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Executive Summary 

Using largely in-house methodology, large numbers of markers associated with density were 

identified in both E. nitens and E. globulus. These along with pulp yield and growth markers 

were genotyped across a large number of trees in existing trials. Several validation tests were 

performed in both species to demonstrate the predicting power of markers using data from 

field trials owned by partnering companies. The accuracy of the marker predicted traits 

(molecular breeding values – MBVs) was benchmarked against estimated breeding values 

(EBVs) which are routinely used for selecting superior trees in traditional tree breeding. High 

accuracies were observed for MBVs of different traits. In the second phase of the project, 

more than 11,000 seedlings from partnering companies were screened with the markers. 

MBVs of these seedlings are currently being used by companies to select superior seedlings 

and to set up genetic gains trials. This represents one of the first ever applications of marker-

assisted selection (MAS) in tree breeding. 

High accuracies from the validation tests indicate that the markers discovered in this project 

can be used for selecting superior lines while they are still seedlings. This can reduce the 

normal breeding cycle which takes about 10-15 years to as little as 5 to 7 years. In addition to 

accelerating the breeding cycle, markers can be used for screening thousands of seedlings, 

which will result in larger genetic gains. Application of MAS in seedlings results in 2 to 3 

times more genetic gain per annum compared to traditional breeding. Results from financial 

modeling indicate a return on investment (ROI) in the order of $8 for every $1 invested. 

While markers can be used for correcting pedigree errors and pedigree reconstruction 

improving the breeding value estimation, the main application of markers is to screen the 

seedlings derived from selected parents. In addition, markers can be used for selecting 

superior, diverse parents for crossing. Companies can capture significant gains if markers are 

incorporated into routine breeding and selection programs.  
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Introduction 
Australian plantation forestry is dominated by the temperate eucalypts blue gum (E. globulus) 

and shining gum (E. nitens) which account for about 80% of hardwood plantations. Blue gum 

is the most widely planted hardwood species with a total of about 400,000 ha in plantations. 

Most of these plantations are being harvested for export wood chips. Since the early 1990s, 

the Southern Tree Breeding Association (STBA) has conducted two cycles of selection, 

which achieved modest genetic gains (Dutkowski et al., 2000). The main breeding objectives 

for blue gum were increased volume growth, wood density, and pulp yield. Shining gum is 

the second most widely planted (~150,000 ha) eucalypt species in Australia. The first large-

scale E. nitens progeny trials were established in the 1970s and up to two cycles of breeding 

have been completed  (Hamilton et al., 2008). Forico and Sustainable Timber Tasmania (ST 

Tas) have the most active E. nitens breeding programs. Significant areas of E. nitens 
plantations are also harvested for veneer, appearance and structural products but most 

plantations are harvested for export wood chips. 

Genetics of eucalypt wood traits 

The goal of forest tree breeding programs is to increase the economic value of products 

derived from plantation forests. Genetic studies have shown that eucalypt wood quality traits 

have moderate-to-high heritability compared to growth traits (Costa e Silva et al., 2009). 

High heritability (0.76) was estimated for NIR predicted cellulose (Schimleck et al., 2005), 

while moderate heritability (0.50) was estimated for density (Raymond, 2002). This suggests 

that genes control a sizeable proportion of phenotypic variation in eucalypts.  

Until now, selections made by tree breeders have always been based on phenotypic 

measurements on large numbers of trees in numerous field trials. Traditional tree breeding 

cycles are long (typically 10-14 years) compared to other crops, as many traits are not 

expressed until trees are over 7 years old. In view of these difficulties, there has been 

considerable interest in the development of molecular markers for identifying superior 

genotypes while they are seedlings. The potential of marker-assisted selection (MAS) to 

accelerate tree breeding has been appreciated by scientists for decades but has not reached 

industrial application due to a lack of reliable markers and a framework for the application of 

markers in practical tree breeding populations. 

Dissection of the molecular basis of trait variation in forest trees began in the 1990s with the 

introduction of quantitative trait locus (QTL) mapping in controlled-cross pedigrees (Neale, 

2007). Using base populations derived from the Australian Tree Seed Centre collections, 

CSIRO assisted with breeding strategies and developed genetic linkage maps and identified 

QTLs for growth and wood traits (Thamarus et al., 2004; Thumma et al., 2010). Marker loci 

controlling variation in growth and wood properties have been reported for several tree 

species (Butcher & Southerton, 2007) including some in Eucalyptus (Byrne et al., 1997; 

Freeman et al., 2013; Thamarus et al., 2004; Thumma et al., 2010; Verhaegen et al., 1997). 

This work has shown that variation in wood quality and other traits in trees is polygenic. 

Because wood traits are under polygenetic control (quantitative), genetic improvement will 

rely on the selection of multiple alleles, each of relatively small individual effect. While QTL 

studies improved our understanding of the genetic control of complex traits, none of the 

markers identified to date using this approach have proven to be useful in operational 

breeding programs. The major disadvantage of markers identified using pedigrees is that they 
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are generally not transferable from the pedigree of identification to other pedigrees in the 

same population (Grattapaglia et al., 2012). In addition, special populations such as full-sib 

families are required for detecting markers. This greatly limits their use in tree breeding 

programs that are based on large numbers of families, as is the case in Australian breeding 

programs.  

Marker discovery using association genetics 

First applied in humans, association studies are a powerful method for discovering markers in 

outcrossing populations like forest trees, which contain many unrelated families. In this 

method, large numbers of unrelated individuals are accurately measured for various traits and 

genotyped at large numbers of markers. Due to unique features of the eucalypt genome and 

eucalypt populations, markers discovered using association genetics occur within genes that 

directly influence the trait in question and frequently the marker causes the variation 

(Thumma et al., 2009). These markers are ideal for MAS in eucalypt breeding programs 

because they target the better genes that cause the improved trait. Since the markers are 

discovered using different populations in different environments, they predict well in 

unrelated populations and in different environments.  

The unique features of forest trees, including eucalypts that make them ideal for association 

genetics include outcrossing breeding systems, a long history or recombination and a 

relatively short history of domestication. As a result, breeding populations of most forest 

trees closely resemble the wild state (Butcher & Southerton, 2007) and contain vast stores of 

genetic variation for tree breeding. An important consequence of these life history 

characteristics is the very low linkage disequilibrium (LD) observed in forest trees such as 

eucalypts (Southerton et al., 2010;  Thavamanikumar et al., 2011; Thumma et al., 2009) and 

pines (Brown et al., 2004). LD is a measure of the tendency for adjacent markers (Single 

Nucleotide Polymorphisms or SNPs) within a gene to be correlated in unrelated individuals. 

Generally in eucalypts, LD breaks down within 500 to 1000bp or within the length of the 

gene (Southerton et al., 2010). In most crop plants, LD extends to much larger distances 

(Kraakman et al., 2004). The rapid breakdown in LD is a major impediment to the transfer of 

QTL markers between different pedigrees however, low LD makes trees ideally suited to 

candidate gene-based association studies (González-Martínez et al., 2006; Neale & 

Savolainen, 2004). This research approach seeks to find alleles that affect a phenotypic trait 

and remain linked to the trait across populations and over many generations. This 

methodology is also well suited to tree breeding programs that aim to maintain a broad 

genetic base (i.e., programs with a large number of families).   

The first reported association study in forest tree species uncovered polymorphisms in the 

cinnamoyl CoA reductase (CCR) gene that were associated with microfibril angle (MFA) in 

E. nitens ( Thumma et al., 2005).  Thumma et al. (2009) also reported the discovery of an 

SNP in a COBRA-like gene (EniCOBL4) that is associated with pulp yield and cellulose 

content in E. nitens. This study was the first to verify that the associated SNP caused the trait 

variation and that it did this through its impact on allelic expression. In a recent study in E. 
globulus, nine markers affecting growth and wood quality traits were discovered in one 

population and subsequently validated in an independent population (Thavamanikumar et al., 

2014). Similarly in pines, several SNP markers in different cell wall genes that are associated 

with wood quality traits were identified (Dillon et al., 2010; González-Martínez et al., 2007). 
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CSIRO scientists (now located in Gondwana Genomics) have developed novel research 

strategies for identifying genes and alleles that control complex traits in eucalypts using 

association genetics (Thumma et al., 2005, 2009 and Gondwana Genomics unpublished 

methods). These genomic techniques have been powerfully demonstrated for wood quality 

traits and growth in both E. nitens and E. globulus in methods described in previous FWPA 

supported research (Thumma et al., 2010, 2015). Between 60 and 70 SNP markers associated 

with pulp yield and about 200 markers associated with growth were identified in each 

eucalypt species. In addition, 96 SNPs were found to be associated with MFA in E. nitens. 

Genomic selection 

While the markers identified using association studies are useful across the population, 

individual marker effects are too small to be useful for making selections in breeding 

programs. Genomic selection (GS) is one approach in which marker effects of several to 

many markers are used together to make selections. Genomic selection is widely used by 

animal breeders and has been applied in crop breeding as well as forest tree populations 

(Resende et al., 2012). In this approach, large numbers (thousands) of markers randomly 

distributed across the genome are genotyped in advanced breeding populations derived from 

small numbers of parents (small effective populations). Marker prediction models are first 

developed using a training population, such as the parents of controlled pollination (CP) 

families or seed orchard parents, and used to link (model) marker genotype data with trait 

data. This model is then applied in a closely related test population, such as the progeny from 

the seed orchard parents, to predict their traits using only the marker genotype data of the 

progeny (test) population. Traits estimated with markers in test populations are known as 

genomic estimated breeding values (GEBVs) or molecular breeding values (MBVs). The 

accuracy of the MBVs is estimated by correlating the MBVs obtained with estimated 

breeding values (EBVs) obtained using traditional methods. The accuracy of GS is affected 

by the strength of the marker-trait associations and the genetic relationships captured by the 

markers. In the first study of GS in forest trees, (Resende et al., 2012) observed accuracies 

ranging from 0.63 to 0.75 for tree diameter and height in 800 loblolly pine clones replicated 

across four sites. Similarly, in the first eucalypt GS study in E. grandis and E. urophylla 

hybrids, accuracies ranging between 0.55 and 0.88 were observed for growth and wood traits 

(Resende et al., 2012). Since then several studies have been published in different tree species 

(Durán et al., 2017; Gamal El-Dien et al., 2015; Müller et al., 2017). In all of these studies, 

markers randomly distributed throughout the genome were used. The use of random markers 

in GS results in several problems including low prediction accuracies between different 

populations of the same species (Resende et al., 2012) and low accuracies in advanced 

generations. This is due to the breakdown of LD and recombination between marker-trait 

associations (Hayes et al., 2009). Moreover, a recent study has shown that predictions cannot 

be made across generations using large numbers of random markers (Tan et al., 2017). In 

view of these issues, we proposed to use associated markers rather than random markers for 

predicting traits in GS (Thavamanikumar et al., 2013). The main advantage of using 

associated markers in GS is that the markers occur in candidate genes that directly influence 

the trait. As a result, recombination will not affect accuracies in advanced generations. Also, 

since the markers are identified using populations from different environments, the accuracy 

of GS using associated markers is expected to be high across different populations and 

environments. Recently, several studies have shown that incorporating associated markers 
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with random markers lead to a high accuracy of predicting traits with markers (Boichard et 

al., 2016; Porto-Neto et al., 2015; Spindel et al., 2016; Thavamanikumar et al., 2015).  

In-House marker discovery and genotyping method development 

In order to build marker models based on large numbers of trait-associated markers we 

developed in-house methods for high-throughput marker discovery and genotyping. 

Traditional ways of marker discovery using association studies are laborious and time-

consuming. To overcome these difficulties we have developed in-house high-throughput 

methods using next-generation sequencing to identify potential markers (candidate SNPs). 

This is done by comparing the frequency of SNPs in genomic DNA of trees from extremes of 

trait variation across several populations growing in different environments (unpublished 

data). This results in the discovery of several hundred associated markers with each trait of 

interest. These markers are then used for developing assays (marker panels) for genotyping 

with the new genotyping method developed by Gondwana Genomics (GG). 

Our previous genotyping approach employed a Fluidigm machine and cost-limited us to 

genotyping 96 SNPs per tree. To overcome the limitation, we developed a novel proprietary 

method for genotyping that uses next-generation sequencing (unpublished data). The new 

method allows us to genotype thousands of SNPs per tree in a cost-effective manner. It can 

be used for genotyping large numbers of targeted (trait-enriched) markers across a large 

number of samples. This change to the way we genotype markers has significant 

advantages. The new method allows us to genotype many more SNPs per trait in a single test, 

which will improve prediction accuracies. It also allows us to capture family effects in our 

marker predictions. This can significantly increase the accuracy of our marker predictions, 

particularly in more advanced breeding populations with an effective population size less 

than 100. Finally, the new approach employs next-generation sequencing, which is 

increasingly being used for genotyping. As sequencing costs fall, we are confident that this 

will lower the cost of genotyping each tree. The new methods of identifying high throughput 

markers and high throughput genotyping were applied in the current project. 

The main aims of the current project are 1) to identify large numbers of new markers 

controlling growth, KPY and the additional  trait density in E. nitens and E. globulus and to 

incorporate them into the existing marker panels of growth and pulp yield, 2) to test and 

develop the new marker genotyping method developed by GG, 3) to test different models for 

applying these markers in GS, 4) to conduct validation tests in industry breeding populations 

to test the accuracy of marker predictions, and 5) to apply the markers, after validation, in 

operational screening of seedlings in industry breeding programs. 
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Materials and Methods 

Trial sampling and phenotyping - E. globulus 

In previous CSIRO research (Blue Gum Genomics, 2010-2014), four genetically diverse E. 
globulus trials had been measured for KPY and sampled for DNA. This included three trials 

of the Otways race located at West Ridgley, Latrobe Tas and Busselton WA and a trial of the 

Flinders Island race at Busselton. In this project, we expanded the number of trials to include 

2 Flinders race trials, 2 Tasmania race trials and 2 Gippsland race trials; one of each race 

located at Latrobe Tas and Busselton WA. We also included a mixed race 2nd generation trial 

located at Marri Downs WA (see Table 1).  

Density was measured at breast height in approximately 500 trees in each of the four 

Busselton trials using a pilodyn in November 2015. This was undertaken prior to the 

commencement of the project because the trials were about to be felled. Density had already 

been measured in the Latrobe trial using whole cores on between 350 and 500 trees per race. 

Cambial scrapes for DNA were collected from these trees in May 2016. KPY was estimated 

on the Busselton Gippsland and Tasmania trials and on the Latrobe Gippsland, Tasmania and 

Flinders trials by NIR analysis of swarf drilled from breast height. 

 

 

Saravanan Thavamanikumar collecting E. globulus cambial scrapes for DNA at Latrobe Tas 

Trial sampling and phenotyping - E. nitens  

In the Blue Gum Genomics project five genetically diverse E. nitens trials (Central Victorian 

race) were measured for KPY and sampled for DNA. Two of these trials were growing on 

cold sites (Florentine and Tarraleah), two were growing on warmer sites (Meunna and 

Southport) and one was growing on an intermediate site (Loudwater).  In the current project, 

we expanded the number of trials to three cold and three warm sites by sampling a trial at 

Blythe Road, Tas (cold site) and Hollow Tree, Tas (warm site).  
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Geoff Downes operating the resistograph on E. nitens trees growing at Blythe Rd 

Wood swarf and cambial scrapes were collected from the Blythe Road and Hollow Tree trials 

in June 2016. The swarf samples were used for NIR analysis to predict KPY. Geoff Downes 

(Forest Quality) obtained resistograph (resi) data for each tree at the Blythe Road and 

Florentine trials from which density estimates were later obtained. Density is strongly 

correlated with the resistance to the probe penetrating the tree from bark to bark. We expect 

the resi data to give better estimates of density than the pilodyn, which only penetrates the 

outer wood. Whole core density had previously been estimated for the trees sampled at the 

Hollow Tree trial. 

 

 

E. nitens growing at Blythe Rd near Hampshire Tas 



9 

 

 

 Table 1. Genetic material used for marker discovery  

 

Development of DNA capture libraries and preparation of high throughput sequencing 

libraries 

DNA capture libraries were prepared using gene sequences of 2500 cell wall genes. Cell wall 

genes are expected to play a major role in the development of the three traits under 

investigation. Most of these genes were selected from our previous study comparing gene 

expression in two populations of E. nitens (Thavamanikumar et al., 2014). Gene expression 

was compared between high and low pulp yield and high and low growth trees in two E. 
nitens trials at Meunna and Florentine. Genes with consistent differences in expression 

between trait extremes at both sites were selected for developing the DNA capture libraries. 

In addition to these, other important genes such as transcription factors and genes involved in 

cell wall biosynthesis identified from literature searches were included in the development of 

DNA capture library. We re-sequenced the previously sequenced pulp yield and growth 

samples from the BGG project with the newly expanded DNA capture library as it contains a 
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comprehensive list of genes involved in growth and wood development. This will help us to 

discover a significant proportion of SNPs associated with growth and wood traits. 

DNA was isolated from 48 trees at each extreme of trait variation in each trial using Qiagen 

high throughput DNA extraction kits. In total, DNA was isolated from 3,936 samples. Bulks 

were created by combining equimolar amounts of DNA from each tree into a pool. Forty-

eight bulks were created in E. globulus and 36 bulks were created in E. nitens (Table 2).  

Pooled DNA samples were used for preparing whole genome DNA libraries by fragmenting 

DNA and adding adapter sequences for sequencing with Illumina next-generation sequencing 

platform. Whole genome DNA libraries were hybridised with the DNA capture libraries to 

enrich the whole genome DNA libraries for growth and wood quality candidate genes. The 

enriched DNA libraries were sequenced with the NextSeq module of Illumina sequencing. 

Table 2. Number of samples selected for sequencing 

 Trial Trait high low 

E. globulus     

 BO DBH 48 48 

 BF DBH 48 48 

 BT DBH 48 48 

 BG DBH 48 48 

 LO DBH 48 48 

 LF DBH 48 48 

 LT DBH 48 48 

 LG DBH 48 48 

 BO KPY 48 48 

 BF KPY 48 48 

 BT KPY 48 48 

 BG KPY 48 48 

 LO KPY 48 48 

 LF KPY 48 48 

 LT KPY 48 48 

 LG KPY 48 48 

 BO density 48 48 

 BF density 48 48 

 BT density 48 48 

 BG density 48 48 

 LO density 48 48 

 LF density 48 48 

 LT density 48 48 

 LG density 48 48 

 sub total   1152 1152 

E. nitens     

 FL DBH 48 48 
 Meu DBH 48 48 

 Tarr DBH 48 48 

 SP DBH 48 48 

 BR DBH 48 48 
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 HT DBH 48 48 

 FL KPY 48 48 

 Meu KPY 48 48 

 Tarr KPY 48 48 

 SP KPY 48 48 

 BR KPY 48 48 

 HT KPY 48 48 

 FL density 48 48 

 Meu density 48 48 

 Tarr density 48 48 

 SP density 48 48 

 BR density 48 48 

 HT density 48 48 

 sub total   816 816 

 Total   1968 1968 

BO, Busselton Otways, BF, Busselton Flinders, BT, Busselton Tasmania, BG, Busselton 

Gippsland, LO, Latrobe Otways, LF, Latrobe Flinders, LT, Latrobe Tasmania, LG, Latrobe 

Gippsland, WO, West Ridgely Otways, FL, Florentine, Meu, Meunna, LW, Loud Water, 

Tarr, Tarraleah, SP, South Port, BR, Blythe Road, HT, Hollow Tree 

 

High throughput sequencing and selection of associated SNPs 

DNA libraries from high and low trait pools were sequenced with Illumina Next generation 

sequencing. Sequence reads from high throughput sequencing were mapped to the E. grandis 

reference genome. The sequence reads mapped to the candidate genes were analysed to 

identify single nucleotide polymorphisms (SNPs). Read counts at each SNP position were 

used to estimate allele frequencies. SNPs with large and consistent differences in allele 

frequencies between high and low trait pools across the populations were selected as 

candidate SNPs for genotyping.  

Genotyping with the new method 

In a recently completed Teratosphaeria leaf disease (TLD) project in E. globulus (Thumma et 

al., 2017), GG developed a novel high throughput genotyping method to genotype large 

numbers of trait-enriched markers across large numbers of samples using next-generation 

sequencing technology. We used this method in the current project to genotype around 3000 

trees of E. nitens and E. globulus in the first phase and more than 11,000 trees in the second 

phase of the project. Details of the trees used in the first phase of the study are shown in 

Table 3.  
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Table 3. Summary of the trees genotyped in the first phase 

Trial        Number of samples genotyped 

E. globulus E. nitens 

HVP parents 131  

HVP RES 1448 296  

HVP RES 1504 293  

Blythe Road  204 
Forico Arboretum 

 

 523 
Florentine  192 

Hollow Tree  276 
Meunna  192 
Tarraleah  192 

Huddlers  401 
MiddleSex  271 

Total 720 2251 

 

Association analyses 

Individual association studies were conducted in each population separately with single 

marker association analysis. Results from individual association studies were combined in a 

meta-analysis to identify markers that are stable across different populations. The software 

package ‘plink’ was used for these analyses. 

Validation tests and commercial screening 

Several validation tests were performed in the breeding populations of different companies. 

Training (parental) populations were used to develop prediction models which were then 

applied in test populations (progeny) to estimate MBVs. Different models such as 

‘RRBLUP’, Bayesian models such as ‘BayesB’, ‘BLR’, ‘BRR’ and dimensionality reduction 

methods such as the ‘partial least squares’(PLS) method were used. MBV prediction from 

these models was compared by correlating MBVs estimated from different models. 

Generally, high correlations were observed among all the models.  

In addition to these models, we also used ‘single step Bayesian Regression’ (SSBR).  SSBR 

gives similar results as ‘single step genomic best linear unbiased prediction’ (ssGBLUP) but 

is faster and it doesn’t require inversing the dense relationship matrix which is 

computationally demanding (Fernando et al., 2014). In a ‘single step’ method, marker and 

trait data from genotyped samples, trait data from non-genotyped relatives, and the pedigree 

relationships are all used together to predict MBVs. Since all the available information is 

used in the models, accuracies from single step methods are expected to be higher. All the 

models were run using R software.  

The number of samples included in operational screening is shown in Table 4. More than 

11,000 samples were genotyped. For most of these leaf samples from seedlings were used for 

DNA isolation. However, cambium samples were used for DNA isolation for some of the 

RMS samples. One of the main features of our new genotyping method is that the quantity 

and quality of the DNA samples required are minimal. Just a single leaf was collected for all 

the leaf samples used for DNA isolation.  
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Table 4. Summary of the samples used in Phase 2 screening 

Company Number of 

samples 

Forico 7,300 

ABP 2,300 

HVP 1,200 

RMS 900 

ST Tas 120 

 

Results and Discussion 

Marker discovery 

Gene libraries containing cell wall and growth genes were used for discovering the candidate 

markers. Candidate markers i.e. markers potentially associated with different traits were 

validated using the high throughput methods developed by GG. Data from high throughput 

sequencing was used for comparing allele frequencies between different populations at 

different environments to identify robust markers that are stable across different populations. 

For each species, marker panels consisting of 1000 probes were developed. These marker 

panels are made up of 250 candidate SNPs for each of the two wood traits (KPY and density), 

and 500 candidate SNPs for DBH. The candidate SNPs were selected from the largest and 

consistent allelic differences between high and low trait pools across different populations. 

Marker panels developed from the candidate markers were genotyped using our new 

genotyping method.  

Marker genotyping  

Marker panels consisting of 1000 candidate SNPs were genotyped using the new method in 

E. nitens and E. globulus. After filtering the markers based on minor allele frequency and call 

rate, 2363 markers in E. nitens and 3200 markers in E. globulus were selected for association 

and GS analyses. Initially, to test the consistency or concordance of the genotype calls, we 

genotyped 20 duplicate E. nitens DNA samples from earlier in the project. We observed an 

average concordance rate of 97% (ranging from 90% to 99%) between the duplicate samples. 

We also compared the concordance of the new method with our previous chip-based 

genotyping system (Fluidigm). Three duplicate samples were observed in E. globulus parents 

previously genotyped with 96 SNPs using Fluidigm system. The same three samples were 

found to be duplicates with more than three thousand markers genotyped in the new method. 

In addition to these initial tests, we have done further tests with similar results. These results 

show that the genotype calls with the new method are accurate and comparable to those from 

the Fluidigm system. In the current project we have genotyped more than thirteen thousand 

trees of E. nitens and E. globulus using the new method. 

Association analyses 

Association analyses were conducted in E. nitens to validate the candidate markers. In total, 

five populations were used in association analyses. First, analyses were performed in each 

population separately to identify markers associated with each trait. Results from individual 

association analyses were then analysed in a meta-analysis to identify markers that are the 

most robust across different populations. Meta-analysis revealed a different number of 
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markers associated with different traits. KPY had the highest number of markers associated 

(13%), followed by growth (7%) and density (4%) at a significance level of P<0.05. The 

larger number of detected markers for KPY may derive from the inclusion of most of the cell 

wall genes used in the gene library from an RNA-Seq study comparing KPY extremes 

(Thavamanikumar et al., 2014).  

With the previous genotyping system, we were restricted to selecting a subset of SNPs based 

on association studies results for use in GS analyses as only a small number of markers could 

be genotyped. However, with the new genotyping method the restriction on the number of 

markers is removed. All of the candidate SNPs from different traits were genotyped together 

for application in GS analyses. The rationale behind this approach is that while significant 

markers are useful for capturing marker-trait associations, the non-significant markers are 

useful for capturing genetic relationships both of which contribute to the accuracy of MBVs. 

Genomic selection 

The main aim of the current project is to develop markers and application methods that can 

be used for marker-assisted selection (MAS) in eucalypt breeding. GS is a marker-based 

approach that can be used for selecting superior genotypes based on marker data. In GS, 

marker effects from large numbers of markers are used together to predict traits based on 

marker genotype data alone. A prediction model is developed using marker and trait data of 

training populations (typically parents). This model is then applied in test populations 

(typically progeny) to predict traits based on their marker data alone. Traits predicted with 

markers are known as molecular breeding values (MBVs) or genomic estimated breeding 

values (GEBVs). The accuracy of marker predictions was tested by correlating MBVs with 

the estimated breeding values (EBVs). When raw data or measured trait is used for training 

the model, the correlation between MBVs and measured data gives the predictive ability of 

the markers. To obtain accuracy, predictive ability is divided by the square root of 

heritability. The accuracy of marker-based predictions (MBVs) is dependent on the strength 

of the marker-trait associations and the genetic relationships captured by the markers. When 

the training and test populations are related, genetic relationships captured by the markers 

contribute to the accuracy of MBVs. When the training and test populations are distantly 

related or unrelated, marker-trait associations captured by the markers contribute to the 

accuracy of the MBVs. 

The main application of genomic selection is in screening the seedlings and selecting the top-

ranking seedlings based on MBVs. The main advantage here is that within family selection 

can be made without the phenotype data.  As markers capture the Mendelian segregation term 

i.e. markers can differentiate between the sibs within a family, within family selections can 

be made at seedling stage using markers. This is not possible with EBVs as all members of a 

family will have the same EBVs in the absence of measured phenotype data. With traditional 

methods used to calculate EBVs, within family selection is only possible with data obtained 

when progeny are 6 to 7 years old. As a consequence, within family variation is generally less 

exploited compared to between family variation in tree breeding. In animal breeding, which 

is more advanced compared to tree breeding most of the recent genetic gain is due to 

capturing Mendelian sampling term and exploiting within family variation (Avendaño et al., 

2004).  
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Validation tests 

Several validation tests were conducted to test the performance of markers in different 

populations of E. nitens and E. globulus. These tests were performed in breeding populations 

of different companies. All the validation tests are done ‘blind’, that is we did not have access 

to trait data of the test (progeny) samples and trait data was held by the partner companies 

participating in the project. MBVs of the test samples were estimated with marker and trait 

data of the training (parental) samples. These MBVs were sent to partner companies who 

estimated the accuracies by correlating MBVs with their EBVs.  

While the main aim of the validation tests was to test the performance of the markers, these 

tests were also useful for demonstrating the potential gains possible with the markers. As it 

takes a long time to see the genetic gains from marker-based selections in operational tree 

breeding, these tests can be used to gauge the gains possible as data from existing field trials 

is used in the validation tests.  

Validation tests in E. nitens 

Validation tests in E. nitens were performed in existing field trials of Forico. To test the 

performance of the markers in E. nitens three validation tests were conducted.  

Validation test 1 

In the first validation test, MBVs of 523 seed orchard trees were estimated by using measured 

trait data from several unrelated populations. Three traits (DBH, wood density, and KPY) 

were used for estimating MBVs. The main aim of this test is to estimate the power of marker 

effects alone in predicting traits. Moderate accuracies ranging from 0.15 for tree volume to 

0.37 for KPY were observed (Table 5). These results with unrelated training and test 

populations indicate that the marker-trait associations captured by the markers are 

contributing to the accuracies. Similar tests with random markers have yielded accuracies 

close to zero or negative (Müller et al., 2017; Resende et al., 2012).  

Table 5. Accuracies of MBVs of seed orchard parents using unrelated populations for 

training 

Traits Accuracy 

KPY 0.37 

Density 0.20 

Volume 0.15 

 

Validation test 2 

In the second validation test, MBVs of the progeny trees (testing population) were estimated 

using genotype and EBVs of the parent trees (training population). Two types of MBVs were 

estimated in this test. First, MBVs were estimated with a model trained in parents and second, 

MBVs were estimated with a model trained in parents as well as progeny without the 

genotype data using SSBR model. Three progeny trials were used in this test. Four hundred 

trees from the Hudler trial (a warm site), 271 trees from the Middlesex trial (a cold site) and 

204 trees from the Blythe Road (a cold site) were used for estimating MBVs. Accuracies of 

MBVs were estimated by correlating MBVs with EBVs. As expected, accuracies from this 

test were significantly higher compared to the first validation test (Table 6). Generally, 

accuracies were higher at the Hudler site compared to the other two sites. The accuracy of the 
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MBVs with parents and non-genotyped progeny are generally higher than the MBVs using 

only the parents in model training. The accuracy of tree volume MBVs at Middlesex was 

higher with EBVs estimated using normal model compared to cold site-specific model even 

though Middlesex is a cold site. For the Blythe Road site, however, high accuracies were 

observed with cold-site specific EBVs as expected. 

Table 6. Validation test 2 - Accuracies of MBVs of progeny trees estimated with 523 

parental data 

Hudler Trial Accuracy1 Accuracy2 

Kpy_tree_13_ebv 0.77 0.78 

Bd_tree_13_ebv 0.54 0.52 

Vol_stand_normal_13_ebv 0.60 0.70 

Vol_stand_cold_13_ebv 0.58 0.65 

Middlesex Trial   

Kpy_tree_13_ebv 0.48 0.58 

Bd_tree_13_ebv 0.50 0.47 

Vol_stand_normal_13_ebv 0.55 0.58 

Vol_stand_cold_13_ebv 0.36 0.56 

Blythe Road   

Kpy_tree_13_ebv 0.64 0.59 

Bd_tree_13_ebv 0.56 0.61 

Vol_stand_normal_13_ebv 0.41 0.43 

Vol_stand_cold_13_ebv 0.49 0.48 
1 – Accuracy of MBVs estimated with only the parental data. 2 – Accuracy of MBVs 

estimated with parents and non-genotyped progeny data 

 

Validation test 3 

Two trials (Hudler and Middlesex) were used in the third validation test. Parental data and 

half of the progeny data from each family were used for model training. This model was then 

used to predict MBVs of the remaining half of the progeny trees from each family. 

Accuracies of MBVs were assessed with two training models. In one model, parental and half 

of the progeny data was used while in the other model only half of the progeny data was 

used. Accuracies of validation test 3 (Table 7) are higher than those of validation test 2 

(Table 6) indicating that the close relationship between the training and testing populations 

increased the accuracies of the MBVs. Accuracies from two training models were similar in 

the Hudler trial while the Middlesex trial accuracies from the second model using only the 

progeny data were slightly higher. Higher accuracies in both trials indicate that using 

information from the target site data in model training improves the accuracies. The high 

accuracy of the forward estimation of MBVs from these tests should give confidence in the 

MBVs of the seedlings raised from the selected parents, which is the main application of 

makers. In seedling screening, training model is developed with parental data as well as the 

available progeny data from progeny-tested field trials. The training model is then used for 

making early selections by screening the seedlings derived from the selected parental trees.  
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Table 7. Validation test 3 - Accuracies of MBVs of the remaining half of the progeny 

trees estimated with data from parents and 50% of progeny 

 

Trial/Trait Accuracy1 Accuracy2 

Hudler Trial   

Kpy_tree_13_ebv 0.84 0.83 

Bd_tree_13_ebv 0.67 0.66 

Vol_stand_normal_13_ebv 0.70 0.74 

Middlesex Trial   

Kpy_tree_13_ebv 0.70 0.76 

Bd_tree_13_ebv 0.67 0.70 

Vol_stand_cold_13_ebv 0.72 0.79 
1 – Accuracy of MBVs estimated with parental data and 50% of progeny data. 2 – Accuracy 

of MBVs estimated with only 50% of progeny data 

 

Validation tests in E. globulus 

Data from HVP and ABP trials were used for validation tests in E. globulus. In the HVP trial, 

data from the parents was used for model training while in the ABP trial data from progeny 

trees was used for model training. 

Validation tests in HVP populations 

Marker genotype data and estimated breeding values (EBVs) of the 60 parents were used to 

predict the traits (MBVs) of 577 progeny trees using only their genotype data. The progeny 

trees were from two trials at different sites. MBVs were estimated for three traits (wood 

density, wood yield, and tree volume). Accuracies of the MBV estimates were assessed by 

correlating MBVs of the progeny with their EBVs (Table 8). Accuracies for the three traits 

ranged from 0.83 (density) to 0.91 (wood yield).  

For estimating MBVs only parental marker genotypes were used without any information 

linking the parents to the offspring. These high accuracies indicate that the markers have 

captured accurately pedigree relationships among the progeny which contributed to the high 

accuracies observed in this test. Accuracies of MBVs generated using both additive and non-

additive effects in prediction models (Table 8, accuracy2) were higher than the accuracies of 

MBVs based on only additive effects. Higher accuracy, especially for density, indicates 

additive, as well as non-additive effects, are important for this trait.  
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Table 8. Accuracies of MBVs of progeny trees from E. globulus of HVP 

Trait Accuracy1 Accuracy2 Accuracy3 

Density EBV 0.72 0.83 - 

Tree vol_age3 EBV 0.88 0.89 0.86 

Wood Yield EBV 0.91 0.91 - 

1 – MBVs estimated with additive effects only, 2 – MBVs estimated with both additive and 

non-additive effects, 3 – MBVs estimated with revised EBVs excluding data from the progeny 

when estimating parental EBVs 

A possible reason for the high accuracies observed here for tree volume may be due to the 

way the EBVs were estimated. EBVs of the parents were estimated with data of the progeny 

used in the testing as well as the progeny over a large number of trials and families. This 

raised the possibility that the high accuracies of the MBVs may be due to the EBVs of the 

parents incorporating the progeny data (circular prediction). This issue only affects tree 

volume as the other two trait MBVs were correlated to mid-parental averages. To circumvent 

the circular problem, the tree volume EBVs of the parents were re-estimated without the data 

of the progeny trees by Jo Sasse of HVP. We used these EBVs for developing the prediction 

model and to re-estimate the MBVs of the progeny. The accuracy of the MBVs was estimated 

by correlating individual tree EBVs with mid-parental values of the progeny. With the 

revised MBVs we still observed high accuracies similar to the results from the previous 

analysis. The accuracy of the revised MBVs for tree volume ranged from 0.86 to 0.92 using 

individual tree EBVs and mid-parent values respectively. These results show that the markers 

are capturing the family relationships among the progeny, which is contributing to the high 

accuracy of the MBVs.  

Validation tests in ABP populations 

Two validation tests were performed in the ABP populations. One test was to predict within 

the same generation using progeny trees from the same generation and the other test was to 

predict across the generations using progeny data to estimate MBVs of the parents. We could 

not perform forward predictions i.e. using parents’ data to estimate progeny MBVs as in 

HVP, as parent EBVs are not available. 

Validation test 1 – testing within a generation 

For the within generation test, close to 500 progeny trees from two sites (Towes and Sinclair) 

were used. Prediction models were developed using 245 trees selected from odd-numbered 

replicates from the two sites (training population). The prediction model was then used to 

estimate MBVs of 254 trees selected from even-numbered replicates from the two sites (test 

population). EBVs of the training population estimated with data from 23 trials were used for 

estimating MBVs of the test population. MBVs were estimated for three traits (tree volume, 

pilodyn density and pulp yield). The accuracy of the MBVs was tested by correlating MBVs 

with EBVs of the test population. High accuracies were observed for all three traits (Table 9). 

Accuracies of the three traits were similar and ranged between 0.74 (PPY) and 0.76 (VOL). 
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Table 9. Accuracies of progeny MBVs – same generation validation tests 

Trait Accuracy 

PILO Density EBV 0.75 

Tree volume EBV 0.76 

Pulp yield EBV 0.74 

 

Validation test 2 – testing across generations 

For across the generation tests, EBVs of the 500 progeny trees were used for developing a 

prediction model that was then used to estimate MBVs of the parental generation (backward 

estimation). MBVs were estimated for 109 parents of which 44 are the parents of the 500 

progeny trees used for model training. In general, high accuracies were observed for all three 

traits (Table 10). However, the highest accuracies were observed for 44 trees that are the 

parents of the 500 progeny trees used for model training. This further demonstrates that a 

close relationship between the training and test populations leads to higher accuracies.  

Unlike the test with HVP samples, the tests in the ABP samples do not suffer from the 

circular prediction issue. In both tests, the trait data used in the training populations is 

independent of the test populations. EBVs of the parents were estimated by ‘backward 

estimation’ i.e. parents EBVs were estimated using the progeny data.  

Table 10. Accuracies of parental MBVs – across the generation validation tests 

Trait Accuracy1 Accuracy2 

PILO Density EBV 0.53 0.71 

Tree volume EBV 0.64 0.74 
Pulp yield EBV 0.74 0.92 

1 – accuracy for all 109 parents. 2 – accuracy for 44 parents of the progeny trees used in 

training. 

Limitations of benchmarking MBV accuracies against EBVs 

Results from all of the validation tests clearly show the high accuracy of MBVs and that a 

close relationship between the training and test populations is important for the high accuracy 

of MBVs. While the accuracy of the MBVs is benchmarked against EBVs, there is, however, 

a great deal of variation in the accuracies of the EBVs themselves. There are two sources of 

error in EBV estimates. One is pedigree errors. Most of the pedigree relationships used in 

traditional breeding for estimating breeding values contain errors. In this project, we have 

observed pedigree errors in several families. Several studies have shown the increased 

accuracy of genetic parameter estimation by correcting the pedigree errors with markers. 

Another unidentified source of error is errors in assumed pedigree structure. The progeny 

from an OP family were all treated as half-sibs and were given similar weights when 

estimating EBVs. However, several studies with markers have shown that there were 

unknown full-sibs within an OP family and members from different families show different 

levels of relationships. Similarly, in CP families, kinship coefficients among full-sibs vary 

around the mean value of 0.25. EBVs cannot account for these differences in relationships 

whereas marker derived relationships capture the full gamut of relationships among members 

of a family. Marker derived relationships (realised relationships) contain Mendelian 

sampling/segregation term (differences between the members of a family) which leads to 
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higher resolution of relationships compared to those with pedigree information. These factors 

contribute to deviations between MBVs and EBVs.  

Testing the marker performance with site adjusted trait data 

These tests are aimed at testing the ability of the markers to predict trait data other than 

EBVs. Two models are used to test the predictive ability (PA) of the markers, one is using 

markers alone (M) in the model and the other one is using both markers and pedigree 

information (P+M) in the model. Site adjusted trait data is used for these tests. Correlation 

between predicted traits with different models and observed trait data gives PA. The 

predictive ability can be converted to accuracy by dividing the PA by square root of 

heritability. E. nitens populations of Forico and E. globulus populations of HVP and ABP 

were used in these tests. Predictive ability of the two models was similar across all the traits 

and populations except for Middlesex trial (Figure 1). In Middlesex, the inclusion of pedigree 

with markers reduced the PA compared to M model.  This suggests that there could be errors 

in the assumed pedigree of the Middlesex trial. This can be verified by pedigree testing with 

the markers. The inclusion of pedigree information (polygenic effect) in P +M model 

captures the genetic variation not explained by the markers. This will lead to persistence of 

accuracy in advanced generations and reduced bias in MBV estimates (Solberg et al., 2009). 
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Figure 1. Comparison of predictive abilities between two prediction models across 

different populations and traits.  

 
Forico 1 – Hudler trial; Forico 2 – Middlesex trial 

Implementation of MAS in industry breeding populations 

One of the aims of the validation tests was to give industry partners confidence in marker-

based selections using MBVs. According to the project proposal, the second phase of the 

project (commercial screening) would be carried out after reviewing the results of validation 

tests. High accuracies in the validation tests in breeding populations of partnering companies 

led to the continuation of the project into the second phase. The main aim of the second phase 

of the project was to screen seedlings in operational breeding populations and application of 

MAS. More than 11,000 seedlings/trees were genotyped with the marker panels developed 

for E. nitens and E. globulus. Details of the number of samples genotyped in each company 

are presented in Table 4. Below are brief descriptions of implementing MAS in breeding 

populations of different companies. 
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Implementing MAS in Forico’s breeding populations 

In total, 7,300 samples were genotyped with the marker panel developed for E. nitens. These 

include 6976 seedlings from the nursery. To estimate the MBVs of the seedlings, 558 seed 

orchard parents, 1072 progeny trees from three trials were used as training population to 

develop the prediction model. This model was then used to predict the MBVs of the 

seedlings. Marker data and EBVs of the training population were used for model training. 

Two models were used for estimating MBVs. The first model was based on ‘RRBLUP’ using 

the marker genotype data and EBVs of the training population. The second model was based 

on the ‘single step Bayesian regression model’ (SSBR, similar to ssGBLUP) in which marker 

genotype data, trait data from non-genotyped relatives of the deployment population 

(seedlings from the nursery) and pedigree data were all used together to estimate MBVs of 

the seedlings. MBVs were estimated using EBVs of stand volume, KPY, and density. For 

stand volume, two separate MBVs were estimated using two EBVs estimated with normal 

site model and cold site model.  

The main advantage of the single step method is that all the available information is used 

when estimating MBVs, which should increase the accuracy of MBVs. However, this 

improvement in accuracy is dependent upon the proportion of the samples genotyped. When 

the proportion of the samples genotyped vs non-genotyped samples were similar, accuracies 

from the two model types (the model which uses data of only genotype samples such as 

RRBLUP and the models which use data of genotyped as well as non-genotyped samples 

such as SSBR) would also be similar.  

To estimate the accuracy of the seedling MBVs, we correlated the MBVs with mid-parental 

values. This will give an indication of the potential accuracy of the MBVs when the seedlings 

are eventually phenotyped. In total, there were about 3000 seedlings from 243 CP families 

among the 6976 seedlings genotyped. EBVs were available for all the parents of these 

families and these were used to estimate mid-parental values. Mid-parental values of these 

families were used for estimating accuracies. High accuracies were estimated for all the four 

traits (Table 11).  

 Table 11. Accuracy of Forico’s E. nitens nursery seedling MBVs  

 Trait Accuracy 

Volume (normal) 0.66 

Volume (Cold) 0.62 

KPY 0.71 

BD 0.71 

  

In traditional breeding, mid-parental values are used for making family based selections in 

the absence of progeny trait data. These high correlations with mid-parental values give 

confidence for making within family selections using MBVs. However, within-family 

accuracies could not be tested due to a large number of small families used in this project.  

Forico are currently selecting the seedlings based on the MBVs provided by GG. Selected 

seedlings will be established in different trials at different sites. Some of these trials will be 

genetic gains trials in which the performance of top-ranking seedlings selected based on 

MBVs will be compared with low ranking seedlings. To the best of our knowledge, this 
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(selection based on MBVs) represents one of the first implementations of MAS in tree 

breeding anywhere in the world. 

Implementing MAS in ABP’s breeding populations 

In total, 2300 samples were genotyped with the E. globulus marker panel developed by GG. 

This includes 1500 seedlings established in 2015. Marker data and EBVs of 500 progeny 

trees used in the validation tests and 109 parents were used for model training. This model 

was used to estimate MBVs of seedlings established in 2015 (deployment population). Not all 

the parents of the seedlings had EBVs. In addition to 109 parents, we used MBVs of 153 

parents for model training. Three traits, tree volume, pilodyn density and pulp yield were 

used for estimating MBVs of the seedlings. MBVs for tree volume were estimated using the 

SSBR method, as data from non-genotyped relatives was available. For the other two traits, 

MBVs were estimated with data from genotyped samples only. EBVs for tree volume were 

available from both the parents for 596 seedlings from 50 families. For these seedlings, MBV 

accuracy was estimated using mid-parental values.  Similar to the results from Forico, a high 

correlation (0.66) was observed between MBVs and mid-parental values. When the EBVs of 

all the parents of the seedlings are available, these MBVs can be updated using the parental 

data for model training. This should improve the accuracy of seedling MBVs. 

Screening of HVP trial to establish genetic gains trials 

Seven hundred seedlings in a recently established trial were genotyped with the E. globulus 

marker panel. The main aims of this screen were to assess the accuracy of within-family 

MBVs, to identify top-ranking and bottom-ranking seedlings based on MBVs and to establish 

a genetic gains trial with the selected seedlings at different sites. These seedlings were 

derived from 8 families with an average of 88 seedlings per family which is ideal for 

assessing the accuracy of within-family MBVs.  

We estimated MBVs of the seedlings with two models. In the first model, only the parental 

EBVs were used and in the second model, EBVs of the parents as well as the progeny data of 

the two trials used in validation tests (half-sibs of seedlings) were used for estimating MBVs 

of the seedlings. There is a high correlation (0.87) between MBVs using the two models 

across all the 700 seedlings (across the families).  However, within family correlations 

between the two MBVs were lower and ranged from 0.63 to 0.75 in different families with an 

average of 0.67. This suggests that both models are similar in capturing across family 

variation but they differ in capturing within family variation. This may also suggest that the 

model with parent and progeny data captures within family variation better than the model 

using only parental data. However, this needs to be tested with EBVs estimated with 

measured trait data in the seedlings.  

A high correlation of 0.76 was observed between the tree volume MBVs (estimated with 

model 2) and mid-parental values after correcting for pedigree errors in parents. MBVs of the 

seedlings were sent to HVP who will select the seedlings using the MBVs for establishing the 

genetic gains trials and forward selection of elite individuals. 

MBV estimation in RMS’ breeding populations 

Samples from three progeny trials including their parents were genotyped with the E. nitens 

marker panel. In total, 900 samples were genotyped. For two trials, data from the progeny 

trees were used for estimating the MBVs of the parents. For one trial, no data was available 
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for either the parents or the progeny. For this trial, marker and trait data from unrelated 

populations from validation tests was used for developing the prediction model. The model 

was used to estimate the MBVs of the progeny as well as their parents. This is not ideal as the 

model is developed with unrelated samples. However, once the trees are measured, trait data 

can be used for updating the MBVs. 

MBV estimation in Sustainable Timber Tasmania breeding population 

In total, 108 trees from ST Tas were genotyped with the E. nitens marker panel. This 

included 26 seed orchard (SO) parents and 82 progeny trees derived from 10 of the 26 

parents. All the families including the 10 families of the 82 progeny trees were OP families. 

Two types of EBVs were available for the 26 SO parents. One for measurement age at 8-15 

years and another one for harvest age at 22 years. EBVs for several traits were available 

including MAI at harvest age for 26 parents. Progeny trees had DBH measured at 4 years of 

age. MBVs of the progeny were estimated with the marker and EBV data of the 26 parents. 

To test the performance of the markers, we correlated the MBVs with the DBH of the 

progeny trees. A correlation of 0.30 was observed between harvest age MAI MBV and DBH 

at 4 years for the progeny trees. We also estimated MBVs for parents using DBH data of the 

progeny trees (backward estimation). A high correlation (0.47) was observed between DBH 

MBVs and MAI EBVs of the parents (Table 12). These results reveal the accuracy of the 

progeny MBVs. It is interesting to note the high correlation between harvest age MAI and 

DBH at 4 years of age.  

Table 12. Correlation between DBH and MAI MBVs in parents and progeny trees of ST 

Tas population 

Generation Trait 1 Trait 2 COR 

progeny DBH.4 MAI_MB
V 

0.30 

parents DBH.4_MBV MAI_EB
V 

0.47 

 

Comparison of genetic gain from MAS and Phenotypic Selection 

Genetic gain or response to selection was estimated as the difference between the average of 

the selected group and average of all the samples used in selection (population mean) i.e. the 

selection differential. Percentage of gain was estimated by dividing selection differential with 

the population mean. The following formula was used for estimating the percentage of the 

genetic gain.  𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 =  
𝐴𝐴𝐴𝐴𝐴𝐴(𝑠𝑠) − 𝐴𝐴𝐴𝐴𝐴𝐴(𝑝𝑝)𝐴𝐴𝐴𝐴𝐴𝐴(𝑝𝑝)

 × 100 

Where Avg(s) is the average EBV of the selected group, Avg(p) is the average EBV of the all 

samples used in selection. 

For calculating genetic gain, we used a selection intensity of 10% i.e. top 10% trees were 

selected from the population of samples used in selection. All the tests were performed in the 

validation populations which were used for estimating MBVs. Selections were based on 

EBVs. For estimating genetic gain from MAS, MBVs of the validation population were used 

to rank the trees. Average of the top 10% trees was calculated using the EBVs of the selected 
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trees. For estimating genetic gain from phenotypic selection (PS) or traditional breeding, trees 

from the validation population were ranked based on EBVs, and average EBV of the top 10% 

selected trees was estimated.  

For selecting the superior lines/genotypes from the selected families, MAS is applied at the 

seedling stage while PS is performed at least at the age of 3 years for growth and 6 years for 

wood traits. To compare the gain from PS with MAS, PS gain was converted to per year by 

dividing the genetic gain by 3 for growth and 6 for wood traits. These tests were done in 

validation populations of several industry partners. To reflect the practical breeding, MBVs 

of the progeny estimated with the model developed in parents were used in these tests 

wherever possible (HVP and Hudler). Results from these tests are shown in Figure 2. Genetic 

gain from MAS is 2 (100%) to 3 times (200%) more than the PS for all the traits across all 

the populations. These are conservative estimates as growth and wood trait EBVs of some of 

the populations may have been estimated at later ages compared to the age used in these 

calculations. Genetic gain from MAS could further be increased with high selection intensity. 

Selection intensity can be increased by increasing the sample size of the test population.  
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Fig 2. Comparison of genetic gain from MAS (marker-assisted selection) and PS 

(phenotypic selection). Selection is for lower values for pilodyn density. 
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Simulation of gains from marker-assisted selection 

A multivariate selection tool was developed to evaluate the impacts of incorporating MAS in 

a sample tree improvement program for a chip-export breeding objective. The sample 

program, using E. nitens, shows that an ROI of $7.81 can be achieved using conservative 

estimates of the gains. 

This selection tool was developed using the standard breeder’s equation: 𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮 𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮 =  
𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐 𝑽𝑽𝑮𝑮𝑽𝑽 ×  𝑯𝑯𝑷𝑷𝑯𝑯𝒐𝒐𝒐𝒐𝑯𝑯𝑯𝑯𝒐𝒐𝑯𝑯𝒐𝒐𝒐𝒐𝒐𝒐 ×  𝑺𝑺𝑷𝑷𝑯𝑯𝑷𝑷𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝑷𝑷 𝑮𝑮𝑷𝑷𝒐𝒐𝑷𝑷𝑷𝑷𝑰𝑰𝒐𝒐𝒐𝒐𝒐𝒐𝑩𝑩𝑯𝑯𝑷𝑷𝑷𝑷𝑩𝑩𝒐𝒐𝑷𝑷𝑩𝑩 𝑮𝑮𝒐𝒐𝒐𝒐𝑯𝑯𝑷𝑷   

The scenario program commences with screening 3 existing progeny trials derived from 100 

parent trees and the assumptions are as outlined in Table 13. Initially, we make 100 forward 

selections by screening 30 progeny from each of 100 open-pollinated families. We assume 

that the progeny trees are already producing seed. Three thousand trees (30 trees/family, 100 

families) will be genotyped with E. nitens marker panel and 100 trees will be selected as 

parents (forward selections) based on EBVs and marker genotype data. Marker genotype data 

will be used for improving existing prediction models for E. nitens. We estimate 

improvements from this step to deliver an increase of 4.1% to growth and 1.1% to density, 

for an overall productivity improvement of 5.3%. Although the information derived from the 

screening can support this work, we do not attribute the gains from this step to the return on 

investment (ROI) in the program. 

From these 100 forward selection parents, we screen 10,000 seedlings (100 seedlings/family) 

each year for 3 years, selecting the top 50 seedlings each year to be fast-tracked into 

developing a Clonal Seed Orchard (CSO). Truncation selection is used to identify 1 in 20 

trees for growth and 1 in 10 trees for density. This is a total of 30,000 seedlings screened in 

the program and 150 selected to build the CSO, this is an overall selection intensity of 1 in 

200. The CSO is open pollinated and after 7 years can be used for early deployment, initially 

5% of the estate increasing to 100% over 4 years.  

The calculations do not take into account numerous other outputs from an implementation of 

MAS which can support the other breeding work i.e. fingerprinting, pedigree reconstruction, 

reduction of inbreeding and genetic diversity. It does not take into account the change in 

rotation opportunity available through increased growth as trees could be harvested up to 2 

years earlier. 

Table 13. Scenario Assumptions 

 Program Assumptions 

Estate Size 90,000 ha  

Crop E. nitens 
Time to flower 7 years  

Rotation 15 years 

Annual Harvest 6,000 ha (estate ÷ 
rotation) 

Current MAI 17 m3/ha/yr 

 

The literature was reviewed to search for genetic parameters that were useful for estimating 

genetic gain from selection for a chip-export breeding objective. The pulp productivity study 
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of (Greaves et al., 1997) was selected as this provided a comprehensive set of genetic 

parameters that directly relate to profitability. We have applied the accuracies of 0.65 for 

volume and density which are conservative given the observed accuracies found in the blind 

validations in this project. 

Table 14. Genetic assumptions (harvest values) 

 Genetic Assumptions 

Volume at harvest 255 m3/ha   (MAI × 
rotation) 

Volume (Phenotype SD) 70 

Volume (Additive SD) 30 

Density 450 Kg/m3 

Density (Phenotype SD) 30.8 

Density (Additive SD) 20 

Marker Accuracies 
phenotype 

0.50 

Marker Accuracies MAS 0.65 

Correlation Vol:Den 0.11 

 

Table 15. Financial assumptions 

 Financial 

Assumptions 

Chip price $150 USD/tonne 

Discount rate 8% p.a. 

MAS cost 
p/sample 

$40 

MAS overheads 
yr 

$150k 

Final year ROI 2054 (after 36 years) 

 

An estate size of 90,000 hectares with a 15-year rotation was assumed, with gains calculated 

at the end of a single rotation in 2054. That is 15 years from the first deployment seed 

becoming available in 2040. Costs have been calculated using target pricing of $40 per 

sample with $150,000 annually allocated to program overheads, it’s assumed that the cost of 

managing the existing tree improvement programs remain the same as these must be 

maintained. Revenue from current chip price is adjusted to AUD$195 by a factor of 1.3 

reflecting the current USD/AUD exchange rate. 

Table 16. Gains from MAS 

 Volume 

(m3/ha) 

Density 

(kg/m3) 
Dollars 

 per hectare increase  22.3 16.7 $2,915.34 

 per hectare increase 
(%)  

8.4% 3.7% 12.4% 
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Improvements attributable to MAS are estimated at 8.4% for growth and 3.7% for density, 

for an overall improvement in tonnes per hectare of 12.4%. This delivers an increase in the 

value of $2,915 per ha. 

Table 17. Return on Investment from a MAS project 

Investment in 
MAS 

$1,782 k 

Project profit 
NPV 

$13,910 k 

ROI per $1 $7.81 

IRR 14.3% 

 

The program commences in 2018 with the CSO established over 3 years and initially 

producing deployment seed in 2025, by 2040 the first MAS improved trees are harvested. 

Final ROI is calculated on the returns at the year 2054 however, returns for industry partners 

can be realised much earlier through the increase in estate valuation. Estate valuation increase 

can be determined by measurement of the gains observed from CSO seedlings in the estate, 

or by recognising the value of the MAS program as soon as it is commenced, subject to audit 

verification. 

Using the conservative scenario and only counting the strict MAS gains, the program 

estimates NET returns of $222m in the year 2054, but this is discounted by 8% pa to Net 

Present Value (NPV) of $13.9m in today’s terms. By adjusting the discount rate so that ROI 

is $1:$1 we can determine the Internal Rate of Return (IRR) from the project, which is 14.3% 

p.a for 37 years. 

 

Additional benefits of using markers in tree breeding 

In addition to marker-based selection with MBVs, markers can also be used to improve the 

accuracy of genetic parameter estimation in traditional tree breeding which improves the 

genetic gain. The genetic relationship matrix (GRM) generated from markers can be used for 

confirming or identifying parent-pedigree relationships, confirming or identifying full-sib and 

half-sib relationships within and between the families, identifying unknown relationships 

among the families and individuals of different families. A recent study has shown that 

pedigree corrected with markers improved the accuracy of heritability estimates and breeding 

values (Munoz et al., 2014). It was suggested that pedigree errors need to be first corrected by 

markers before implementing genomic selection models. This will improve the accuracy of 

MBVs as more accurate EBVs with minimum pedigree errors are used for model training and 

for correlating with the MBVs. In addition to correcting pedigree errors, another advantage of 

using markers is estimating inbreeding rates which can be used for maintaining genetic 

diversity and reducing inbreeding depression. Markers can also be used for fingerprinting to 

identify clonal and labeling errors.  

Pedigree reconstruction and inbreeding estimates using markers 

To demonstrate the ability of our markers for pedigree reconstruction and estimating 

inbreeding, we used 20 E. nitens controlled pollinated (CP) families of Forico. The identity of 

mother trees of all 20 families was revealed to us and we aimed to identify the paternal parent 
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of individuals in these 20 families. Ten to twenty siblings were genotyped from each family. 

We also genotyped 525 potential parents of these families. GRM estimated with the marker 

data was used to identify the parents and to confirm the identity of the full-sibs within each 

family. While the identity of mother trees was revealed to us, GRM can also be used to 

confirm the identity of the known parents.  

GRM is not only useful for identifying parents, it can also be used for estimating inbreeding. 

Diagonals of GRM show individual inbreeding values while off-diagonals show the pair-wise 

relationships. Inbreeding of a family may be due to inbred parents used for crossing or due to 

the failure of pollination resulting in self-pollination. When an inbred parent is used for 

crossing, all the individuals of the family show higher than the expected full-sib relationships. 

But the individuals within a family themselves may not have high inbreeding coefficients 

(Table 18). However, when controlled pollination fails resulting in self-pollination, all the 

individuals of the family show elevated relationships and some of the sibs may show high 

rates inbreeding coefficients (Table 19). These two types of inbreeding can be identified with 

GRM. Examples of the two types of inbreeding are shown below. 

Table 18. Inbreeding due to inbred parent used in controlled crossing 

 P1 P2 FS1 FS2 FS3 FS4 FS5 

P1 1.33 0.24 0.73 0.76 0.73 0.69 0.71 

P2 0.24 1.02 0.53 0.56 0.60 0.60 0.61 

FS1 0.73 0.53 1.05 0.66 0.64 0.61 0.56 

FS2 0.76 0.56 0.66 1.11 0.72 0.71 0.64 

FS3 0.73 0.60 0.64 0.72 1.08 0.75 0.67 

FS4 0.69 0.60 0.61 0.71 0.75 1.03 0.69 

FS5 0.71 0.61 0.56 0.64 0.67 0.69 1.02 

P- parents, FS-full-sibs, Off diagonals are pair-wise relationships among full-sibs and parents. 

Diagonals are individual inbreeding coefficients. 

Table 19. Inbreeding due to failure of controlled pollination resulting in self-pollination 

 P1 FS1 FS2 FS3 FS4 FS5 FS6 

P1 0.90 0.76 0.72 0.73 0.74 0.71 0.73 

FS1 0.76 1.25 0.82 0.84 0.80 0.77 0.76 

FS2 0.72 0.82 1.26 0.68 0.68 0.60 0.63 

FS3 0.73 0.84 0.68 1.23 0.84 0.84 0.69 

FS4 0.74 0.80 0.68 0.84 1.18 0.82 0.71 

FS5 0.71 0.77 0.60 0.84 0.82 1.28 0.81 

FS6 0.73 0.76 0.63 0.69 0.71 0.81 1.40 

P- parents, FS-full-sibs, Off diagonals are pair-wise relationships among full-sibs and parents. 

Diagonals are individual inbreeding coefficients. 

Pair-wise relationships among the full-sibs range between 0.25 and 0.60. Elevated pair-wise 

relationships indicate inbreeding. The expected parent-offspring relationships are similar to 

those of full-sibs.  Inbreeding coefficients of individuals above 1.25 are regarded as 

significant. Parent (P1) in table 14 is inbred, consequently, the pair-wise relationships among 

the full-sibs were higher than the expected full-sib relationships.  
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Results of the pedigree reconstruction 

Except for two, all the full-sibs of the 20 families were confirmed by marker analysis. These 

two errors may indicate field labeling errors. For one family, the maternal parent could not be 

confirmed due to low genotype call rates. We also identified the families that were inbred. 

These results demonstrate that the markers were not only useful for estimating MBVs but 

also for pedigree reconstruction, estimating inbreeding and identifying clonal errors. 

Conclusions and Recommendations 
Large numbers of associated markers were identified in E. nitens and E. globulus for the 

three most important commercial traits. These markers were then applied using GS to build 

models for predicting MBVs in various industry trials. These tests were performed in 

different trials of different companies in two commercially important eucalypt species, E. 
nitens, and E. globulus. Through a series of validation tests, we have demonstrated that high 

accuracies can be achieved with the MBVs. The ultimate test of marker performance is when 

the selected trees are assessed in the field, which may take several years. However, these 

validation tests are an excellent surrogate, given that in most tests parental information was 

used to predict the performance of mature progeny. Key to the success of these tests has been 

the high throughput methods for identification of associated markers and our genotyping 

methodology. Another feature of the GG technology is the high throughput DNA isolation 

method and the minimal quantity and quality requirements of DNA samples, which is crucial 

in routine screening for commercial implementation. These technological improvements 

allowed rapid turnaround times. For example, close to 7,000 seedlings were genotyped, 

analysed and the MBVs were provided to Forico months in advance to the actual delivery 

date. Forico have used the MBVs to select the seedlings and set up field trials with the 

selected seedlings. 

One of the benefits of markers in tree breeding is improving the accuracy of genetic 

parameter estimation with traditional methods. Markers can be used for identifying and 

correcting pedigree errors. The marker corrected pedigree file can be used in BLUP analyses 

for improving the accuracy of heritability and breeding value estimation. Markers are also 

useful for converting OP families to CP families. Full-sibs from OP families (generated 

naturally) and the paternal parents of OP families can be identified using markers. This is 

particularly useful in field-tested OP families. Once the top-ranking OP families are 

identified from field testing, they can be screened with markers to identify full-sibs and their 

paternal parents. This information can be used for making further deliberate crosses between 

the parents knowing that their progeny will be superior based on the field tests. In addition, 

markers can be used for estimating inbreeding rates and identifying labeling and clonal 

errors.  

However, the main application of markers in tree breeding is in screening seedlings to make 

early selections. The major benefits of making selection in seedlings include a drastic 

reduction in the length of the breeding cycle, increasing selection intensity which contributes 

to high genetic gains and the ability to make within family selections. Within family variation 

is poorly explored in traditional breeding as data from field-grown trees is required for 

making within family selections. However, the accuracy of predicting traits within a family 

could not be tested due to the small size of the families used in this study.  Another important 

application of markers is in selecting parents for controlled crossing. Parents for controlled 
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crossing can be selected based on MBV estimates. Genetic diversity and inbreeding rates 

among the top-ranking trees selected based on MBVs can be used for selecting 

complementary parents to produce superior progeny. 

As shown in the validation tests, the close relationship between training and test populations 

leads to a high accuracy of MBVs. Therefore, for accurate estimation of seedling MBVs, data 

from parents (and field-tested progeny that are related to the seedlings if available) should be 

used in developing the prediction model. To take advantage of the marker technology 

selection cycles should be accelerated. With traditional breeding it takes 5-6 years for making 

one selection whereas with markers selections can be done annually. While it takes time for 

generating controlled crosses, seedlings from top-ranking families from progeny testing can 

be screened with the markers. Results from genetic gains calculations indicate 2 to 3 times 

more gain per annum compared to the traditional breeding. This results as shown in the 

financial modeling, in a substantial return on investment (ROI) by implementing MAS as 

suggested in the operational plans. In this project, we have improved the existing marker 

technology, developed methods for application of markers in breeding programs and 

demonstrated MAS in existing breeding populations of several industry partners. While the 

tests performed in this project revealed the high accuracy of predicting traits (MBVs) across 

families, within family accuracies, however, could not be assessed due to the small size of the 

families used in this study. One of the main applications of markers in tree breeding is 

making within family selections in seedlings. Within-family accuracies need to be tested in 

further studies using a large number of individuals per family. 
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