remote sensing data.  Two sites (EG4 and PR18) had 
0 months intersecting both field and remote sensing data.  There were a total of 591 months 
(398 months from 11 E. globulus (EG) sites and 193 months from 7 P. radiata (PR) sites) 
available. 

ID Name Plant Year Species  N (Months) 
EG1 Will 1998 E. globulus  26 
EG2 MtView 1996 E. globulus  65 
EG3 McRoos 1996 E. globulus  43 
EG4 WoakWine 1994 E. globulus   0 
EG5 Jack 1998 E. globulus  32 
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EG6 Jill 1998 E. globulus  36 
EG7 Gummy 1996 E. globulus  55 
EG9 Vicki 1998 E. globulus  37 
EG10 DPI 1996 E. globulus  28 
EG11 Jasper 1998 E. globulus  23 
EG12 Bessie 1998 E. globulus  36 
EG13 Wanda 1992 E. globulus  17 
PR10 Rainy 1996 P. radiata  27 
PR11 Piney 1996 P. radiata  61 
PR12 Julia 1970 P. radiata   7 
PR13 Nangwarry_South 1986 P. radiata  22 
PR14 Miles 1978 P. radiata  37 
PR15 Caroline 1971 P. radiata   8 
PR17 Dart 1994 P. radiata  31 
PR18 Hurdle 1996 P. radiata   0 

 

 
Figure 18. The site water balance locations are shown.  The labels are those of Benyon et al. 
(2006) as given in Table 9.  The green rectangle is the SA study site extent and the black lines 
are the state boundaries. 
 

2.2.4 Evaluation data 
Evaluation is the comparison between modelled AET and some dataset that allows for more 
confidence in the model to be established, but where a more formal error/uncertainty analysis 
is not possible.  Evaluation allows for ‘multiple-lines-of-evidence’ to be built, which bolsters 
the user’s confidence in the estimates.  Three types of evaluation datasets have been 
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categorised over our two study sites: (i) vegetation plot data; (ii) history & management; and 
(iii) environmental variability data. 
 
At the NSW site, ten 800 m2 circular forest growth plots measuring diameter at breast height 
over bark (DBHOB, or herein, simply DBH) were available within the Red Hill catchment 
(Major et al., 1998; Webb & Kathuria, 2012).  The plots were all in 1989 age-class stands of 
P. radiata and DBH measurements were made on all stems > 5cm (Webb & Kathuria, 2012).  
DBH measurements were made at four times within the temporal extent of our study: on 
30/Sep/2009, 07/Sep/2010, 05/Jul/2011, and 03/Aug/2011 (Table 10).  Plot locations were 
provided in Australian Map Grid (AMG) coordinates and were converted to Map Grid of 
Australia (MGA, zone 55) coordinates to match the projection of the remote sensing datasets. 
The plots are rather close together with respect to assessment of 25 m remote sensing pixels: 
maximum spread of the 10 plots is 21 pixels in the x-direction and 29 pixels in the y-direction 
(for 25 by 25 m pixels).  Thinning occurred at various times over the plots, sometimes 
reducing the number of trees available for measurement at the later dates (Table 10).  DBH 
was converted to stand basal area (m2/ha) over the plots, which were converted to stand 
timber volume (m3/ha) by making use of average plot tree height and assuming a conical 
trunk shape. 
 
Table 10. Details of the 10 forest growth plots are shown.  The X and Y locations are 
provided as MGA coordinates.  The number of trees sampled is shown for the earliest and 
latest sampling dates within the temporal extent of our study. 
Plot 
No. 

Previous Cover Type 
pre-1989 

X 
 

Y 
 

No. Trees 
30/Sep/2009 

No. Trees 
03/Aug/2011 

1 Improved Pasture 623358 6111314 27 27 
2 Improved Pasture 623335 6111262 27 27 
3 Improved Pasture 623438 6111297 32 17 
4 Improved Pasture 623369 6111219 29 29 
5 Improved Pasture 623502 6111278 30 21 
6 Scattered Timber 623188 6111894 30 20 
7 Scattered Timber 623264 6111932 29 18 
8 Scattered Timber 623366 6111904 28 20 
9 Scattered Timber 623705 6111803 24 14 
10 Scattered Timber 623676 6111656 26 15 

 
At the SA site, GIS data on species, age, and thinning management of the forestry plantations 
were available.  We performed 3 evaluations, to summarise: (1) AET growth curves for two 
species (E. globulus and unthinned P. radiata); (2) the influence of thinning on AET of a 
single species (P. radiata); and (3) the ability to detect compartment-level harvest in AET. As 
stated above, evaluations are not intended to be as definitive as validation. The purpose of 
evaluations was to allow users to determine their level of confidence in the AET model output 
by assessing whether the model outputs pass several forms of ‘reality-check’.  First, 
evaluation of the average modelled output of unthinned E. globulus and unthinned P. radiata 
were summarised by age (years) using all available data.  This summary evaluated whether 
there was a noticeable difference in growth pattern between the two species.  The summary 
was performed irrespective of which year the compartment was planted.  For example, an 
unthinned P. radiata compartment that was one year old in 2000 and a different unthinned 
compartment that was one year old in 2011 would both be used in the calculation of the mean 
AET for age class of 1 year for that species.  This summary did not account for the variability 
in climate and/or site growing conditions.  The overall mean AET by age would be less 
influenced by not accounting for temporal and spatial variability as the sample size becomes 
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larger.  There was less E. globulus compartments than P. radiata, so this should be kept in 
mind when interpreting the E. globulus results in particular.  The number of 25-m resolution 
cells (each covering 625 m2) in the AET grids and the number of management compartments 
that were used to determine the average AET values varied by age and species.  There was a 
median of 29 compartments (45,627 cells) per yearly age class used to determine the 
unthinned E. globulus values, whereas there was a median of 740 compartments (2,412,801 
cells) per yearly age class used to determine the unthinned P. radiata.  The forestry 
management data also included information on timing of multiple thinning operations.  
Secondly, we evaluated the average AET of P. radiata of those stands that had been first 
thinned in 2000, the initial year of our study period.  These thinned stands had an average age 
of about 15 years old.  We compared them to non-thinned P. radiata stands that had an age of 
15 in the year 2000.  This evaluation described the influence of thinning on AET.  Again, the 
number of cells and compartments varied for thinned versus non-thinned classes, where P. 
radiata first thinned in 2000 had a median number of compartments of 287 (464,453 cells) 
per year and unthinned P. radiata having age 15 years in 2000 had a median number of 
compartments of 129 (2,746 cells) per year making of the average AET values.  This 
comparison did account for temporal variability as each year after first thinning would be the 
same year (sequential from 2000).  Thirdly and finally, we evaluated the ability of the LM 
blended AET output to detect forestry harvest operations in compartments in the vicinity of 
Burrungule in the SA site, which were harvested in 2004.  For this evaluation, the MODIS-
only AET and the LM blended AET average January AET maps for 2003, 2006, and 2009 
were plotted to highlight the spatial representation of the AET 1 year before harvest, 2 years 
after harvest, and 5 years after harvest. 

2.3 Topographic correction 
Topographic correction was performed for each waveband using the so-called Minnaert 
correction model, given by Lu et al. (2008): 

( ) ( ) ( )( ) ( )( ) ( )( )cos cos cos
iwk

iw H iw T T T i I
 = ⋅ ⋅ ρ ρ θ θ θ , 

(2) 

where solar, terrain, and incident angles or reflectances are denoted with subscripts of (S), (T) 
and (I) respectively.  ( )iw Tρ is the spatial array of view angle corrected nadir BRDF-adjusted 

surface reflectance (NBAR, proportion) of waveband w at time i at the terrain surface.  ( )iw Hρ  
is the equivalent NBAR (proportion) on a horizontal surface (i.e., topographically corrected to 
the reflectance of a flat surface with incident angle zero).  The spatial arrays (i.e., maps) of 

zenith angles (radians) are given in general form by j n
θ =  θ .  ( )Tθ  is the map of slope facet 

zenith angle (for practical purposes, not a function of time), which is most often referred to as 
‘slope’ in terrain analysis.  ( )i Iθ  is the map of incident zenith angle (radians) at time i, also 
known as the illumination angle, which is the angle between the solar beam and the normal to 

( )Tθ .  For any particular day-of-year (DOY) and specific time-of-day (STOD), the map of 

( )i Iθ  is given by: 

( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( ) ( )( )cos cos cos sin sin cosi I i S T i S T i S T= ⋅ + ⋅ ⋅ −θ θ θ θ θ φ φ ; 
(3) 

where the spatial arrays (maps) of azimuth angles (radians) are given by the general 

form j n
ϕ =  φ .  ( )i Sφ  is the solar azimuth angle at time i, while ( )Tφ is the terrain azimuth 

angle (for practical purposes, not dependent upon time).  ( )Tφ  is normally just referred to as 
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‘aspect’ in terrain analysis.  After re-arrangement and transformation, Eq. (2) can be 
expressed in the general form of the linear regression, y a b x= + ⋅ , by (Lu et al., 2008): 

( ) ( )( )( ) ( )( ) ( )( ) ( )( )( )log cos log log cos cosiwiw T T iw H T i Ik⋅ = + ⋅ ⋅ρ θ ρ θ θ . 
(4) 

The scalar value iwk was estimated for each of the 46 climatological 8-day time periods, i, and 
each waveband, w, by minimisation of the ordinary least squares (OLS) of Eq. (4). 
 
Lu et al. (2008) that the iwk  parameter changes as a function of terrain slope, but that the 
response asymptotes for slopes greater than 15 degrees.  We tested this at our NSW site, and 
found the same result, so we defined iwk  based on Eq. (4) using only the portion of the study 
site having a terrain slope greater than 15 degrees.  These estimates of iwk  were then used in 
Eq. (2) to topographically correct the Landsat and MODIS reflectances.  For the MODIS data, 
the STOD of solar noon on that 4th day of the 8-day composite was used to calculate solar 
zenith and azimuth angles (as MCD43A4 data are modelled to represent solar noon of the 8-
day period).  For Landsat data the average of all STOD’s of acquisition was used to calculate 
solar angles.  If the empirical topographic correction method described above were calculated 
for every individual 8-day period, it could normalise the data, thus reducing its usefulness for 
time series analysis.  To help reduce this deleterious effect, we calculated k from the 
climatological 8-day temporal average reflectances per band (i.e., the temporal average 
reflectance map for the first 8 days of the year, then of the second 8 days of the year, and so 
on until reaching the 46th 8-day period).  The MODIS data resulted in smooth functions of k 
values.  For SA, the original climatologies of k values were used.  For NSW, there were a few 
slight anomalies present in the two visible bands in the second and third compositing periods.  
To avoid artefacts due to these anomalies, the NSW MODIS 8-day composite climatological k 
values were smoothed using a box-car smoothing algorithm using a window size of 2 
composite periods either side of centre (5 8-day composite periods used in the full window).  
For both sites, the original 8-day climatological k values for Landsat were noisy due to the 
added influence of solar azimuth angle, Landsat’s lower temporal density, and the increased 
sensitivity to terrain influences because of its higher spatial resolution.  So, the Landsat k 
values were also box-car smoothed using the same window size.  The topographic correction 
was then implemented by using the band and site specific k value for each individual epoch 
based on which 8-day period it fell within, using the original 8-day k value climatology for 
MODIS data at SA and the smoothed k value climatologies for MODIS at NSW and Landsat 
at both sites.  Using the 8-day k climatologies prevented the parameter from containing trend, 
thus making the resultant terrain-corrected data suitable for time-series analysis.  For 
example, if there was a vegetative greening trend at one of our study sites over the 11 years, 
and if the k parameter was estimated for each epoch individually, then the output model might 
be de-trended and the trend might reside in the time series of parameter values instead.  On 
the other hand, since we use the climatological parameter value for each of the possible 46 8-
day periods through the year, then the output model would retain trend due to land cover 
change.  In this way iwk was calculated for each of the 4 bands required to calculate EVI and 
GVMI (explained below) for both Landsat and the MODIS data at both sites.  The influence 
of topographic correction on the AET algorithm was first qualitatively checked on observed 
Landsat imagery to assess how the illumination influence compared to major land cover 
change, namely a major fire event in 2003 at the NSW site.  Modelled AET within the 2003 
fire from the blended data without topographic correction and with topographic correction 
were also summarised over the entire fire boundary as defined from the NSWFC fire 
boundary data. 
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2.4 Actual evapotranspiration (AET) model 
The model of actual evapotranspiration used was from Guerschman et al. (2009).  It uses a 
vegetation greenness index and a vegetation moisture index from reflective remote sensing 
data to scale both potential evapotranspiration (PET) and precipitation (P) data.  The remote 
sensing based indices require two wavebands in the VIS (blue and red), a NIR band, and a 
SWIR band, which are observed on both Landsat and MODIS platforms, Table 11).  The 
bolded variables below represent the spatio-temporal array (time series of maps).  To facilitate 
communication, the temporal and spatial indexes, i and j, respectively, are left off of the 
following equations. 
 
Table 11. Landsat and MODIS spatial resolution, temporal density, spectral density and 
spectral resolution are shown. 
Domain  Satellite/sensor 

   Landsat 5/TM Terra/MODIS 
Spatial resolution  25 m 250 m/ 500 m /1000 m 

Temporal density  16 days 
 

1 day 

Spectral density 
 

 6 bands across a 1897 nm 
range including VIS, NIR, 
and SWIR 

19 bands across a 1750 
nm range including VIS, 
NIR, and SWIR 

Spectral resolution  
blueρ : 452–518 nm 

redρ : 626–693 nm 

NIRρ : 776–904 nm 

SWIRρ : 1567–1784 nm 

blueρ : 459–479 nm 

redρ : 620–670 nm 

NIRρ : 841–876 nm 

SWIRρ : 1628–1652 nm 

 
The spatio-temporal array of enhanced vegetation index (EVI) was calculated for both 
Landsat and MODIS as (Huete et al., 2002): 

1 2

NIR red

NIR red blue

G
C C L

−
= ⋅

+ ⋅ − ⋅ +
ρ ρEVI

ρ ρ ρ , 
(5) 

where 2.5G = , 1 6C = , 2 7.5C = , and 1L = , which are parameters accounting for aerosol 
scattering and absorption, and the spatio-temporal arrays of reflectance are those described in 
Table 11 for Landsat or MODIS.  The spatio-temporal global vegetation moisture index 
(GVMI) was calculated by (Ceccato et al., 2002a; Ceccato et al., 2002b) as: 

( ) ( )
( ) ( )

0.1 0.02
0.1 0.02

NIR SWIR

NIR SWIR

+ − +
=

+ + +
ρ ρ

GVMI
ρ ρ . 

(6) 

The spatio-temporal array of AET was then calculated by partitioning the total evaporation 
into components as a function of PET and P (Guerschman et al., 2009) by: 

C E= ⋅ + ⋅AET κ PET κ P , (7) 

where AET (mm) is the spatio-temporal array of modelled actual evapotranspiration (mm), 
PET (mm) is the spatio-temporal array of monthly Priestly-Taylor potential ET, and P  (mm) 
is the spatio-temporal array of monthly precipitation. P  was from the Bureau of Meteorology 
(BoM) as described in (Jones et al., 2009) and the Priestley-Taylor PET  dataset was from 
(Donohue et al., 2010).  These datasets were reprojected, bilinearly resampled from 5000 m to 



 

40 
 

25 m, and clipped to the study site extent using GDAL.  Cκ  and Eκ  are the evaporative 
fraction of PET (called a ‘crop’ coefficient in Guerschman et al., 2009) and a term to 
represent interception of P, respectively.  The term accounting for interception of P is given 
by (Guerschman et al., 2009): 

_ maxE E rκ= ⋅κ EVI , (8) 

where the scalar parameter _ max 0.229Eκ = , and the spatio-temporal array of ‘re-scaled’ EVI is 
(Guerschman et al., 2009): 
 

min

max min
r

EVI
EVI EVI

−
=

−
EVIEVI , 

(9) 

 
where min 0EVI =  and max 0.90EVI = .  The spatio-temporal array of evaporative fraction of 
PET was calculated by (Guerschman et al., 2009): 

( )_ max 1 ra b
C C e

α β

κ − ⋅ − ⋅= ⋅ − EVI RMIκ . 
(10) 

The scalar parameters _ max 0.680Cκ = , 14.12a = , 2.482α = , 7.991b = , 0.890β = , and the 
spatio-temporal array of the residual moisture index (RMI) is (Guerschman et al., 2009): 
 

( )max 0, RMI ij RMI m n
K EVI C

×
 = ⋅ + RMI , 

(11) 

where 0.775RMIK = , and 0.076RMIC = − .  Note, in Eq. (11), the bracketed notation for a 
spatio-temporal array was used as it was more communicative.  In this case, the temporal 
index of i=0,m and the spatial index of j=0,n is used. 
 
Because the physical meaning of the parameters of the model, and the repercussions of any 
subsequent adjustment to them may not be clear to a user, a simple linear bias correction was 
later included (Van Dijk et al., 2015), yielding: 

( )0 1C Ea a= ⋅ + ⋅ +AET κ PET κ P . (12) 

The original bias correction parameters were defined using flux tower, water drainage 
division, and satellite gravity data (Rodell et al., 2009; Tapley et al., 2004a; Tapley et al., 
2004b) using MODIS-only data as input.  From that analysis, the MODIS-only bias correction 
parameters were defined as 0 0.853a =  and 1 0.293a = .  As the blending work performed here 
also uses Landsat data and is performed only over two specific regions, we will determine 
whether these original bias correction parameters are ideal for our study, or whether 
regionally optimal parameters exist.  Eq. (7) and (12) were used to estimate actual 
evapotranspiration after the Landsat and MODIS EVI and GVMI indices were blended, as 
described next. 
 

2.5 Blending algorithm 
The Enhanced Spatial and Temporal Adaptive Reflectance Fusion Model (ESTARFM, Zhu et 
al., 2010) was used.  The detailed workflow for blending is given in Van Niel et al. (2016), 
including specifics for parallel processing on the National Computing Infrastructure (NCI).  
The authors of ESTARFM provided us with the IDL code to run the algorithm.  We translated 
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the code to the open-source version of IDL called the GNU Data Language (GDL), and tested 
the code to ensure the same results were obtained for the IDL and GDL versions.  
Transferring the code to GDL allowed for running the blending on a supercomputer on the 
NCI.  A general pictorial overview of the ESTARFM algorithm is provided in Figure 19 
below.  Five input images, two Landsat-MODIS (LM) pairs at time t1 and time t2 and a single 
MODIS image at time ts (time of simulation) are required.  The result of each blending 
instance is a single simulated image at time ts that has the spatial resolution of Landsat, 
depicted by the yellow highlighted image in Figure 19.  Jarihani et al. (2014) found that 
calculating the indices first, then blending was, overall, a better approach than blending first, 
then calculating the indices due to error propagation.  Because of that recommendation, our 
blending was run on the two indices, EVI and GVMI.  The added benefit was that only half as 
many operations were required compared to blending the four reflectance bands needed to 
generate the indices, so it was also computationally more efficient. 
 

 
 
Figure 19.  Influence of null data propagation from any of the input images to the output 
image.  If cloud, cloud shadow or null data due to any other reason is present in any of the 
input images then the simulated image contains null data in those locations.  In the above 
image ‘cloud’ is represented by white areas of different shapes in the input images which are 
combined in the simulated image. 
 
To overcome persistent data gaps, three individual blending instances were performed.  In all 
cases, all MODIS data were used.  In the first case, all Landsat data were used, despite the 
amount of cloud (colloquially called ‘bronze’, herein).  For this first case, the simulated data 
could have very large areas of missing values due to cloud masking, but the temporal 
proximity of the LM pairs would be as close as possible to the simulation date.  In the second 
case, only Landsat images having 80% of their area being cloud-free (‘silver’) were used; the 
Landsat images input to the ‘silver’ processing had longer gaps than those used as input for 
the ‘bronze’ series.  In the third case, only Landsat images having 98% of their area being 
cloud-free (‘gold’) were used; the Landsat images input to the ‘gold’ processing had longer 
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gaps than those used in the ‘silver’ processing.  The second (i.e., ‘silver’) and especially the 
third (i.e., ‘gold’) case would have very low missing data, but may not be using LM pairs that 
were temporally proximate to the simulation date.  This longer gaps between input Landsat 
imagery may impact the ability of the blending algorithms to accurately simulate the Landsat-
like imagery (Fu et al., 2015); though the level of impact depends on magnitude of spatial and 
temporal variance captured in the input imagery (Emelyanova et al., 2013; Jarihani et al., 
2014). 

2.6 Index compositing 
The result of the blending process was three high spatial resolution, 8-day composite EVI and 
GVMI index data cubes.  A fourth low spatial resolution, 8-day composite EVI and GVMI 
index data cube was also available from the input MODIS dataset.  Due to the blending 
procedure, clouds in either the fine or coarse spatial resolution dataset persist for all simulated 
images in between LM pairs.  To help overcome this, we combined the three blending 
outputs, described above, and the input MODIS indices in a hierarchical fashion (see Figure 
20).  The data using the most temporally proximal LM pairs (i.e., ‘bronze’) were given 
priority.  Any gaps from that dataset were filled with data determined using LM pairs from 
the 80% cloud-free ‘silver’ dataset.  Any data gaps still remaining were filled with the 98% 
cloud-free ‘gold’ dataset.  Finally, any gaps that still remained were filled by the input 
MODIS indices.  A spatio-temporal dataset keeping track of the origin of each pixel was kept 
for the composited 8-day dataset.  These 8-day composited EVI and GVMI datasets were 
converted to estimates of AET using Eq. (12).  The hierarchical compositing scheme attempts 
to model AET with Landsat data most temporally proximate to the simulation date, while 
minimising the amount of data gaps due to clouds. 
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Figure 20. Percent valid cells by hierarchical type is shown for (a) NSW site and (b) SA site. 
 

2.7 Validation and evaluation 
The accuracy of the blended AET data were estimated from the three validation datasets 
described above by: (i) assessing closure of the catchment (reach) water balance in 
catchments (reaches) where precipitation and stream flow were well measured; (ii) 
comparison against independent ‘point’ observations of actual evaporation at an eddy 
covariance flux tower; and (iii) comparison against independent plot observations of site 
water use from sap-flow and site water balance measurements of plantation tree water use. 
 
For the catchment water balance assessment, long-term stream flow values were calculated 
from stream flow gauge data, long-term precipitation was calculated from averaging the 
spatio-temporal precipitation data with the catchment contributing areas, and both were 
adjusted for catchment nesting if relevant (Table 5 and Table 7).  The reach mass balance was 
determined by subtracting the sum of all upstream gauge streamflow from the downstream 
(outlet) gauge’s streamflow, see Table 6.  The reach precipitation was determined from the 
reach contributing areas, see Figure 17.  These data allowed for a steady state estimate of 
AET being precipitation less stream flow for catchments and reaches.  The steady state P-Q 
approach assumes the difference in storages (i.e., soil stores, groundwater and farm dams) is 
negligible from the start of the time series when compared to the end of the time series.  This 
assumption adds uncertainty to the analysis, especially considering the period of record 
contains the millennium drought. The modelled AET was averaged over the same time and 
spatial extents, so a direct comparison could be made between the catchment and reach 
precipitation less stream flow. 
 
The sub-daily Tumbarumba flux tower latent heat flux observations were integrated to 
average 8-day actual evapotranspiration.  The AET model for these same 8-day periods were 
averaged over a 20 pixel window either side of the central flux tower location (41 by 41 
pixels in total [~1 km by 1 km] for each 8-day period).  The window around the flux tower 
was used to account for the expected ‘footprint’ of the flux tower instrumentation.  
Observations measured at a flux tower represent the latent heat flux from some variable 
surface area around the instrumentation, the size and location of which depends upon 
atmospheric conditions like wind speed and direction. 
 
In our study, we used the site water balance estimates described above (Almeida & Sands, 
2016; Benyon & Doody, 2015; Benyon et al., 2006).  The site water balance data were 
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collected, roughly, on a fortnightly basis, but not systematically so.  These site water balance 
estimates and the modelled AET data were aggregated to monthly values, so they could be 
compared (Table 9).  The modelled AET data were assessed at each pixel representing the 
location of the site water balance plot centres.  As the plots were on the order of a pixel in 
size, no spatial averaging was performed (compared to the 41 by 41 spatial averaging at the 
flux tower). 
 
In addition to the LM blended AET dataset, three additional AET datasets were also assessed 
over the three validation datasets in order to perform a comparison with the blended product’ 
accuracy: (i) the AET model run on the MODIS-only 8-day data; (ii) the AET model run on 
the Landsat-only data calculated for the isolated days that cloud-free Landsat data were 
available; and (iii) ‘total evaporation’ from the water balance model used by the BoM to 
perform their water resource assessments, the Australian Water Resource Assessment model 
(AWRA-L version 4.5, simply denoted AWRA herein).  The daily AWRA data were 
averaged over the MODIS 8-day dates in order to match the other datasets. 
 
The bias correction defined in Van Dijk et al. (2015) was performed when using MODIS-only 
data and done across all of Australia, resulting in 0 0.853a = and 1 0.293a = , see Eq. (12).  
Since the overall objective of this project was to deliver an AET product that had both high 
spatial resolution and temporal density with no accuracy loss compared to the original 
MODIS-only product, we inspected the impact of defining a regional bias correction for the 
LM blended product.  The accuracy of the Landsat-MODIS blended AET product was 
independently assessed using no bias correction ( 0 1.0a =  and 1 0.0a = ) and the original bias 
correction terms defined from MODIS-only ( 0 0.853a = and 1 0.293a = ).  We then defined an 
array of the three AET validation datasets of catchment and reach water balance, flux tower, 
and site water use data, described above, and an associated array of the no bias corrected 
version of the AET model for the same locations and times as the validation datasets were 
summarised over.  From these two arrays, we determined the optimal 0a and 1a parameters 
required to minimise the RMSE of the three separate validation sets, without exceeding the 
RMSE value returned by the MODIS-only results for any of them.  To do this optimisation, 
we used the Shuffled Complex Evolution (SCE) optimisation algorithm (Duan et al., 1994).  
The results of this regional optimisation is simply referred to as the ‘regional’ bias correction, 
herein.  This allowed for three different versions of the LM blended AET model to be 
assessed against the validation data: (i) no bias correction; (ii) original bias correction; and 
(iii) regional bias correction.  Both the ‘no bias correction’ and ‘original bias correction’ cases 
are commonly produced since the inception of the AET model.  Comparing the validation of 
the no bias corrected version to that of the original and regional bias corrected versions also 
quantifies the sensitivity of the model to the bias correction step. 
 
The vegetation plot data were assessed by comparing the total volumetric AET (kL) of all 8-
day periods between the first and last field measurement dates (30/09/2009–03/08/2011) to 
the change in plot timber volume (m3/ha) for that same time period from the field data.  The 
ratio of these two values (AET/∆V) (kL/( m3/ha)) was then calculated as a metric of how 
much water over the plot was used to increase average timber volume by 1 m3/ha across the 
plots .  AET and ∆V were calculated for each plot and the overall average of all plots was 
determined. To estimate an 800 m2 circular area from 25 m square cell AET data, we 
performed an inverse distance weighting of the centre pixel and its 8 neighbouring pixels 
around each plot.  To account for loss of trees due to thinning, the total timber volume at each 
plot was calculated at the first and last field measurement times. 
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The 2003 fire over the NSW study site, started around 18 January, 2003 and progressed for 
about a month afterwards.  To capture the dynamics of the fire, we calculated the z-score of 
each 8-day period in 2003 compared to the climatological average and standard deviation of 
each 8-day period over the 12 years: 

j
j

−
=

AET μ
z

σ , 
(13) 

where jz is the z-score of AET for time interval j, μ is the climatological average AET for the 
associated 8-day period, and σ is the climatological standard deviation of AET for the 
associated 8-day period.  The minimum z-score for the year 2003 was then recorded in a 
pixel-wise manner to identify the fire as the very low minimum z-scores. 
 

2.8 Land-use-specific AET assessment 
The 9 land-use classes were summarised using standard GIS techniques over the AET model 
outputs.  These summaries were converted to different units to express AET in both relative 
and absolute terms.  Since the following equations represent unit conversions, they don’t 
necessitate different symbology.  Rather the units are provided directly within the equations 
for clarity.  The evaporation algorithm outputs the estimate of AET in units of mm/d.  These 
units are useful for assessing the relative amounts of evaporation at any specific location and 
time-step, or for summarising evaporation rates of the various land-use classes.  The land-use 
classes cover different proportions of the entire study areas, so it is also useful to convert the 
rates of AET values to volumes of AET to also understand the overall amounts of AET by 
land-use class.  This was done by first converting the average AET rates for each land-use 
class, i, to daily volumes by: 

( ) ( ) ( )3 2( / )( / )
1000 /

i
i i T

mm dm d A prop A m
mm m

= ⋅ ⋅
AETAET , 

(14) 

where iAET is the estimated evaporation of land-use class, i, in some specified unit, iA is the 
proportion of area of land-use class, i, and TA is the total area of the study site in square 
metres.  Since 1 m3 of liquid water equals 1000 L (1 kL), then iAET can be expressed in the 
following equivalent units: 

3( / ) ( / )i im d kL d=AET AET . (15) 

Considering Eq. (14) and (15), iAET  can be expressed in units of GL/d by simply dividing 
the volume of iAET  by one million: 

( )6

( / )( / )
10 /

i
i

kL dGL d
kL GL

=
AETAET . 

(16) 

We also defined a second relative measure of AET, based on volume, which provides a 
different insight into how the water use of the classes compare.  First the proportion of the 
total study site volume of AET for each land-use class was determined: 

( / )( )
( / )

i
i

T

GL dprop
GL d

=
AETAET
AET , 

(17) 

where TAET is simply the total volume of evaporation over the entire study site, calculated as 
the sum of all 9 land-use class AET volumes: 
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(18) 

This allowed for a meaningful relative metric of AET, being the proportion of AET of the 
land-use class per proportion of the area of that land-use class: 

( )
( )

i

i

prop
A prop

AET
. 

(19) 

Eq. (19) removes the area weighting that is intrinsic in the volume calculation, so that values 
above unity indicate above average water use relative to the whole study site, and volumes 
below unity indicate less than average water use relative to the whole study site.  Eq. (19) 
simply provides another relative metric of the water use, but one that is normalised so that it is 
unitless and useful for making land-use class comparisons.  Eq. (19) only considers the 
proportion of AET compared to the proportion of area.  However, P and PET, the main 
covariates of evaporation that describe the nature of how much a site is either water-limited or 
energy-limited, vary over space and time.  So, the analogous versions of Eq. (16) were also 
run on the precipitation and potential evapotranspiration datasets and summaries of the 
evaporative fractions of AET/P and AET/PET were also calculated.  The ratio of AET/P 
provides critical hydrological context. 
 
Summarising the land-use class AET in relative rates of mm/d does not consider that the land-
uses may be biased based on how their spatial distribution coincides with environmental 
conditions like P or PET, for example.  The summarised relative AET result could be mis-
leading due to these environmental covariances.  To attempt to account for such influences, 
we performed a paired analysis of selected land-use classes.  Since the Softwood Plantation 
land-use class was the largest plantation class at both sites, we compared it to both the Native 
Vegetation and Grazing Modified Pasture land-use classes (the top two land-use classes by 
area at both study sites).  We defined 20 paired points between Softwood and Native 
Vegetation and 20 paired points between Softwood and Grazing Modified Pasture at both 
sites (80 paired points in total, see Table 12 and Table 13).  The overall average AET of a 
1.5625 ha rectangle around each point (5-by-5 25m pixel window) was calculated.  Points 
were located ad hoc using the land-use map, ensuring that each point was more than 2.5 
pixels away from a land-use class boundary, that the full rectangle was within the land-use 
class, and that each point was, on average, less than 2 km away from its corresponding pair.  
The analysis should account for covariates such as P and PET, but would not account for 
management (e.g., thinning) or natural disturbance (e.g., fire).  We performed a t-test to assess 
whether the Softwood Plantation mean AET’s were significantly different to that of Natural 
Vegetation or Grazing Modified Pasture, and an F-test to assess whether the AET variances 
were significantly different.  The results of the statistical tests were probabilities defining 
where the specified test becomes significant.  Interpretation of results is: low probabilities 
(e.g., < 0.01) would be more likely to demonstrate a significant difference than higher 
probabilities (e.g., > 0.01). 
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Table 12. The locations of the points in the paired analyses at the NSW study site are 
provided in Map Grid of Australia 1994 (MGA94) zone 55 coordinates.  See Figure 16a for 
the graphic representation of these points. 

  Softwood vs. Native Vegetation  Softwood vs. Grazing Modified Pasture 
  Softwood  Native Veg.  Softwood  Graz. Mod. Past. 

No.  X Y  X Y  X Y  X Y 
1  532737 6028517  534044 6028493  532127 6031743  532476 6032767 
2  532785 6031397  533463 6032075  553778 6039976  553865 6040869 
3  550646 6028808  549654 6028929  554475 6043243  555041 6042851 
4  552437 6030841  552558 6031639  561467 6046075  561401 6045313 
5  558003 6032390  557955 6031760  564320 6045639  564342 6044942 
6  557761 6034205  557083 6034665  566477 6044834  566259 6044224 
7  555922 6036964  555196 6037230  568981 6049212  568459 6048928 
8  557906 6037206  558584 6037617  572314 6050039  573054 6050039 
9  566304 6038319  565917 6037496  577193 6055506  577062 6054657 

10  568289 6039190  567321 6039553  581201 6055506  581135 6054635 
11  555535 6054655  555656 6055575  581179 6064175  581201 6064829 
12  575307 6059883  575065 6059011  590240 6065961  589587 6066049 
13  579470 6062206  578695 6061940  589064 6068902  588389 6068924 
14  590046 6077477  589296 6077453  590022 6070405  589565 6070928 
15  627437 6094079  627026 6093329  589979 6074848  589260 6074870 
16  631527 6089965  630753 6090110  588977 6076133  588236 6076199 
17  641837 6092845  642539 6092821  588694 6080206  587953 6080228 
18  646339 6094345  645613 6094370  590436 6083082  590131 6083626 
19  647379 6099888  648105 6099888  597733 6081034  597776 6081731 
20  644983 6105914  645782 6105938  628989 6087721  628488 6087982 
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Table 13. The locations of the points in the paired analyses at the SA study site are provided 
in Map Grid of Australia 1994 (MGA94) zone 54 coordinates.  See Figure 16b for the graphic 
representation of these points. 

  Softwood vs. Native Vegetation  Softwood vs. Grazing Modified Pasture 
  Softwood  Native Veg.  Softwood  Graz. Mod. Past. 

No.  X Y  X Y  X Y  X Y 
1  496238 5800324  498995 5800123  450318 5804214  451634 5803221 
2  496238 5801756  498961 5801566  451485 5807342  450045 5806225 
3  493630 5803078  498928 5803043  449276 5807441  447265 5807168 
4  495834 5804731  498961 5804487  450368 5809551  448755 5810023 
5  494732 5806494  498995 5806131  451684 5810594  450542 5811835 
6  495834 5808111  499163 5807776  455829 5822707  454315 5822558 
7  495687 5809690  499264 5809387  455084 5825884  453868 5827076 
8  495540 5811196  499465 5810931  457939 5832686  459552 5831916 
9  494916 5812592  499398 5812476  478145 5835143  480354 5835292 

10  494989 5814171  499196 5813986  478740 5838593  475811 5838817 
11  495981 5816081  499317 5815890  478566 5841225  476606 5842689 
12  493814 5860855  499029 5860643  481446 5846909  478517 5847182 
13  494585 5862802  498984 5862331  485318 5851253  483457 5852271 
14  495944 5864528  498946 5864329  492467 5859668  489737 5859097 
15  496385 5870773  498754 5869286  493783 5860884  490109 5861480 
16  495504 5872536  498638 5871783  494577 5862820  491201 5863987 
17  502262 5872095  504863 5871860  495942 5864558  491797 5866568 
18  507478 5875841  505516 5876471  495495 5872551  491325 5873891 
19  507735 5877311  505631 5877815  502247 5872129  498772 5874114 
20  512767 5882196  516120 5881734  495322 5877044  497109 5878285 
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3 Results 

3.1 Long-term average AET and proportions relative to key climate 
variables 

The output of the model is provided in the form of long-term temporal average AET (Figure 
21a-b), AET/P (Figure 21c-d), and AET/PET (Figure 21e-f) for the NSW site for both the LM 
blended dataset and the MODIS-only dataset, respectively.  Figure 21c-d reveal that most of 
the site, over the long-term, evaporates less water than precipitation.  Only 6.9% of the NSW 
site had AET > P, mainly along the Murrumbidgee and other river courses, water bodies, and 
a few forested areas (Figure 21c).  Of note, few of the forestry plantation areas at the NSW 
site had modelled AET > P (13.9% of this AET > P area were forestry plantation classes).  
For an exception, see the rectangle in Figure 21c, where mostly softwood plantations had 
AET > P.  The AET, AET/P, and AET/PET of this rectangular area is shown in Figure 22 and 
highlights the improved spatial characteristics of the LM blend when compared to the 
MODIS-only results.  Results of a more complete summarisation of the land-uses with respect 
to AET/P is provided further below. 
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Figure 21.  Long-term average (i.e., 1 Jan 2000 to 31 Dec 2011) AET and its proportions 
relative to key climatic controls for the NSW site at both the Landsat and MODIS resolutions.  
The Landsat resolution data are the output of the Landsat-MODIS blending to infill all gaps in 
the observed Landsat time series.  Parts (a) and (b) show the AET grids at the Landsat and 
MODIS resolutions, respectively.  Parts (c) and (d) show the AET/P proportions, and (e) and 
(f) are the AET/PET proportions; both at the Landsat and MODIS resolutions, respectively.  
The results for the black square in (c) are provided at full resolution in Figure 22. 
 



 

51 
 

  

  



 

52 
 

  
Figure 22.  Long-term average (i.e., 1 Jan 2000 to 31 Dec 2011) AET and its proportions 
relative to key climatic controls for part of the NSW site (see Figure 21(c)) at both the 
Landsat and MODIS resolutions.  The Landsat resolution data are the output of the Landsat-
MODIS blending to infill all gaps in the observed Landsat time series.  Parts (a) and (b) show 
the AET grids at the Landsat and MODIS resolutions, respectively.  Parts (c) and (d) show the 
AET/P proportions, and (e) and (f) are the AET/PET proportions; both at the Landsat and 
MODIS resolutions, respectively. 
 
Long-term temporal average AET (Figure 23a-b), AET/P (Figure 23c-d), and AET/PET 
(Figure 23e-f) for the SA site for both the LM blended dataset and the MODIS-only dataset 
were summarised.  For SA, there was 37% of the site where AET > P, and this was more 
strongly associated with the forestry plantations than at the NSW site (24.4% of the AET > P 
area were forestry plantation classes).  These land-use associations will be explored further in 
the land-use assessment, below. 
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Figure 23. Long-term average (i.e., 1 Jan 2000 to 31 Dec 2011) AET and its proportions 
relative to key climatic controls for the SA site at both the Landsat and MODIS resolutions.  
The Landsat resolution data are the output of the Landsat-MODIS blending to infill all gaps in 
the observed Landsat time series.  Parts (a) and (b) show the AET grids at the Landsat and 
MODIS resolutions, respectively.  Parts (c) and (d) show the AET/P proportions, and (e) and 
(f) are the AET/PET proportions; both at the Landsat and MODIS resolutions, respectively. 
 
The previous analysis shows the long-term temporal averages spatially (i.e., the time series 
are summarised as maps) and in Figure 24 we provide entire-study spatial averages 
temporally (i.e., the time series are summarised as time-series plots to highlight the temporal 
dynamics).  For the NSW site Figure 24(a) shows the marked reduction in AET associated 
with lower P in the proceeding 6-12 months for several drought years, most notable for the 
2006/07 summer.  For the SA site slight more consistent P is received overall (when 
compared to the NSW site), with the lower AET associated with dry conditions in the 2006/07 
spring-summer clearly visible Figure 24(b).  Both these analyses of temporal averages (i.e., 
maps) and spatial averages of AET compared with P across and throughout the study extent 
reveal that resultant Landsat-MODIS blended AET responds to spatial and temporal 
variations of the main driver of the water-balance, P, in a logical and consistent manner. 
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Figure 24. For the length of the study period, 8-day site-averaged AET and P across all land 
uses are shown for the (a) NSW site; and (b) SA site.  In the first 9-12 months of the time 
series the AET values are less reliable due to the ‘ramping up’ of cloud-free Landsat blending 
images to perform the multi-hierarchical infilling; see Figure 20. 
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3.2 Topographic correction 
The topographic correction was implemented by using the band and site specific k value for 
each individual epoch based on which 8-day period it fell within according to Figure 25 and 
Figure 26 for MODIS and Landsat, respectively.  Due to the MCD43A4 data being modelled 
at solar noon, the solar azimuth angle for the MODIS data were always zero (Figure 25a and 
b).  That combined with the coarser spatial resolution of MODIS resulted in climatological k 
values that were largely functions of solar zenith angle (Figure 25).  The Landsat data retain 
their STOD nature, so they have variation in both solar zenith and azimuth angles (Figure 26).  
This, combined with the finer spatial resolution, resulted in climatological k values that were 
not so obviously linked to solar zenith angle alone for Landsat (Figure 26).  The NSW site 
had considerably more variation in terrain relief (mean slope of 7.03°; see Figure 5) than did 
the SA site (mean slope of 2.57°; see Figure 9), so the k functions had different magnitude 
and shape between sites for both Landsat and MODIS (Figure 26).  Because of the small 
variability in elevation at SA, the difference between k values for the 4 bands was not as large 
as at NSW, especially for MODIS data.  At NSW, the main influence of performing the 
topographic correction was to alter the relationship between the NIR to the other bands 
(especially NIR to SWIR bands).  For MODIS, this mainly happened in summer, whereas for 
Landsat, it was a fairly constant offset between NIR and SWIR bands throughout the year 
(Figure 26b).  The large adjustment between NIR and SWIR bands for Landsat data at NSW 
(Figure 26b) would have an influence on the GVMI, which uses those two bands (see section 
2.4).  This change to GVMI, would in turn have an impact on the estimate of AET, which 
relies on the relative relationship between EVI and GVMI (section 2.4, Eq. (11)). 
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Figure 25. The solar angles and k parameters determined from the mean 8-day reflectances are 
shown for the 4 bands of interest for MODIS at both sites.  The solar zenith and azimuth 
angles of the MODIS temporal mean 8-day composite periods at the NSW site are shown in 
(a).  The k parameters determined from the mean 8-day reflectances for the 4 bands of interest 
for MODIS at NSW are shown in (b).  The SA solar angles and k parameters are shown in (c) 
and (d), respectively.  The legend in (a) applies to (c) and the legend in (b) applies to (d). 
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Figure 26. Solar angles and k parameters determined from the mean 8-day reflectances are 
shown for the 4 bands of interest for Landsat at both sites.  The solar zenith and azimuth 
angles associated with Landsat mean 8-day composite periods at the NSW site are shown in 
(a).  The k parameters determined from the mean 8-day reflectances for the 4 bands of interest 
for Landsat at NSW are shown in (b).  The SA solar angles and k parameters are shown in (c) 
and (d), respectively.  The legend in (a) applies to (c) and the legend in (b) applies to (d). 
 
The influence of topographic correction on the AET algorithm was first qualitatively checked 
on observed Landsat imagery to assess how the illumination influence compared to major 
land cover change.  As shown in Figure 27, the topographic effect was stronger than major 
land cover change for certain illumination angles as demonstrated by the January 2003 fire in 
NSW.  The figure shows how sensitive the AET algorithm was to illumination angle.  After 
topographic correction, the fire was clearly discernible.  Further assessment of the 2003 fire at 
NSW is given below as evaluation in the next sub-section (i.e., section 3.3). 
 



 

58 
 

  
Figure 27. Effect of topographic correction on the estimation of AET is shown across a fire 
boundary at the NSW site.  In (a) AET was estimated from an ARG25v1 Landsat NBAR 
image without topographic correction, and in (b) AET was estimated from the same image 
after topographic correction using the k values defined from Figure 26b for its specific 8-day 
composite period (8th 8-day period).  The fire was not as clearly evident in the 
topographically uncorrected data (a), whereas after topographic correction, the fire could be 
clearly identified.  This example used imagery from one Landsat 7 scene (P91R84) acquired 
on 06 March 2003.  The fire occurred in January 2003.  The area of this example is shown as 
the white rectangle in Figure 16a. 
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3.3 Validation and evaluation 
The experimental design regarding validation of the AET model included assessment of the 
bias correction applied (Eq. (12)).  The three bias corrections applied in this study are termed: 
(1) ‘None’; (2) ‘Original’; and (3) ‘Regional’, see Table 14.  The original bias correction may 
not be optimal for our two study sites as it was performed: (i) from AET calculated from 
MODIS-only data (i.e., having different spatial, spectral, and radiometric characteristics); (ii) 
over a different spatial extent (i.e., over all-Australia); and (iii) over a different temporal 
extent.  Because of these reasons, a regional bias correction was also performed, showing that 
when calculating AET from LM blended data over our two study sites, a slight decrease in the 
gain factor and a slight increase in the offset factor were helpful (Table 14).  The validation 
performed over the no bias corrected and the original bias corrected LM blended dataset are 
considered independent.  The regional bias correction was optimised using the validation data, 
so is not independent.  However, due to the minor influence that the bias correction step has 
on the resultant model output, and how minor the difference was between the original and 
regional bias correction parameters (Table 14), the lack of total independence is deemed 
suitable for this applied study. 
 
Table 14.  The three bias corrections (Eq. (12)) used in this study are shown. 
Bias Correction 0a  1a  
None 1.000 0.000 
Original 0.853 0.293 
Regional 0.792 0.379 
 
The RMSE of the three validation datasets (i.e., (i) catchment and reach area-based water 
balance; (ii) flux tower; and (iii) site plot-based water balance) are given for four AET 
datasets (i.e., (a) Landsat-only; (b) MODIS-only; (c) LM blended; and (d) AWRA)), see 
Table 15.  Assessment of the Landsat-only and MODIS-only datasets provide a baseline for 
the accuracy expected from the two data sources used for the blending and AWRA provides a 
baseline for the accuracy of a water balance model currently used for national water 
assessment and accounts.  The LM blended data were assessed for the three bias corrections 
((i) None; (ii) Original; and (iii) Regional), Table 15.  The regional LM blended, the MODIS-
only, and the AWRA assessment are shown graphically in Figure 28 and the Landsat-only 
assessment is shown in Figure 29. 
 
Table 15.  The RMSE of the three validation datasets is provided for the Landsat-only, 
MODIS-only, three bias correction versions of the LM blend, and the AWRA water balance 
AET output. 
Data source  Bias correction  RMSE (mm/d) 

    Area WB Flux Tower Site WB 
Landsat-only  Original  0.50 0.50 1.02 

MODIS-only  Original  0.27 0.52 0.98 

LM Blended  None  0.36 0.60 1.13 

LM Blended  Original  0.31 0.52 1.01 

LM Blended  Regional  0.26 0.52 0.98 

AWRA  –—  0.13 0.63 1.21 
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The accuracy of the LM blended datasets was improved for each validation type progressively 
from no bias correction having the lowest accuracy, the original bias correction having higher 
accuracy, and the regional bias correction having the highest accuracy of these three LM 
datasets, Table 15.  The regional bias correction LM dataset also had equal or better accuracy 
when compared to the MODIS-only or Landsat-only datasets for all three validation datasets 
(Table 15, Figure 28, and Figure 29).  The AWRA dataset had highest overall accuracy for 
the area (catchment and reach) water balance, but had the lowest accuracies for the site-based 
assessments at the flux tower and the site water balance plots (Table 15 and Figure 28).  This 
result is not unexpected, as AWRA is a water balance model, which are by design, good at 
modelling catchment-level processes and worse at modelling point-level processes. 
 

   

   

   
Figure 28.  Comparison of modelled versus observed AET of the three validation datasets is 
shown for the regional bias correction versions of the LM blend, MODIS-only, and the 
AWRA water balance AET output.  Parts (a), (b) and (c) use long-term catchment and reach 
water balance data (from both sites, see Table 5, Table 6 and Table 7) to validate the AET 
modelling.  The legend in (a) also applies to (b) and (c).  Parts (d), (e) and (f) use the 8-day 
Tumbarumba flux tower observations (its location is shown by the blue star in Figure 4(a)) to 
validate the AET modelling.  Parts (g), (h) and (i) use monthly site water balance data for P. 
Radiata and E. Globulus from the SA site (see Table 9 and Figure 18) to validate the 
modelling.  The legend in (g) also applies to (h) and (i).  The left column (i.e., parts (a), (d) 
and (e)) shows the results when using the regional bias corrected versions of the LM blended 
AET output.  The centre column (i.e., parts (b), (e) and (h)) show the MODIS-only output.  
The right column (i.e., parts (c), (f) and (i) show the AWRA water balance output. 
 
The Landsat-only AET dataset performed well at the flux tower, reasonably well at the site 
water balance plots, and rather poorly over the area (catchment and reach) water balance 
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assessments compared to the LM blended datasets (Table 15, Figure 28, and Figure 29).  The 
reduced accuracy of the Landsat-only AET dataset is seen primarily as a bias (Figure 29a), 
which is explained by the reduced temporal density of the Landsat data.  The difference 
between the Landsat-only (Figure 29a) when compared to the MODIS-only (Figure 28b) or 
the LM blended dataset (Figure 28a) results for the area water balance assessment is 
indicative, then, of the error introduced by not having a high enough temporal density. 
 

   
Figure 29. Comparison of modelled versus observed AET of the three validation datasets is 
shown for the Landsat-only AET output.  Part (a) uses catchment and reach water balance 
data (from both sites, see Table 5, Table 6 and Table 7).  To validate the AET modelling: (b) 
uses the Tumbarumba flux tower observations (its location is shown by the blue star in Figure 
4(a)); and (c) uses the site water balance data for P. Radiata and E. Globulus from the SA site 
(see Table 9 and Figure 18). 
 
The total volumetric AET (kL) of the plots and the change in plot timber volume (m3/ha) 
between 30/09/2009–03/08/2011 are provided in  for the three unthinned Red Hill catchment 
vegetation plots.  The ratio of AET/∆V shows how many kL of water were evaporated 
according to the AET model to increase average timber volume by 1 m3/ha across the plots.  
The trees were planted in 1989, so were 20 and 22 years old at the times of field 
measurement.  For the three unthinned plots,  shows that on average, about 32 kL of water 
was evaporated to increase timber volume by 1 m3/ha. 
 
Table 16. The volumetric AET (kL) and the change in timber volume (∆V, m3/ha) are shown 
for the time period 30/09/2009–03/08/2011 (672 days) for the three unthinned Red Hill 
catchment vegetation plots.  The ratio of AET/∆V shows how much water was evaporated 
according to the AET model to increase timber volume by 1 m3/ha.  The trees were planted in 
1989, so were 20 and 22 years old at the times of field measurement. 
Plot No.  AET  

(kL) 
∆V 

(m3/ha) 
AET/∆V 

(kL/( m3/ha)) 
1  1513  48.7 31.0 
2  1547  48.1 32.2 
4  1574  48.4 32.5 

Mean  1544 48.4 31.9 
 
The minimum z-score for the year 2003 is shown in Figure 30a.  The fire boundary includes 
contours describing the progression of the fire, so areas having wider spacing between 
contour lines are the areas that burned quicker than the areas where the lines are close 
together (Figure 30a).  The minimum z-score analysis matches the fire well, especially for the 
areas of the fire having wide contour spacing, indicating a quicker and likely, more intense 
burn (Figure 30a).  There are some ‘blue’ areas inside the fire boundary, usually in areas of 
close fire contours, indicating that in areas of slower burn (and likely less intense), either the 
AET model missed the areas, or the fire had incomplete coverage in these areas, or both 
(Figure 30a).  There were also a few ‘red’ areas outside of the fire boundary, which had z-
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scores approximately as low as within the fire, which may be due to isolated smaller fires or 
other disturbances.  The annual average AET within the fire boundary demonstrates a low 
AET in 2003, followed by a generally increasing trend thereafter (Figure 30b).  The PET data 
inside the fire boundary did not demonstrate this reduction and subsequent steady increase 
(Figure 30b).  For such a major fire event, perhaps a stronger reduction in AET might be 
expected.  However, the subjectivity of this expectation is hard to reconcile and the AET 
model does not discern the difference in AET from trees compared to undergrowth that might 
grow soon after a fire event.  Regardless, Figure 30 shows that the model identifies the fire 
and that is a form of evaluation which bolsters the belief that the Landsat-MODIS blending 
and AET model are behaving sensibly. 
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Figure 30. AET response to major fire in 2003 for the NSW site is shown.  The minimum z-
score recorded over the year is shown in (a) and the annual average AET and PET within the 
fire boundary is shown in (b).  The spatial extent in (a) is defined by the GIS layer of the fire 
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boundary, so it is not the full extent of the NSW study site. 
 
Over the SA study site, we had data on species, age, and thinning management of the forestry 
plantations, which allowed further evaluation of the average modelled output by species and 
age (Figure 31a).  Figure 31a shows that on average, E. globulus AET was initially higher and 
increased more rapidly than P. radiata, suggesting that E. globulus is a faster growing species 
than P. radiata.  E. globulus reached a plateau with respect to average AET after about 4 
years, whereas P. radiata reached an average AET plateau after about 6 years (Figure 31a).  
The forestry management data included information on timing of multiple thinning 
operations.  Figure 31b shows average AET of P. radiata of those stands that had been first 
thinned in 2000, the initial year of our study period.  These thinned stands had an average age 
of about 15 years old.  We then compared them to non-thinned stands of P. radiata that had 
an age of 15 in the year 2000 (Figure 31b).  Although the non-thinned 15 yo P. radiata were 
noisier than the first thinned P. radiata, the reduction in AET of the thinned stands especially 
in years 0-2 after thinning was evident (Figure 31b).  This also suggests that the model was 
behaving sensibly.  After assessing the first thinning analysis, the decrease in P. radiata AET 
at age 15 and the subsequent increase in AET afterwards (Figure 31a) looks suspiciously like 
some of the data have been incorrectly labelled in the management database, and actually 
have had their first thinning at around year 15.  Note, differences in species-level AET could 
be influenced by site quality, which has not been checked in this case. 
 

 

 
Figure 31. Average AET for unthinned P. radiata versus unthinned E. globulus at SA in (a) 
and average AET of P. radiata that had its first thining in 2000 compared to unthinned P. 
radiata having an age of 15 years old in 2000 is shown in (b). 
 
Next we assess the ability of the Landsat-MODIS blended AET to detect forestry harvest 
operations.  Several compartments in the vicinity of Burrungule in the SA site were harvested 
in 2004.  Figure 32 clearly shows the reduction in the Landsat-MODIS blended AET due to 
the logging operations and the recovery following replanting.  These changes are clearly seen 
in the time-series and the output images.  The higher spatial resolution of the Landsat-MODIS 
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blended AET also highlight how forestry applications are better served by the higher 
resolution imagery.  There is lower AET in the western portion of the logged compartments in 
Jan 2003, and in the Jan 2009 image the new planted canopy is yet to close and access roads 
are still visible (Figure 32). 
 

 
Figure 32. Changes in AET rates associated with forestry logging operations in the vicinity of 
Burrungule in the SA site.  The compartments were logged in 2004, with MODIS AET 
images provided in the top row and Landsat-MODIS blended AET images in the bottom row. 
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3.4 Land-use specific AET assessment 
The land-use specific AET assessment is the main summarisation of the report in which the 
two objectives are addressed.  That is, to assess: (i) the magnitudes and dynamics of land-use-
specific water use for entire catchments containing plantations; and (ii) whether there are 
other high-water use activities in the selected catchments/regions that use as much, or 
possibly even more, water as plantation forestry.  Due to the importance of this analysis, 
multiple summaries were made over all 9 land-use type, including volumetric totals of AET, 
relative rates of AET, normalised AET relative to P, normalised AET relative to PET, as well 
as a paired analysis of selected land-use types.  All summaries of AET in this section use the 
regional bias corrected version of the LM blended model output. 
 
Table 17.  Proportional areas are provided for the 9 land-use classes for each study site.  Rank 
of area is given in parentheses, and i refers to the land-use class index as introduced in the 
equations in section 2.8 above. 
Land-use number (i)  Land-use name NSW ( )iA prop  SA ( )iA prop  

1  Native Vegetation 0.23 (2) 0.18 (2) 
2  Unknown Plantation 0.04 (5) <0.01 (9) 
3  Hardwood Plantation <0.01 (9) 0.02 (7) 
4  Softwood Plantation 0.05 (4) 0.10 (3) 
5  Dryland Cropping 0.12 (3) 0.04 (5) 
6  Irrigation <0.01 (8) 0.02 (8) 
7  Urban 0.02 (6) 0.04 (4) 
8  Water 0.01 (7) 0.03 (6) 
9  Grazing Modified Pasture 0.53 (1) 0.57 (1) 

 
The areas of the land-use classes are given as proportions in Table 17.  At both sites, the 
Grazing Modified Pasture class was the highest land-use by area, accounting for over 50 
percent of the study areas, with Native Vegetation being the second highest at both sites 
(Table 17).  At both sites, the highest Plantation land-use class was Softwood Plantation, 
accounting for 5% of the overall area at NSW, and 10% at SA, see Table 17.  Total forestry 
plantation area was < 10% at NSW and < 13% at the SA site (Table 17), showing that forestry 
plantations cover a relatively small area of the study sites. 
 
Average volumetric AET, P, and PET and the evaporative fractions AET/P and AET/PET are 
provided in Table 18 and Table 19 for NSW and SA, respectively.  In particular, the AET/P 
metric provides important hydrological context; if over the long-term AET/P ≤1, then it is 
expected to use minimal groundwater resources.  Average volumetric AET of the two main 
plantation classes (Softwood and Unknown) ranked 4th and 5th highest at NSW, meaning that 
from a total amount of water use standpoint, there were three land-uses that exceeded 
plantations (Table 18).  When summarising AET/P at NSW, the two main plantation land-
uses ranked 6th and 8th highest, meaning most other land-use classes had higher water use 
compared to their input precipitation (Table 18).  At SA, the two main plantation land-use 
classes (Softwood and Hardwood) ranked 3rd and 7th when summarised from a volumetric 
standpoint, and were 2nd and 1st ranked when summarised by AET/P (Table 19).  These 
metrics point to a contrast between the two study sites, highlighted by the AET/P summaries 
of the model, where at NSW the plantation land-use class averages were below unity (AET < 
P, Table 18) and at SA where the plantation land-use class averages were above unity (AET > 
P, Table 19). 
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Table 18. Average volumetric AET (GL/d), P (GL/d), PET (GL/d), AET/P, and AET/PET are 
provided for the NSW site.  Rank of land-use class metrics are given in parentheses.  
Associated area proportions are given in Table 17. 

Land-use 
name ( / )i GL dAET  ( / )i GL dP  ( / )i GL dPET  

( / )
( / )

i

i

GL d
GL d

AET
P   

( / )
( / )

i

i

GL d
GL d

AET
PET  

Native 
Vegetation 14.33 (2) 16.68 (2) 26.02 (2) 0.86 (9) 0.55 (3) 

Unknown  
Plantation 2.83 (5) 3.18 (5) 4.69 (5) 0.89 (8) 0.60 (2) 

Hardwood 
Plantation 0.00 (9) 0.00 (9) 0.00 (9) 0.91 (7) 0.36 (8) 

Softwood 
Plantation 3.40 (4) 3.46 (4) 5.49 (4) 0.98 (6) 0.62 (1) 

Dryland 
Cropping 4.52 (3) 4.60 (3) 13.18 (3) 0.98 (5) 0.34 (9) 

Irrigation 0.24 (8) 0.22 (8) 0.47 (8) 1.11 (1) 0.52 (4) 
Urban 1.01 (6) 1.00 (6) 2.44 (6) 1.01 (3) 0.41 (7) 
Water 0.72 (7) 0.68 (7) 1.43 (7) 1.06 (2) 0.50 (5) 

Grazing 
Modified 
Pasture 

25.29 (1) 25.57 (1) 60.04 (1) 0.99 (4) 0.42 (6) 

Total 52.35 55.34 113.76 0.95 0.46 
 
Table 19. Average volumetric AET (GL/d), P (GL/d), PET (GL/d), AET/P, and AET/PET are 
provided for the SA site.  Rank of land-use class metrics are given in parentheses.  Associated 
area proportions are given in Table 17. 

Land-use 
name ( / )i GL dAET  ( / )i GL dP  ( / )i GL dPET  

( / )
( / )

i

i

GL d
GL d

AET
P   

( / )
( / )

i

i

GL d
GL d

AET
PET  

Native 
Vegetation 12.12 (2) 11.16 (2) 22.43 (2) 1.09 (4) 0.54 (4) 

Unknown  
Plantation 0.44 (9) 0.40 (9) 0.87 (9) 1.09 (5) 0.50 (7) 

Hardwood 
Plantation 1.51 (7) 1.26 (7) 2.55 (7) 1.19 (1) 0.59 (2) 

Softwood 
Plantation 7.33 (3) 6.46 (3) 12.08 (3) 1.14 (2) 0.61 (1) 

Dryland 
Cropping 2.11 (5) 2.28 (5) 4.79 (4) 0.93 (9) 0.44 (9) 

Irrigation 1.24 (8) 1.13 (8) 2.16 (8) 1.10 (3) 0.57 (3) 
Urban 2.31 (4) 2.32 (4) 4.58 (5) 1.00 (6) 0.50 (6) 
Water 1.53 (6) 1.60 (6) 3.00 (6) 0.96 (8) 0.51 (5) 

Grazing 
Modified 
Pasture 

32.93 (1) 33.55 (1) 68.61 (1) 0.98 (7) 0.48 (8) 

Total 61.52 60.17 121.07 1.02 0.51 
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The climatological mean volumetric AET of the major land-use classes is also provided in 
Figure 33.  All three plantation classes were combined to assess the overall plantation water 
use for NSW in Figure 33(a) and for SA in Figure 33(b).  At both sites, the Grazing Modified 
Pasture class and the Native Vegetation classes had higher volumetric AET than the 
combined plantation AET (Figure 33a-b).  When the plantation land-use classes were 
assessed separately, the Dryland Cropping class had higher AET than the Unknown or 
Softwood Plantation classes at NSW, primarily due to high AET in the Dryland Cropping 
class in Spring (Figure 33c).  At SA, the Softwood Plantation class volumetric AET exceeded 
all the next few ranked classes (Figure 33d) and the Hardwood Plantation class volumetric 
AET was lower than Dryland Cropping class, which also peaked in Spring in SA (Figure 
33e).  The peak in Dryland Cropping AET was emphasised by graphing the 8-day time-series 
of its volumetric AET compared to that of a minor plantation class at NSW and SA (Figure 
34a and b, respectively). 
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Figure 33. Climatological AET (GL/d) is shown for the major land use classes as determined 
by area for NSW in (a) and (c) and for SA in (b), (d), and (e).  Legend elements are provided 
on the figure part where they are first introduced, but the colours apply for any subsequent 
instances and they match those of Figure 16. 
 

 

 
Figure 34. Time-series AET (GL/d) is shown for specified land-use classes for (a) the NSW 
site and (b) the SA site.  Legend elements are provided on the figure part where they are first 
introduced, but the colours apply for any subsequent instances and they match those of Figure 
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16. 
 
At NSW, the classes with the highest AET/P were Irrigation, Water, and Urban classes; and 
these were the only three classes where AET exceeded P at NSW (Table 18).  These three 
high AET/P classes have exceedingly small proportional areas, which reduces the certainty 
that they are hydrologically meaningful (Table 17).  Since none of the plantation classes, on 
average, have AET that exceeds P in NSW, the model indicates that it is unlikely much net 
ground water is being used by plantation forestry there.  This is supported by Figure 35a, 
which shows the pixel-based temporal average AET/P for the forestry plantation classes (all 
other classes are grey) being primarily below unity.  The climatological AET/P is shown for 
the combined forestry plantation land-use classes compared to the other major land-use 
classes by area in Figure 36, which shows, generally, a high AET/P in summer and a low 
AET/P in winter with the Grazing Modified Pasture and Dryland Cropping classes also being 
high in Spring for NSW, but not for SA. 
 
At SA, the comparison of AET to P showed 5 land-use classes where AET exceeded P, and in 
fact, that the overall total AET of all 9 classes exceeded that of P for the whole area (Table 
19).  The top five land-use AET/P included the three forestry plantation classes, the native 
vegetation class, and the irrigation class (Table 19).  Of these, the native vegetation and 
softwood plantation classes had proportional areas ≥0.1 and thus imbued higher certainty 
(Table 17).  While overall volumetric AET exceeded P for the forestry plantations at SA, this 
was highly variable (Figure 35b).  There were large proportions of plantation where AET was 
equal to or less than P, especially in the lower AI band nearer to the coastline (Figure 35b and 
Figure 10). 
 

  
Figure 35.  The pixel-wise temporal average rates of AET/P for the (a) NSW site and (b) SA 
site.  For (a) only State Forest for NSW is shown with all other land-uses coloured grey.  For 
(b) all plantations for the SA site are shown with all other land-uses coloured grey. 
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Figure 36. Climatological AET/P (proportion) is shown for the major land use classes as 
determined by area for NSW in (a) and for SA in (b). Legend elements are provided on the 
figure part where they are first introduced, but the colours apply for any subsequent instances 
and they match those of Figure 16. Climatologies were calculated on months rather than 8-
day periods. 
 
The mean relative rates of AET per land-use class (mm/d) for both study sites are also 
provided in Table 20 and Table 21.  The relative assessment of AET, obviously, removes the 
influence of any particular land-use class’ areal proportion (not including any indirect effects 
due to potential errors for those classes which are inordinately small).  For both sites, the two 
highest AET rates in mm/d were forestry plantation land use classes (Softwood and 
‘Unknown’ plantation sites, respectively at NSW and Softwood and Hardwood plantations, 
respectively at SA), see Table 20 and Table 21.  The third highest AET rate was native 
vegetation at NSW and irrigation at SA (Table 20 and Table 21).    It should be noted that the 
Native Vegetation class includes native grassland vegetation and so should not be considered 
to be native forest, see section 2.2.2.  Also of note, is the water class having relatively low 
AET rates at both sites (and being 5th and 7th highest AET out of 9 classes for NSW and SA, 
respectively).  This is addressed in more detail below, in the discussion section.  Table 20 and 
Table 21 also show the proportion of AET (Eq. (17)) over the proportion of area (A), which 
allowed for a quick understanding of what classes had higher than average AET (those above 
unity) compared to classes which had lower than average AET (those below unity). 
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Table 20. Average land-use class relative rates of AET (mm/d), proportional AET, proportion 
of area, and the ratio of proportional AET to proportion of area are provided for the NSW site.  
Rank of land-use class metric is given in parentheses. 

Land-use name ( / )i mm dAET  ( )i propAET  ( )iA prop  
( )

( )
i

i

prop
A prop

AET
  

Native Vegetation 2.28 (3) 0.27 (2) 0.23 (2) 1.18 (3) 
Unknown Plantation 2.48 (2) 0.05 (5) 0.04 (5) 1.29 (2) 
Hardwood Plantation 1.48 (8) <0.01 (9) <0.01 (9) 0.77 (8) 
Softwood Plantation 2.59 (1) 0.07 (4) 0.05 (4) 1.35 (1) 
Dryland Cropping 1.45 (9) 0.09 (3) 0.12 (3) 0.75 (9) 

Irrigation 2.17 (4) <0.01 (8) <0.01 (8) 1.13 (4) 
Urban 1.75 (7) 0.02 (6) 0.02 (6) 0.91 (7) 
Water 2.14 (5) 0.01 (7) 0.01 (7) 1.11 (5) 

Grazing Modified Pasture 1.77 (6) 0.48 (1) 0.53 (1) 0.92 (6) 
Total 2.28 (3) 1.00 1.00 1.00 

 
Table 21. Average land-use class relative rates of AET (mm/d), proportional AET, proportion 
of area, and the ratio of proportional AET to proportion of area are provided for the SA site.  
Rank of land-use class metric is given in parentheses. 

Land-use name ( / )i mm dAET  ( )i propAET  ( )iA prop  
( )

( )
i

i

prop
A prop

AET
 

Native Vegetation 2.02 (4) 0.20 (2) 0.18 (2) 1.08 (4) 
Unknown Plantation 1.92 (5) 0.01 (9) <0.01 (9) 1.02 (5) 
Hardwood Plantation 2.22 (2) 0.02 (7) 0.02 (7) 1.18 (2) 
Softwood Plantation 2.23 (1) 0.12 (3) 0.10 (3) 1.19 (1) 
Dryland Cropping 1.65 (9) 0.03 (5) 0.04 (5) 0.88 (9) 

Irrigation 2.08 (3) 0.02 (8) 0.02 (8) 1.11 (3) 
Urban 1.84 (6) 0.04 (4) 0.04 (4) 0.98 (6) 
Water 1.80 (7) 0.02 (6) 0.03 (6) 0.96 (7) 

Grazing Modified Pasture 1.77 (8) 0.54 (1) 0.57 (1) 0.94 (8) 
Total 2.02 (4) 1.00 1.00 1.00 

 
While the relative assessment of AET removes the influence of any particular land-use class’ 
areal proportion, it does not consider that the land-uses may be biased based on how their 
spatial distribution coincides with environmental conditions.  For example, a forested land-
use may exist in a higher rainfall zone than a grassland class, on average.  The previous 
summarisations in Table 18 and Table 19 show just this.  To quantify this influence, we 
performed a paired analysis of the Softwood Plantation land-use class to both the Native 
Vegetation and Grazing Modified Pasture land-use classes.  This paired analysis allowed for 
covariates such as P and PET to be accounted for and thus a way to statistically test whether 
the means and variances of these selected land-use classes were significantly different.  The 
scatter plots of the mean AET for the two study sites are shown in Figure 37 and the statistical 
assessment is given in Table 22. 
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Figure 37.  Softwood Plantation (SP) mean AET vs Native Vegetation (NV) or Grazing 
Modified Pasture (GMP) mean AET is shown for the paired analysis points for NSW in (a) 
and for SA in (b).  The legend in (a) applies to (b).  
 
In Figure 37, points falling below the one-to-one line represent those where Softwood 
Plantation had a higher mean AET than the other land-use that it was paired with (whether it 
be Native Vegetation or Grazing Modified Pasture).  The points falling above the one-to-one 
line, conversely were those where either the Native Vegetation or the Grazing Modified 
Pasture AET was higher than that from the corresponding Softwood Plantation point.  At both 
sites, there were on the order of 6 of the 20 points where Native Vegetation had a higher or 
roughly equivalent mean to that of Softwood Plantation, whereas only one or two Grazing 
Modified Pasture points had higher mean AET than their corresponding Softwood Plantation 
points (Figure 37).  That is, the Softwood Plantation AET had a higher mean than the other 
two land-use classes for most of the point-pairs, especially when compared to the Grazing 
Modified Pasture class.  The results of the statistical analysis showed that at the P=0.01 level, 
only Softwood Plantation vs. Grazing Modified Pasture had significantly different means, and 
this was found at both sites (Table 22).  Neither site showed significant difference between 
means for Softwood Plantation vs. Native Vegetation at the P = 0.01 level and neither site 
showed significantly different variances for either comparison (Table 22).  The difference 
between the Softwood Plantation and the Native Vegetation AET means was ‘more 
significant’ at NSW as this comparison would be significant at the P = 0.05 level (Table 22). 
 
Table 22. Statistical summary of the paired analysis shows whether the mean or variance of 
Softwood points was significantly different to the mean or variance of either Native 
Vegetation or Grazing Modified Pasture at both study sites.  For each assessment, the number 
of samples was n = 20.  The values presented in the table define the probability that the mean 
analysis (t-test) or the variance analysis (F-test) was significant.  Low probabilities (e.g., < 
0.01) would be more likely to demonstrate a significant difference than higher probabilities 
(e.g., > 0.01). 

Land-use comparison  Significance (probability) 
  NSW  SA 
  Means Variances  Means Variances 

Softwood Plantation vs. Native 
Vegetation  0.0272290 0.235830  0.1541094 0.2618181 

Softwood Plantation vs. Grazing 
Modified Pasture  0.0000004 0.237479  0.0000002 0.4573940 
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4 Discussion 
Our study showed the importance of topographic correction when performing LM blending, 
especially for the NSW site, which had considerably more variation in topographic relief than 
the SA site (Figure 5 and Figure 9).  At NSW, the illumination effect was stronger than the 
influence of the 2003 fire for much of the burned area (Figure 27).  That is, illumination effect 
was a stronger influence on the AET algorithm than major land use change.  This was an 
unanticipated result.  Specifically, we found that the influence of illumination mainly altered 
the relationship between the NIR to the other bands, especially NIR to SWIR bands, and 
especially for Landsat data (as seen by the large and fairly constant difference in k parameters 
required to correct them, Figure 26b).  The illumination influence between the NIR and SWIR 
bands mainly changed the GVMI, which uses those two bands (Eq. (6)).  This change to 
GVMI, in turn impacted the estimate of AET, which heavily relies on the relative relationship 
between EVI and GVMI (Eq. (11)).  So, while there may be other applications of blending 
remote sensing that may be less affected by the illumination influence, we suggest that these 
interactions be carefully checked due to the severity of the impact found in this current study.  
Also, for future studies using the CMRSET algorithm, we strongly suggest performing 
topographic correction first, especially if Landsat data are used and if the site has a good deal 
of topographic relief. 
 
Blending Landsat and MODIS data results in optimal domain characteristics, (i.e., high spatial 
resolution and temporal density, see Table 1 and Figure 1 and for an example of the spatial 
resolution improvement, see Figure 22).  It is important to note, however, that the domain 
characteristics of Table 1 and Figure 1 are not the same as accuracy.  Accuracy is calculated 
by comparing model output to some reference, or validation dataset(s).  So, while performing 
LM blending will improved domain characteristics, this improvement may be achieved at the 
cost of decreasing accuracy.  To assess any potential accuracy loss, the blended AET models 
were compared to the Landsat-only AET model and the MODIS-only AET model (all 
assessed against validation datasets). LM blended data accuracy was slightly worse than that 
of using MODIS-only when either no bias correction or the original bias correction 
parameters were used.  The Landsat-only AET dataset also slightly out-performed the non-
bias corrected and the original bias corrected LM blended output at the flux tower and at the 
site water balance plots, but not over the area (catchment and reach) water balance (Table 15, 
Figure 28, and Figure 29).  The reduced accuracy of the Landsat-only AET dataset was 
primarily a bias (Figure 29a), which was likely explained by the reduced temporal density of 
the Landsat data; that is, having fewer images to calculate a mean over can easily cause a 
biased result.  A regional bias correction was defined, then, that allowed for the LM blended 
data to retain the high spatial resolution of Landsat and the high temporal density of MODIS 
without accuracy loss.  The regional bias correction parameters were only a slight adjustment 
from the original parameters (Table 14).  It is not known whether the need for bias correction 
parameter adjustment was due to the blending process or whether it was due to geographic 
specifics of the study sites, or due to both of these considerations. 
 
In addition to the more formal validation, which provided accuracy assessment, evaluation 
was performed.  Evaluation data were those not acquired in the same physical units as AET, 
yet were able to be related to (or allow for the summarisation of) the process of AET and 
provide a means of assessing AET from a catchment management and/or forestry perspective.  
These were semi-quantitative in nature and simply assessed whether summarisations of AET 
seemed reasonable, thus bolstering confidence in the model output.  Evaluation of the LM 
blended AET dataset showed that the model was able to: (i) delineate the 2003 fire at the 
NSW site well by calculating the minimum z-score for the year on a pixel-wise basis and 
demonstrated a reduced yearly average AET within the fire boundary (Figure 30); (ii) 
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differentiate between E. globulus and P. radiata growth rates, and differentiate between 
thinned and unthinned P. radiata at the SA study site (Figure 31); and (iii) define the amount 
of water used to increase the volume of unthinned P. radiata plots at the NSW site ().  P. 
radiata at the SA site reached an average AET maximum plateau after about 6 years (Figure 
31a), which is consistent with the findings of Webb and Kathuria (2012), who found that the 
Red Hill P. radiata plantation reached full canopy closure at 6 years old after which stream 
flow declined.  Overall, the evaluation of the LM blended data bolstered confidence that the 
model was behaving sensibly. 
 
The land-use specific AET assessment included volumetric totals of AET in units of GL/d, 
relative measures of AET to P and AET to PET (which provided important hydrological and 
surface energy context, respectively), and also relative measures of AET in units of mm/d.  
The relative assessment of AET (mm/d) removed the influence of area (not including any 
indirect effects due to potential errors for those classes which are inordinately small).  The 
volumetric summary of AET considers the total area of each land-use class when calculating 
the mean AET and so for both sites, the Grazing Modified Pasture and the Native Vegetation 
land-use classes had the highest two average volumetric AET, respectively, due to their 
inordinately large areal proportions (Table 18 and Table 19).  Dryland Cropping volumetric 
AET (GL/d) was higher than Softwood plantation in NSW and higher than Hardwood 
plantation in SA (Table 18 and Table 19).  Of note, the water land-use class did not come out 
at the highest relative rate of AET (mm/d) for either site, but rather fifth at NSW and seventh 
at SA (Table 20 and Table 21).  This is likely largely due to water having such a small 
proportion of area at both sites (see Table 17), making any spatial error in co-registration 
between the land-use map and the AET output potentially problematic when calculating class 
averages.  Also the water land-use class would not be 100% covered with water through the 
entire temporal extent of the study (this is the difference between land-use and land cover), 
meaning that AET from a water land-use class should not be interpreted to mean that this is 
evaporation from water.  To help understand our point, we provide the following forestry 
example.  If a softwood plantation is harvested, it would still fall within the softwood 
plantation land-use class even though it no longer has any tree cover.  In that case, assessing 
AET from the component of harvested softwood plantation should not be interpreted as the 
evaporation from some species of softwood tree.  So, while the evaporation is coming from 
the softwood plantation land-use class, in that case, the evaporation is not coming from a 
stand of softwood trees.  Notwithstanding, at 1.80 mm/d, the average rate of water land-use 
class AET at the SA site, in particular, seems lower than expected (Table 21).  When the land-
use specific assessment summarised AET/P the classes with the highest AET/P were 
Irrigation and Water at NSW (Table 18) and Hardwood and Softwood plantation at SA (Table 
19).  The high AET/P land-use classes at NSW had exceedingly small proportional areas, 
which reduces the certainty that they were hydrologically meaningful, however (Table 17).  
Regardless, the metric of AET/P was important to summarise and warrants further discussion. 
 
As described in the introduction, the ability for a surface to evaporate is often described by 
the energy and moisture available (the so-called, water and energy-limits frameworks).  To 
first order, these two covariates (water and energy) are the most generically important 
covariates to AET.  Over the long-term and/or over spatial averages, these are well described 
by P and PET.  The ratio of AET/P or AET/PET are both referred to as the evaporative 
fraction and these provide important hydrological and surface energy context, respectively.  
Therefore, these two evaporative fractions were used as part of the land-use assessment.  
AET/P, in particular, provided vital hydrological context with respect to that assessment as 
over the long-term when AET/P > 1, then (ignoring any potential errors) extra water than 
precipitation from directly above would need to be accessed.  This extra water could come 
from irrigation or lateral inflow either above or below ground.  Above ground later inflow 
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would be due to overland flow of precipitation due to topographic considerations, which 
could either be evaporated at the surface (if it resulted in standing water) or could infiltrate (if 
the soil was not saturated) where it could be accessed as long as it remained in the root zone.  
Regardless, of whether it was above or below ground, the important thing is that lateral inflow 
was originally precipitation that fell at a different location than where it eventually evaporated 
from.  Likewise, AET/P > 1 could also indicate that the extra water stored in the soil profile or 
groundwater could be from precipitation that fell at the same location, but at a different time 
(before the study period began).  So, there are spatial and temporal considerations and surface 
and ground water hydrologic considerations that make the source of this extra water hard to 
determine.  Also, model error (especially bias) makes reliance upon such precise calculation 
of the evaporative fractions tenuous.  So, we have not defined a simple rule that any land-use 
class that had a long-term average AET/P > 1 was accessing ground water.  It would be naïve 
to assume so.  With that said, for land-use classes having AET/P > 1 in the long-term, it 
indicates that some extra water source is being accessed.  One likely source is ground water. 
To do so with more confidence, however, a sensitivity analysis of the impact of error (e.g. 
bias) on AET/P would need to be done. 
 
Considering the qualifying remarks made above, there were some interesting overall 
statements that can be made with a certain higher degree of confidence about the AET/P 
results.  These can be made with higher certainty because they rely primarily on the relative 
rather than on the absolute comparisons between AET and P at both sites and also because 
they mainly rely on long-term and large-area averages, which reduces the influence of errors 
(excepting bias).  Firstly, the mean total AET/P was higher at SA (1.02) than NSW (0.95),  
Table 18 and Table 19.  This suggests that the SA site is more likely accessing groundwater 
than the NSW site.  This generally matches a hydrological understanding of the two sites as 
the NSW site is more likely driven by surface hydrology given its steep terrain and further 
distance to water table and the SA site is more characterised by flat terrain and shallower 
distances to the water table.  Secondly, both sites had a great deal of spatial variability in 
AET/P across the plantation land-use classes and both had areas within the plantation class 
where AET/P was well below 1 and where AET/P was well above 1 (Figure 35).  At both 
sites, the summarisation of AET/P seems to effectively identify areas within the forestry 
plantations where there is higher likelihood of trees accessing groundwater compared to areas 
where there is lower likelihood of trees accessing groundwater (Figure 35).  When considered 
this way, the AET/P summarisation could be a very useful management tool to identify areas 
where groundwater use is likely and vice-versa, areas where groundwater use is unlikely.  At 
SA, in particular, the overall aridity index gradient being lower aridity from the southwest 
coastline to higher inland aridity towards the northeast of the study site seems to explain the 
overall pattern of likelihood of groundwater use (Figure 10c and b).  There is also a great deal 
of variability above this overall pattern, though, that would be critical for management and 
forming policy decisions (Figure 35).  Finally, the period of record of our study covered the 
so-called Millennium drought, which could impact the AET and evaporative fraction results 
of our study in at least two ways: it could potentially (1) cause an underestimation of land use 
water use due to the water limitation caused by an extended drought; and (2) alter the 
proportion of AET/P and or AET/PET compared to a time period that is more representative 
of long term mean climatic conditions.  The overall backdrop of the Millennium drought on 
the interactions between AET and the energy and water balances should be kept in mind when 
interpreting the results of this study. 
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5 Conclusions 
 
Landsat-MODIS blending using the ESTARFM algorithm, implemented in a hierarchical 
approach to infill cloud effected pixels, can generate a time-series of imagery with both high-
spatial resolution (25 m) and high-temporal frequency (8-day) that are suitable for input into 
the CMRSET algorithm.  The output of this algorithm were AET estimates across all land-
uses contained in the two study sites.  Validation with all available in situ measurements from 
both study sites (including catchment and reach water balances, flux tower and site water 
balances) revealed that the resultant AET grids were highly accurate.  Evaluation with 
forestry management and ‘environmental variability’ datasets confirmed that the resultant 
AET grids were fit-for-purpose to calculate land-use-specific AET summaries. 
 
Stratifying the AET time series grids by nine land-uses revealed that volumetrically, both 
agricultural and native vegetation areas used more water than forestry plantation at both study 
sites.  At both sites, Grazing Modified Pasture, Native Vegetation, and Dryland Cropping 
used more total water than any of the forestry plantation land-use classes.  Even when all 
forestry plantation land-use types were combined, they still used less total water than the 
Grazing Modified Pasture and Native Vegetation classes.  We found that the main forestry 
plantation land-use classes had the highest relative rates of AET (mm/d) at both sites, but that 
this assessment was biased due to the plantations being planted in high precipitation (P) areas.  
Paired analysis of Softwood Plantation vs. Native Vegetation at both sites showed no 
significant difference between means at the p = 0.01 level (n = 20). 
 
Summarisation of AET/P within the assessment of land-use specific-AET provided critical 
hydrological context that was absent when AET was summarised simply based on rate of 
AET (mm/d) or based on volume (GL/d).  At NSW, the main forestry plantation land-use 
classes by area were low water users when normalised by precipitation; Softwood and 
Unknown Plantations ranked 6th and 8th out of 9 classes when water use was summarised by 
AET/P and both of these classes’ average AET/P was below unity (being 0.98 and 0.89, 
respectively).  In contrast, for the SA site, the two main forestry plantation land-use classes by 
area were high water users when normalised by precipitation; Softwood and Hardwood 
Plantations ranked 1st and 2nd out of 9 when water use was summarised by AET/P and both of 
these classes’ average AET/P was above unity (being 1.19 and 1.14).  This indicated that 
forestry plantation water use needs to be considered on a site-by-site basis. 
 
Further, we found that there was high variability of AET/P across the forestry plantations, so 
forestry water use should not be treated uniformly even over a single study site.  For the NSW 
site, only 6.9% of the area had AET > P, located mainly along the Murrumbidgee and other 
river courses, water bodies, and a few forested areas.  At SA, 37% of the site had AET > P, 
and this was more strongly associated with the forestry plantations than at the NSW site. 
While these findings suggest greater probability of groundwater usage in the SA site, it is 
important to interpret these long-term AET/P summaries within the context of the data used to 
estimate AET (and P), the model framework and assumptions, and in terms of the hydrology.  
With that understood, it was indicated that the AET/P data might be useful for assessment of 
identifying those plantations that use higher than expected water in regions where AET/P is 
generally lower than unity (e.g., NSW) or those plantations that use lower than expected 
water in regions where AET/P is generally above unity (e.g., SA), thus being directly useful 
for informing management and policy decisions. 
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Importantly for the objectives of this project the Landsat-MODIS blended AET/P and MODIS 
AET/P had similar spatial pattern and values.  This meant that we were able to generate high-
resolution and high-frequency AET grids without sacrificing AET accuracy.  This is 
important when needing to monitor AET rates across environments and management systems 
where AET can be highly spatially and temporally variable. 
 
This project developed an in-house software system to perform Landsat-MODIS blending on 
a magnitude (across time and space) never before attempted globally elsewhere; compare our 
study sites spatial and temporal extents with those reported in Table 2.  These ETa datasets 
were validated with all available independent datasets and by assessing suitable landscape 
patterns, both spatially and temporally.  They were then use to provide land-use-specific 
summaries of AET, including: (i) volumetric totals of AET; (ii) relative rates of AET; (iii) 
normalised AET relative to P; (iv) normalised AET relative to PET; and (v) paired analysis of 
adjacent equal-sized selected land-use types.  With agreement of FWPA and our FWPA 
Project Steering Committee it is has been decided that the Landsat-MODIS blending ETa 
datasets developed in this project will be made freely available on the CSIRO Data Access 
Portal (DAP) once the journal paper from this research is officially accepted by the target 
journal.  Currently the skills and ‘know-how’ to do this massive processing task solely rests 
with the project team.  This means they would need to be engaged to perform this processing 
over new areas or to extend the temporal domain at each of the two study sites developed 
herein.  However, the project team would prefer to assist working with software engineers / 
system architects to progress the development of the current research-focused Landsat-
MODIS blending system into a more operational and accessible blending system housed on 
the National Computing Infrastructure (NCI).  Discussions are currently underway within 
CSIRO regarding the potential of this.  Developing a more operational and accessible 
blending system would build on this project, and would additionally build upon the more 
‘fundamental’ investments made by: (i) CSIRO to parallelise the blending algorithm and to 
develop the MODIS ‘data-cube’; (ii) Geoscience Australia to develop the Landsat ‘data-cube’ 
(including its geometric, atmospheric and topographic corrections); and (iii) the NCI to 
develop and maintain a computing facility that allows these types of processing jobs with 
demanding computational requirements, being data access, storage, memory and processing 
power. 
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6 Recommendations and Future Work 
The following recommendations and suggestions for future work can be made following this 
project.  Noting that the primary project aim was to develop a long-term dataset of remotely 
sensed AET estimates at suitable spatial resolution and temporal frequency.  While there are 
many ways such a dataset can be used to address issues of water allocation, water accounting 
and land-use-specific water management, both within and between forestry, agriculture and 
other sectors, implementing these is future work beyond the scope of this project. 
 
1) Current measurements of water-use for irrigation areas are performed and such data would 
have been a valuable source of validation data for land-uses other than forestry.  While such 
water-use data are measured as part of operational irrigation water supply, the project team 
was unable to access any land-holder data due to privacy concerns.  While these data need to 
be spatially-explicit to perform validation of the Landsat-MODIS 25 m resolution AET grids, 
to negate the concerns about privacy, we suggested that these results can be visualised as a 
‘X-Y’ plot so that the locations and amounts of water used are not spatially revealed.  This 
was explained to irrigators yet none were willing to share their data for this scientific project.  
To resolve this issue likely requires a concerted effort from relevant State Government 
agencies to facilitate a data access agreement, thereby allowing land-use-specific AET 
estimates to be validated for a wider range of land-uses. 
 
2) Topographic correction of Landsat data prior in areas of high relative relief needs to be 
implemented before running the AET algorithm.  Not performing the topographic correction 
means that the results from the CMRSET AET algorithm could not effectively delineate 
major land-cover change (i.e., fire) in our study, as the illumination effects dominated the 
signal.  In the Geoscience Australia Landsat ‘data-cube’, which is the primary Landsat data 
source now being used in Australia, this correction is currently being performed and will 
available in the next update.  The Landsat-MODIS blending system developed in this FWPA 
has the potential to become an operational system.  This follows much investment by CSIRO 
to parallelise the blending algorithm and to develop the MODIS ‘data-cube’ and by 
Geoscience Australia developing the Landsat ‘data-cube’.  Discussions are currently 
underway within CSIRO regarding how to progress the development of the current research-
focused Landsat-MODIS blending system into a more operational and accessible system 
housed on the National Computing Infrastructure (NCI). 
 
3) To strengthen the confidence in the AET results generated here it would be possible (yet is 
non-trivial and beyond to scope of contracted project) to generate associate gridded error 
surface estimates for the remotely sensed based AET algorithms at the Landsat resolution and 
the 8-day time step produced here.  Where and when we have independent validation data 
(e.g., flux tower and stream flow data) we have used these to characterise the AET errors.  To 
develop the proposed associate error surface grids there are two main sources of error that 
would need to be accounted for: (i) error from the Landsat-MODIS blending algorithm which 
are used to blend the indices required by the CMRSET algorithm; and (ii) error and 
uncertainty from the input precipitation grids and meteorological grids used as input to 
calculate the PET grids which the remote sensing indices scale to estimate AET.  
Implementing (i) is a major undertaking (1-2 years of work) as none of the international 
groups involved in developing remote sensing blending algorithms has done this.  These 
international groups (CSIRO included) have performed ‘sensitivity type’ analysis to 
characterise the errors.  This is done by having three sequential Landsat images, simulating 
the middle one and comparing it against the observations for the middle Landsat image.  To 
date, there is no routine way to estimate blending error as part of the blending process and 
considerable effort developing an approach and an algorithm (with associated debugging and 
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testing) would be needed.  Propagating error associated with the PET grids is a moderate 
undertaking and would take in the vicinity of 3-6 months. 
 
4) To further strengthen the confidence in the AET results generated here it would be possible 
to implement remote sensing AET algorithms using: (i) resistance based models (which use 
remotely sensed land surface temperature to solve the surface energy balance) and/or (ii) 
conductance based models (which use remotely sensed reflective data to provide key 
vegetation biophysical parameterisations).  If one method were implemented over a similar 
time-frame at a similar spatial resolution, as performed here, this provides the means to cross-
check the two products.  However, only have two estimates essentially provides information 
on the differences between them, and to increase the utility and to allow the opportunity for 
implementing sophisticated techniques if both approaches were used this would allow the 
triple collocation approach to be applied to rigorously assess the error and uncertainty both 
spatially and temporally.  If only one approach was to be funded we advocate the use of the 
land surface temperature / surface energy balance approach as reflective bands are used in the 
model here, and decoupling of the atmosphere and forest canopy will result in increases of 
surface temperature that are more transient than changes in vegetation biophysical parameters. 
 
5) Land-use specific water-use needs to be viewed in the broader catchment water balance 
assessment.  The time-series of (i.e., high-resolution) 25-m 8-day AET grids represents the 
longest / largest spatial-temporal domain that MODIS-Landsat blended data have been used to 
estimate AET anywhere globally.  Given this it would seem judicious for this resource to be 
further used to understand the dynamics of numerous ecohydrological processes in the study 
sites including: (i) assessing forestry water-use efficiency; (ii) understanding shallow water-
table dynamics and AET rates (more relevant for the SA site); (iii) assessing groundwater 
usage by forested landscapes; and (iv) allowing forestry agencies to assess the impact of their 
management options in terms of water-use.  These four items are briefly discussed, in turn, 
below. 
 
6) The high-resolution AET grids generated here can be combined with forestry biomass data, 
including both growth field surveys and LiDAR (Light Detection And Ranging) 
measurements, to assess the water-use efficiency of the forestry plantations.  This would 
likely reveal very relevant information regarding the efficiencies of management decisions 
and how they are implemented. 
 
7) The SA site experiences a Mediterranean climate with numerous ephemeral water-logged 
areas appearing across the landscape over winter which persist to mid-Spring (depending on 
the climate variability).  These ephemeral areas likely constitute a relatively large water-use 
across the region, and for many it is unknown how large an area they effectively drain and 
what volume of water (and proportion of the regional water balance) they return to the 
atmosphere via AET.  To complement this analysis it would be best if very high resolution 
(i.e., in the order of 1-5 m) digital surface model (DSM i.e., with the effect of vegetation and 
other above-ground structures removed) were available regionally.  Such a DSM would likely 
best be acquired using LiDAR imagery. 
 
8) The spatial patterns of the long-term AET/P output suggests there is information on 
groundwater usage between land-uses and within the forestry land-use class.  This 
information can be used to inform conceptual models of the subsurface hydrology, and also 
can constrain numerical models of the coupled groundwater-surface water systems (including 
their degree of connectivity and interactions) at both sites.  The spatial variability in the 
vegetation water-usage (in excess of P) within the forested landscapes can be integrated with 
forestry management to possibly reveal new information across both sites about forested 
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groundwater usage.  This AET/P grid could be classified into groups of likely groundwater 
usage, for example, if ETa/P > 1.4 that part of the landscape could be identified as ‘very 
likely’ to be using groundwater, if 1.4 > ETa/P > 1.3 then ‘highly likely’, if 1.3 > ETa/P > 1.2 
then ‘moderately likely’, if 1.2 > ETa/P > 1.1 then ‘possible’ and if 1.1 > ETa/P > 1.0 then 
‘within the bounds of data uncertainty’.  Obviously closer examination of the thresholds 
would be needed; these are examples only to provide clarity for the Project Steering 
Committee. 
 
9) In both sites there exists the ability to integrate these high-spatial resolution (25 m) and 
high temporal frequency (8-day) AET estimates to better understand how forestry 
management practices have impacted the site water-usage.  For example, the AET of paired 
sites (that are adjacent to minimise precipitation differences and the same size) with different 
planting density and/or thinning regimes can be tracked in the AET dataset.  This unique 
dataset, when combined with forestry agencies historic management systems, may allow 
forestry management agencies to better consider water-usage when planning and 
implementing their operations.  Noting that forestry management needs to account for 
numerous time-scales in the decision making process, and that multiple criteria encompassing 
the ‘triple-bottom-line’ need to be considered when implementing daily to decadal forestry 
management. 
 
10) Finally, if finer resolution management and growth dynamics and water use are required, 
then scale appropriate field measurement of actual water use data need to be collected and 
made available to support this.  Also, remote sensing currently does not provide structurally 
specific AET rates in forestry.  Therefore, field measurement that partitions stand-level AET 
into structurally specific components would be particularly crucial for both calibration and 
validation of future spatio-temporal modelling using remote sensing. 
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