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Summary for Industry 
 

Overview 

This collaborative “Trans-Tasman” research project evaluated a series of novel, advanced 
remote sensing systems that capture accurate, 3D dense point cloud data in order to assess their 
potential for delivering operational plantation resource assessment tools.  The project brought 
together internationally recognised expertise in remote sensing, Airborne Laser Scanning (ALS) 
and UAV technologies and robotics located within the TerraLuma group at the University of 
Tasmania, the New Zealand forest research agency Scion, the Australian Centre for Field 
Robotics, University of Sydney and NSW Department of Primary Industries.  An important 
aspect of this project was also the collaborative engagement with the participating companies 
including Interpine and Indufor Asia Pacific.  

The emerging diversity of platforms, sensors, algorithms and efficient processing workflows 
presents multiple opportunities across the forestry sector for more accurate and reliable 
resource information.  This project represents the most recent FWPA and grower investment 
in a series of R&D projects focused on the evaluation of the advancing developments in remote 
sensing applications for the Australian forestry sector.  We demonstrate that the improvements 
in the quality and density of data captured by these systems can be harnessed to significantly 
improve stand and tree-level assessment. 

The overall aim of this project was to evaluate the acquisition, processing and analysis of dense 
point cloud data for the extraction of meaningful resource information acquired from light 
aircraft and UAV platforms. 

Specifically the key tasks were to: 

1) Evaluate whether UAV acquired ultra-high density point cloud datasets are suitable for tree-
level on-screen visual assessment and 3D construction modelling for accurate estimation of 
stem attributes i.e. virtual plot inventory. 

2) Develop efficient workflow processing pipelines for the analysis of dense point cloud data 
suitable for integration into operational LiDAR modelling systems for wood volumes and 
product prediction. 

3) Develop and evaluate novel metrics extracted from dense ALS point clouds acquired by 
small aircraft and their impact on the recently implemented spatial plot imputation process for 
estimating resource volume and product mix. 

In order to undertake these tasks and fulfil the proposed project deliverables, three Work 
Packages were developed by the project team, i.e.; i) 3D visualisation for interactive 
assessment of individual tree stems; ii) unmanned aircraft systems (UAS) LiDAR for dense 
point cloud acquisition and iii) Individual tree detection, 3D tree reconstruction, and automated 
extraction of improved point cloud metrics for forest inventory (e.g. use of voxelised metrics).  
These Work Packages represented the structure of the specific sub-projects that were 
undertaken, either individually or in combination to address the objectives and deliverables 
identified for this project.  
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Key findings 

 3D visualisation for interactive assessment of individual trees (section 2.1) 

Section 2.1 addresses 3D visualisation and assessment of individual trees using dense point 
cloud data.  It includes a review of existing third-party software with functionality to import 
and visualise dense point cloud data and to automatically or semi-automatically segment tree 
stem and branches from that data. This section reports on trials of two third-party software 
using project data.  It then describes the work undertaken to develop a proto-type immersive 
virtual reality application that allows users to visualise and interact with dense point cloud data, 
to measure key metrics such as tree height and DBH, and to view segmented stem data imported 
from other software. This section concludes with recommended next steps towards application 
development, testing and operationalisation.  These tasks will be pursued in a new FWPA-
funded, 12 month project “Enhanced forest inventory practice using immersive visualisation 
and measurement of dense point cloud data” (PNC464-1718), led by Dr Winyu Chinthammit 
at the University of Tasmania which commenced in July 2018. 

 Determination of optimal data acquisition parameters for UAS LiDAR tree inventory in 
pre-harvest Pinus radiata (Section 3.1) 

In order to gain the highest possible accuracy out of a UAS LiDAR scanner and the integrated 
positioning sensors there is a need for the operators to calibrate each component of the system.  
This Section (3.1) consisted of a series of objectives and tasks aimed at identifying optimal 
UAS LiDAR data acquisition parameters for forest inventory using a low-cost UAS LiDAR 
(Velodyne ‘Puck’) system which was built by the TerraLuma research group at the University 
of Tasmania.  This process included developing a calibration workflow for lever arm 
determination and boresight calibration.  When fully calibrated the UAS Velodyne system 
produced an absolute accuracy of between approximately 3 cm to 7 cm.  Therefore, while this 
UAV system can accurately detect the stems and crowns of individual trees, it may be beyond 
the capacity of this instrument to accurately measure tree dimensions such as stem diameters.   

An analysis of stem tree strikes revealed that best results were obtained if the system was flown 
close to the canopy, e.g. at altitudes of 35 m – 40 m for a 25 m canopy.  It was also observed 
that an oblique mounting angle of the scanner did not improve the penetration of pulses hitting 
the stems or ground, however, a high side overlap and overlapping flight paths at perpendicular 
flight angles did result in maximizing stem strikes.  

Finally, a flight planning software application was also developed that calculates point spacing, 
flight strip overlap, beam size on the ground etc., which assists in optimal flight planning and 
laser scanner configuration.   

 Optimal acquisition specifications for the Riegl VUX-1LR scanner over a Pinus radiata 
plantation (Section 3.2 ) 

The study for this section evaluated the acquisition specifications for a helicopter mounted 
Riegl VUX-1LR laser scanner that was flown over several study sites in Carabost State Forest, 
a plantation, near Tumut in southern NSW and managed by the Forestry Corporation of NSW.  
The flight path was flown over each study site in four directions (NS, EW, NWSE, SWNE) 
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with a 15 m swath.  For each study site the process was repeated three times at the altitudes of 
30 m, 60 m and 90 m.   

This flight pattern resulted in the collection of very large LiDAR datasets and before response 
metrics could be compared the data sets had to be pre-processed and thoroughly checked 
through a formal quality assurance and control process.  Accompanying this section are two 
attachments.  The first describes the essential process of establishing ground control points 
required for this type of very high resolution 3D data.  The second attachment details the 
operational procedures associated with data quality assurance and control and provides 
examples of the high quality products that can be derived from these datasets. 

The pulse and return density of this LiDAR dataset was very high: between 5,000 and 9,000 
pulses/m2 and over 8,000 pulses/m2 respectively.  From a height analysis based on local 
maxima of a 0.3 m resolution Canopy Height Model (CHM), the 90m and 60 m heights gave 
a positive result while the 30 m height presented an inaccurate canopy representation. The 
analysis of potential tree tops, based on peaks at different height peaks computed from the 
CHM indicated that the best flight altitude was 60 m.  A stem detection methodology also 
confirmed the optimal flight altitude to be 60 m producing an accuracy of 91.9%. 

 A comparison of helicopter-based VUX-1LR LiDAR with below canopy UAV 
photogrammetry and manual measurements (Section 3.3) 

The aim of this study was to compare estimates of tree diameter at breast height derived from 
data acquired by a helicopter mounted Riegl VUX-1LR laser scanner (i.e. the same Carabost 
dataset acquired at 30 m, 60 m, and 90 m altitudes that was used in Section 3.2) with estimates 
derived from a point cloud created using below-canopy UAV photogrammetry. Manual DBH 
measurements were used as a baseline for comparison and analysis.  The greatest correlation 
of remotely sensed DBH to manually measured DBH came from the below-canopy-canopy 
UAV photogrammetry, followed by the 60 m flying height with the VUX-1LR LiDAR sensor.  
The superior performance of the VUX-1LR data captured at 60 m compared to either 30 m or 
90 m concurs with the results obtained in Section 3.2.  Therefore where sub-canopy data is 
desired, it is recommended to fly at 60 m altitude with the VUX-1LR laser scanner.   

The ultimate goal of using a sub-canopy UAV fitted with a stereo camera is for this process to 
be done with the user specifying a plot radius and plot centre and allowing the UAV-camera 
system to acquire point cloud data for each tree stem autonomously. 

 Algorithms and 3D modelling techniques for tree detection and tree-level volume estimates 
(Section 4.1) 

The research in this section focussed on the development of post-processing algorithms that 
can work with high-resolution aerially acquired pointcloud data to detect and segment 
individual trees, while making direct, automated measurements of stem parameters that are of 
interest to resource foresters.  Two separate sets of algorithms/workflows have been developed 
in parallel: a “top-down” approach to tree detection and stem-fitting and a “bottom-up” 
approach to tree detection and stem profile measurements. These algorithms are adapted to 
resolutions of approximately 200-700—points/m2, building upon existing techniques used for 
both traditional high-resolution terrestrial and low-resolution airborne LiDAR pointclouds.  
Results using the Riegl VUX-1 laser scanner pointclouds demonstrate the ability to accurately 
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count and locate trees, while measuring diameters along the length of the stem that can be used 
for estimating tree taper and volume. 

We also propose a prototype workflow pipeline that merges the two different approaches into 
a single workflow that would allow for efficient processing of dense pointclouds for providing 
tree stem maps and basic inventory attributes over both plot-scale and larger areas (Section 4.1, 
Figure 6).  This workflow would initially perform tree detection based on canopy peak 
detection models and the RANSAC-based model fitting algorithms, which are assumed to be 
fast and scalable to larger LiDAR datasets.  These detections would then provide refined 
candidate search regions in the pointcloud data that could be passed to the “Cloud2Stem’ 
algorithms for a more accurate and computationally-intense search for tree stems from which 
stem attributes such as stem diameters, volume and taper could be extracted.   

 Comparison of models describing forest inventory attributes using standard and voxel-
based LiDAR predictors across a range of pulse densities (Section 4.2) 

In addition to tree-scale characterisation using LiDAR data acquired from laser scanners with 
improved capacity and performance, these sensors mounted on light aircraft also hold 
considerable potential for improving the accuracy of area-based forest inventories.  This study 
presents the evaluation of voxel-based metrics which are more commonly associated with the 
analysis of terrestrial LiDAR data.  This was accomplished by comparing predictions of forest 
attributes made using voxel-based metrics, more standard LiDAR metrics and a combination 
of both classes of metrics. 

A high-density LiDAR dataset was acquired using a helicopter-mounted Riegl VUX-1LR over 
P. radiata stands, near Tumut in southern NSW.  Both the relative importance of pulse density 
and metric type were evaluated.  The Section also provides a general description of voxelisation 
and the different types of voxel metrics.  The results clearly demonstrated the utility of voxel-
based metrics for the prediction of key plantation inventory attributes.  Gains in predictive 
precision afforded by voxel-based metrics over the use of standard LiDAR metrics were 
substantial for predictions of basal area, stand density and volume and moderate for predictions 
of top height.  The relative invariance of model precision to pulse density demonstrated that 
precision gains can be achieved using voxel-based metrics at pulse densities typical of current 
operational LiDAR acquisitions ( 5 pulses/m2).  

The voxel-based metrics, described in Section 4.2, have now been implemented in the latest 
version of LAStools (RapidLASSO) and a summary of this implementation is provided at the 
end of the Section. 

 

Discussion & Recommendations  

This project has successfully evaluated in multiple dense point cloud datasets acquired by 
several different remote UAV and airborne platforms in order to determine their suitability for 
improving tree and stand-level inventory. A key deliverable has been the preliminary 
evaluation of 3D visualisation software for interactive assessment of individual trees.  The 
recently funded FWPA project PNC464-1717 (Enhanced forest inventory practice using 
immersive visualisation and measurement of dense pointcloud data) will ensure the continued 
research momentum associated with developing an operational software solution for on-screen 
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visualisation and measurement of tree plots and individual trees using dense point cloud data.   
This ‘virtual’ assessment will improve resource estimate accuracies and reduce OH&S risks 
compared to manual field-based inventory. The ability to obtain large numbers of tree-level 
estimates (approaching total tree census) will improve the resource estimates, in part, through 
the derivation of a quantifiable systematic bias as opposed to the subjective assessment bias 
arising from visual field-based plot assessment. 

A topic not evaluated in this project was the application of multi-/hyper-spectral remotely 
acquired data.  The added spectral information in combination with 3D structural data presents 
numerous opportunities for detecting and mapping features such as weeds and tree level health.  
The potential of fusing different data sources has been presented in a recent project application 
for funding from the National Institute for Forest Products (NIFPI).   

It would be highly desirable for work to continue on the remote systems trialled in this project, 
for example, the sub-canopy stereo-camera UAS.  With further development, the acquisition 
of a sub-canopy stem pointcloud data is expected to become largely automated and approach 
the accuracies of manual tree measurement.  Alternatively, while present acquisition costs 
associated with the airborne VUX1- laser sensor are high, improved efficiencies will reduce 
costs and permit tree-level assessment over large areas. 

The UAS Velodyne laser prototype presents a cheaper option to the VUX1 systems and while 
we have demonstrated significant improvement in inventory estimates obtained from 
incorporating voxel metrics in area based analysis using ALS data, it is desirable to also 
evaluate the performance of voxel metrics to UAS data.  Similarly, point cloud individual tree 
and crown detection algorithms should also be tested on UAS LiDAR datasets. 

The efficiency and accuracy of algorithms and 3D modelling techniques for tree-level estimates 
will continue to improve and become more applicable to spatially accurate, dense point clouds, 
such as the data acquired by survey grade VUX1 sensors.  Recent state-of-the art machine 
learning methods (e.g. deep and active learning methods) are having enormous impact in topics 
such as image interpretation, artificial intelligence and robotics, and are starting to be applied 
in areas such as remote sensing.  These methods can work with very large datasets by providing 
flexible internal models that learn to recognise and segment objects from sensor data.  What 
distinguishes these methods from traditional machine learning or imputation techniques is that 
the “features” or “variables” used within the classification or regression algorithms are learnt 
from the data itself rather than having to be designed or hand-tuned by a human expert.  Using 
dense point cloud data, these novel approaches could be used to improve automated stem 
quality assessments including detection of multi-leaders, sweep and position of major branches.  
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1. Introduction 
 

1.1 Background 

Conventional forest inventory methods involve the installation of sufficient ground based 
sample plots, on a random or systematic basis, to estimate required stand variables within 
predefined error limits. These methods are labour intensive and costly.  Remote sensing 
technologies, however, are evolving rapidly.  An emerging diversity of platforms, sensors, 
algorithms and efficient processing workflows presents opportunities across the forestry sector 
for more reliable or more-effective resource information.   

Complementing these opportunities has been the continued investment in FWPA’s Research, 
Development and Extension Program in the area of technology transfer and adoption (FWPA 
Strategic Plan 2014-2019) which has resulted in a series of progressive R&D projects focused 
on the evaluation and application of remote sensing technology for the Australian forestry 
sector.   

In an initial project, (PNC305-12-13: Operational deployment of ALS derived information into 
softwood resource systems) a data workflow solution using Airborne Laser Scanner (ALS) data 
was presented based on nearest neighbour plot imputation. This approach enabled the 
integration of LiDAR derived information into company regulation systems.  Numerous 
softwood plantation companies in Australia and New Zealand are now implementing this 
LiDAR based plot-imputation approach for their inventory and product yield estimates. 

In addition, two separate applications, based on ALS data, were initiated in the PNC305-1215 
project: i) an automatic tree crown detection algorithm for accurate tree count estimates 
(Kathuria et al. 2016) and ii) development of an efficient sampling design strategy, called 
Nearest Centroid sampling, which has been shown to be considerably more efficient than 
conventional grid-sampling schemes (Melville et al. 2015; Melville & Stone 2016).  The tree 
detection algorithm has now been incorporated into an easy to use software application called 
“PointcloudITD” by Dr Mitch Bryson (Australian Centre for Field Robotics, University of 
Sydney).  This tree crown detection application is now available on the FWPA web site at:  
http://www.fwpa.com.au/resources/resources/1461-deployment-and-integration-of-cost-
effective-high-spatial-resolution-remotely-sensed-data-for-the-australian-forestry-
industry.html.  In the case of the Nearest Centroid sampling methodology, this has been 
scripted into a new R package called “NC sampling” and is now available in the open access 
R Library.  

More recently, the FWPA project PNC326-1314 “Deployment and integration of cost, effective, 
high spatial resolution, remotely sensed data for the Australian forestry industry” was 
submitted in December 2017.  A key finding of this FWPA project was the robust performance 
of the applications using point cloud data acquired from aerial photography (AP).  A detailed 
evaluation of point clouds obtained from several AP platforms and coincident LiDAR data 
acquired over both P. radiata and E. globulus plantations revealed that this imagery can be 
processed through a modern photogrammetric solution to produce accurate canopy surfaces.  
If a sufficiently accurate Digital Terrain Model is available (often provided from prior LiDAR 
acquisition), then an accurate Canopy Height Model (CHM) can be derived (Stone et al. 2016). 
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Metrics can then be easily extracted from the CHM.  Estimates of inventory attributes and 
resultant high spatial resolution maps derived from the AP data was shown to compare very 
favourably with estimates derived from LiDAR data (Caccamo et al. 2018).  A key advantage 
of using AP to acquire CHMs is that AP data are cheaper to acquire than airborne LiDAR data 
so provide a cost-effective solution for inventory updates. 

The final component of FWPA PNC326-1314 was to evaluate the potential of virtual reality 
technology for remote cruising of individual P. radiata trees from dense point clouds. This 
preliminary study by Dr Winyu Chinthammit (University of Tasmania) revealed that the 
technology to support immersive interaction with remotely sensed point clouds is available. In 
addition it was demonstrated that very dense 3D point clouds can be imported into current 
Virtual Reality systems, that tree architecture segmented from the 3D point clouds using 
separate software can be integrated within the same immersive environment, and that tools can 
be developed to allow users to interactively measure stem and tree structure.   

An important aspect of this current FWPA project has been its multi-disciplinary approach 
which has brought together a “Trans-Tasman” team of experts from several research 
institutions including, the University of Tasmania, University of Sydney, Scion in NZ and 
NSW Department of Primary Industries.  Some of these scientists are researchers from outside 
the forestry research community but are now gaining familiarity with the remote sensing issues 
related to the commercial forestry sector.  One of the project achievements was the successful 
secondment of the Scion scientist, Dr Joel Gordon, who spent three weeks working alongside 
Dr Mitch Bryson at the Australian Centre for Field Robotics, University of Sydney during May 
in 2017.  Together they worked on developing novel tree detection and segmentation 
algorithms, using the same dense LiDAR datasets acquired for the project.  Mitch took a “Top-
down” approach while Joel took a “Bottom-up” approach through the application of the 
SCION-developed software package “Cloud2Stem” (Section 4.1).  This secondment was 
mutually beneficial and illustrates the collaborative culture promoted during the project.   

In addition, this project significantly benefited from the consultation and engagement with the 
participating commercial companies, in particular Interpine.  This collaboration has resulted in 
a paradigm shift in company awareness and the integration of high resolution, spatially explicit 
information into their resource management systems.  

Airborne laser scanning – improved sensors 

As mentioned, ALS is now routinely applied to improve inventory precision, with the 
application of ALS to forest inventory demonstrating gains over conventional forest inventory 
in both Australia and New Zealand.  However, although ALS is fast becoming standard practice 
for forest inventory, rapid developments in LiDAR sensors require continuing evaluation to 
determine how this technology can be fully utilised.  For example, early ALS surveys within 
New Zealand used the OPTECH ATLM3100EA sensor which was released in 2006.  Although 
this sensor was very useful for introducing the forest industry to LiDAR much of the research 
and methods developed around this sensor is now outdated and needs to be revisited with the 
newer sensors that are available.  

Compared to newer sensors the ATLM3100EA has limited capability.  This sensor is only 
capable of receiving 4 returns per outgoing pulse and the minimum distance between returns 
is 3 m.  With the sensors now available such as the Optech Orion HD300, Optech Pegasus 
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HD500, Riegl LMS-Q1560 or Trimble AX60, this separation distance has been reduced to 0.4-
0.7 m and up to 15 returns are received for each outgoing pulse.  This echo separation or 
distance between vertical range measurements impacts on the definition of the vegetation 
canopy and therefore the stability and reliability of sub canopy metrics used for later analysis.  
In contrast to the ATLM3100EA, which could only track one outgoing pulse at a time, more 
modern sensors are able to track 24 outgoing pulses which markedly improves the data received 
from the sensor.  In addition, modern sensors now have a superior mirror design to the 
ATLM3100EA which results in a far more even point distribution across the swath.  

The result of these changes in sensor technology is clearly evident when viewing the data.  At 
the same target pulse density the level of detail obtained around individual trees is far greater 
for the newer sensors (Fig 1, bottom) than that of the ATLM3100EA (Figure 1, top). This 
enhanced detail opens up the possibility for development of novel LiDAR metrics that can 
more accurately characterise branching patterns and the percentage of structural grade, that are 
only poorly defined using the ATLM3100EA.  As the ATLM3100EA provided a limited level 
of detail and was unable to store the full LiDAR waveform, this sensor was suited to the area 
based approach (ABA) using discrete returns, adopted by the forest industry.  The richer level 
of detail available from newer sensors combined with the ability to store the full LiDAR 
waveform warrants a re-examination of how much could be gained through analyses using the 
individual tree data.  
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Figure 1: LiDAR profile of the same area, by return number, undertaken using (top) 
OPTECH ATLM3100EA in 2010 and (bottom) Riegl LMS-Q780 in 2015. In both figures the 

target pulse density was four pulses per m2. Source: Interpine. 

 

In this project we had the opportunity to test the state-of-the-art Riegl VUX1-LR laser sensor 
which was mounted on a helicopter. This survey grade laser scanner is capable of acquiring 
very accurate, ultra-dense, 3D point clouds having an effective measurement rate of up to 
750,000 measurements per second.  These datasets now present the real opportunities for 3D 
visualisation and assessment of individual tree stems (Figure 2). 
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Figure 2:  Example of the quality of 3D point cloud data captured by a Riegl VUX1-LR 
sensor mounted on a helicopter that was flown over P. radiata stands in Carabost state forest, 
near Tumut, southern NSW.  Data is displayed in the 3D visualisation software Quick Terrain 

Modeler. 

Parallel to the advances in ALS technology has been the recent advances in unmanned aircraft 
systems (UAS) and their integration with small, light-weight laser scanners.  In general, these 
systems are much cheaper to operate than fixed wing aircraft or helicopters and avoid the need 
for plot access as is required by TLS.  As for the new ALS sensors, UAV mounted LiDAR 
scanners have the capacity to acquire very dense, 3D point clouds, albeit over smaller areas 
compared to ALS platforms.  Recently, Riegl introduced a VUX-1 scanner mounted on a 
RiCopter UAV platform which is capable of acquiring highly accurate, ultra-dense point cloud 
data (Brede et al. 2017).  These units are very expensive.  However, the UAV-LiDAR prototype 
developed for the FWPA project PNC305-1213 was built by the TerraLuma team at University 
of Tasmania much more cheaply with a laser scanner Velodyne VLP-16 ‘Puck’ ($12,5000) that 
can be operated at oblique angles and generate point densities > 100 points m-2.  There is of 
course a trade-off between the cost of the instrumentation and the density and accuracy of the 
point cloud data.  Therefore, for the cheaper UAV laser systems in particular, calibration and 
acquisition specifications need to be determined to ensure optimal deployment and maximum 
potential accuracies.   

Dense LiDAR point cloud visualization and 3D modelling 

A common aim connecting this project with previous FWPA projects has been to incorporate 
3D remotely-sensed information, irrespective of the acquisition or processing methodology, 
into forestry management systems.  This is a key enabler of precision forestry (Holopainen et 
al. 2014), enabling, for example, tree attributes to be precisely summarised within 
compartments.  However, it is also disruptive, requiring forest managers to deal with high 
spatial resolution 3D point clouds in addition to the more conventional 2D sources of data (e.g. 
GIS).  This requires familiarisation with 3D point cloud visualisation and processing software 
packages.  
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Numerous commercial and open source software products are now available that support 3D 
visualisation of point cloud data and the (semi) automatic segmentation of objects of interest, 
including trees, e.g. 3DForest (Trouchta et al. 2017) and LiForest (True Reality Geospatial 
Solutions).  3D point clouds generally provide geometric information (x, y, z) and per-point 
attributes such as intensity or colour.  Traditionally there are a range of geometric primitives 
that can be applied, for example, a hierarchical collection of cylinders which can be used to 
model and reconstruct objects with complex geometry.  This approach for displaying LiDAR 
data involves a visualisation software engine, which in effect involves translating the LiDAR 
data to the language of points, lines, triangles and polygons (Ghosh & Lohani 2014).  More 
recently, point-based rendering techniques can now cope with massive 3D point clouds and 
enable an interactive visualisation and exploration of the data (Richter & Dőllner 2014). 

Both the stem visualisation and 3D modelling procedures are very dependent on the quality of 
the point cloud.  Stand attributes such as mean tree height can be determined directly from ALS 
data, however stem diameter can only be inferred from the ABA using ALS data.  There are 
few examples of ALS systems directly estimating individual stem dimensions.  Terrestrial 
LiDAR scanning (TLS) instruments, on the other hand have been used to acquire very dense 
point cloud data for over a decade. Much of the relevant literature on modelling dense LiDAR 
datasets, therefore, relates to TLS studies.  High quality TLS point clouds have been 
successfully modelled to reconstruct the 3D structure of tree stems.  Stem diameters are 
typically derived from TLS by fitting circles, cylinders or free form curves to the point cloud 
and these optimization procedures are critical for stem detection.  Optimisation of the fit is 
typically achieved through a least squares adjustment or Hough transform (Hough 1962; van 
Leeuwen & Nieuwenhuis 2010).  Other stem profile detection procedures based on cylinder 
fitting have been reported by Eysen et al. 2013; Raumonen et al. 2013; Hackenberg et al. 2014; 
Krooks et al. 2014; and Srinivasan et al. 2015 where the axis of a stem segment and its radius 
correspond to a cylinder.  Liang et al. (2014), for example, modelled stem curves from the 
selected points using a series of TLS derived 3D cylinders and reported an accuracy of 
approximately 1 cm. 

The AutostemTM Forest software (Treemetrics Ltd., Ireland) utilizes the tree-detection and 
diameter-fitting algorithms developed by Bienert et al. (2007) and was evaluated by Murphy 
et al.( 2010) in two P. radiata plantations located near Mt Gambier (S.A.) and Bunburry (W.A).  
In this software package, tree stems are detected using a slice of the point cloud data at a 
specified height and point clusters that can fit a circle (or circle-arc) are identified (Henning & 
Radtke, 2006; Bienert et al. 2007).  A short vertical cylinder is applied at this height.  Decimetre 
slices are then taken successively up or down the cylinder to obtain new sets of data points for 
circle fitting.  A polynomial diameter smoothing function is then applied.  Stem profiles at 
different height intervals can be determined with knowledge of the approximate position 
diameter returned by the tree detection process.  Gaps in the stem data are addressed through 
the application of local taper models (Bienert et al. 2007).  Sweep is determined based on the 
estimated tree centre points for each slice.   

Other approaches have included voxel-based processing (Gorte & Pfeifer 2004); tree meshing 
(Antonarakis et al. 2009) or a combination of these procedures (e.g. Moskal & Zheng 2012).  
Dassot et al. (2012), for example, utilized the software PolyWorks (InnovMetric Software Inc.), 
software used in product manufacturing, through a process that involved polyline and cylinder 
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fitting.  They also applied polygonal meshing which links data points with triangles to obtain 
continuous surfaces without assumptions about the actual shape.  

Branch recognition in point clouds obtained from laser scanning has proven to be more 
challenging.  The Autostem software used by Murphy et al. 2010 did not provide information 
on branch size.  Bucksch & Lindenbergh (2008) developed the CAMPINO (Collapsing And 
Merging Procedures In Octreee-graphs) algorithm for geometric tree skeleton reconstruction 
of 2 m tall apple trees using a point cloud with approximately 10,000 points per tree.  The 
resultant skeletonisation of the tree structure allows for the measure of branch lengths and 
diameters for various branch orders.   

In all cases, however, it is desirable that these quantitative structure models are comprehensive; 
precise; compact (i.e. easily stored, manageable and any attribute can easily be extracted after 
construction); automatic and fast (Raumonen et al. 2013).  The extracted stem level 
measurements can then be linked with localised taper functions to estimate log product 
recoveries or extract individual stem profile descriptions (e.g. Murphy et al. 2010).   

1.2 Key project tasks and deliverables 

The overall aim of this project was to evaluate the feasibility of efficiently harnessing the 3D 
information captured by new LiDAR (laser scanning) technology capable of acquiring dense 
point cloud data for improved resource assessment by commercial plantation growers. This 
research aimed not only to develop methods that could reduce the reliance on inventory plots 
but more broadly to determine how information derived from high density LiDAR can be used 
to improve inventory precision.   

The project proposed four deliverables, i.e.: 

1)  Provide recommended specifications and procedures for optimal data acquisition and on-
screen 3D visualisation and assessment of individual tree stems using point cloud data captured 
by a multi-rotor LiDAR-UAV. 

2) Provide recommendations on the feasibility of generating accurate 3D models of tree stems 
for product mix assessment using ultra-dense point clouds acquired by a LiDAR UAV. 

3) Provide recommendations on any operational constraints for practical forest operations using 
LiDAR acquired from a UAV. 

4) Provide recommended specifications and procedures for the data acquisition, processing and 
analysis of dense point clouds acquired by light aircraft for plantation resource assessment and 
mapping.  

In order to fulfil the proposed project deliverables three Work Packages were developed by the 
project team, each with specific tasks.  The three Work Packages were: i) 3D visualisation for 
interactive assessment of individual tree stems; ii) UAS LiDAR for dense point cloud 
acquisition and iii) Individual tree detection, 3D tree reconstruction, and automated extraction 
of forest inventory metrics.   

The sections presented in this Final Report present the approaches, methodologies and results 
that have been produced from these Work Packages and either individually or in combination 
present the defined project deliverables.  
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Introduction 
There is increasing capability to capture forest structure as dense point clouds using either 
mobile or static terrestrial laser scanners, terrestrial photogrammetry, UAS laser scanning and 
photogrammetry, or using high resolution airborne laser scanning or photogrammetry.  This 
creates the potential to capture rich forest plot data as a point cloud and then undertake cruising 
measurements either automatically or semi-automatically in an office environment.  In turn, 
this has the potential to lead to more accurate, complete and verifiable tree-level inventory data 
and to reduce the time, cost and workplace health and safety risks associated with manual field-
based cruising. 
The potential to apply Virtual Reality (VR) methods to forestry has been recognised for some 
time.  Orland & Uusitalo (2001) and Bishop et al. (2005) examined the relationship between 
VR visualisation design and the requirements of forest management; Blaise et al. (2004) 
experimented with 3D visualisation of individual trees and forest landscapes.  It is recent 
developments in data capture technology and the increasing capability, availability and 
affordability of VR platforms that prompts current interest in the application of VR to forest 
measurement. 
 

Objectives 
The objectives of this component of the research were threefold: 
1. To identify and review existing software with functionality likely to support visualisation 

of dense point clouds and capability to allow automatic or semi-automatic extraction of 
inventory plot metrics.  This component of the work was conducted in two phases.  The 
first phase was to identify and review existing third-party software.  The second phase was 
to trial two contending software options using dense point cloud data acquired from a 
previous FWPA research project (PNC326-1314) and from the current project (PNC377-
1516). 
 

2. To review immersive virtual reality technology and methods for interactive cruising.  This 
component of the work was progressed through new collaborations with the University of 
Tasmania’s Human Interface Technology Laboratory (HIT Lab) and was conducted in four 
stages: 
i. A scoping project to identify current and emerging software and hardware solutions 

that would support advanced immersive visualisation of dense point clouds. 

mailto:Jon.Osborn@utas.edu.au
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ii. A prototype demonstration of immersive visualisation of forest point cloud data 
acquired by the project and using existing UTAS HIT Lab resources. 

iii. Identification of additional requirements in order to develop forest measurement 
capability, particularly to identify existing software that has the potential to allow 
foresters to directly interact (visualise and measure) within a point cloud in an 
immersive environment, or to scope the development of software to meet those needs. 

iv. Investigation of the possibilities for data generated by automated tree-metric 
extraction software to be integrated into an immersive VR environment. 

3. Subject to the findings in (1) and (2) above, to identify pathways to operationalise the 
automated extraction of plot metrics and the use of immersive VR technology and methods. 
 

The research to achieve these objectives has been supported and extended across two FWPA 
projects.  Early work, including the initial review of forest point cloud visualisation and 
automated segmentation and measurement software and the development of task-specific 
immersive point cloud measurement capability, was supported by funding allocated to FWPA 
PNC326-1314 and by an FWPA supported extension to that project, and has been reported in 
Chinthammit et al. (2017).  Later work, including trials of visualisation software and automated 
measurement software using project generated data has been supported by funding allocated to 
the current project, PNC377-1516, and progressed through new collaborations established by 
that project’s research team and industry partners with UTAS HIT Lab researchers  The current 
report summarises the combined outcomes of this work. 
 

Outcomes and Deliverables 
1. A review of current software: visualisation automated extraction of plot-level 

inventory metrics 
The first component of this work comprised a review of third-party software products designed 
to support automatic segmentation of stem metrics from point cloud data.  Five products were 
reviewed: 

i. 3DForest (Trochta et al. 2017)1 
ii. LiForest (True Reality Geospatial Solutions)2 

iii. CompuTree (Association De Recherche Technologie Et Sciences)3 
iv. Fusion_LDV (U.S. Department of Agriculture)4 
v. Web-LiDAR (U.S. Department of Agriculture)5 

Of these, two were selected for further testing using point cloud data collected for FWPA 
projects PNC326-1314 and PNC377-1516.  One set of data tested were from a Timberlands 
Pacific NE Tasmania study site, referred to here as the Springfield site and comprising mature, 
thinned and pruned Pinus radiata.  Those data were collected using terrestrial laser scanning 
(Leica Nova MS50 scanning total station), UAS photogrammetry and UAS Velodyne laser 
scanning. The second set of data tested were from a study site near Tumut, NSW, referred to 
here as Snow217.  Those data were collected using a Riegl VUX-1 scanner on fixed-wing 

                                                           
1 Homepage: http://www.3dforest.eu/ 
2 White paper: http://www.liforest.com/wp-content/uploads/2016/07/LiForest2.1-Whitepaper.pdf  
3 Homepage: http://computree.onf.fr/?lang=en  
4 Homepage: http://forsys.cfr.washington.edu/fusion.html  
5 See: https://www.scribd.com/document/215650128/Web-LiDAR-forest-inventory-TreeTop-application  

http://www.3dforest.eu/
http://www.liforest.com/wp-content/uploads/2016/07/LiForest2.1-Whitepaper.pdf
http://computree.onf.fr/?lang=en
http://forsys.cfr.washington.edu/fusion.html
https://www.scribd.com/document/215650128/Web-LiDAR-forest-inventory-TreeTop-application
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aircraft. This site comprised very old (84 years), thinned, Pinus radiata. The two software 
products selected for further review using these project data were 3DForest and LiForest. 
The findings from these reviews are available to project industry partners on request.  The 
following provides an overview, intended to summarise the capabilities of available tree 
segmentation algorithms and software current at the time of the review, and to illustrate their 
performance on dense point cloud data used in current FWPA research projects. 
In broad terms, the software reviewed clearly indicates the current interest, and the substantial 
progress being made in, automated extraction (segmentation) of tree metrics from dense point 
cloud data.  The software included both commercial and open source providers.  The maturity 
of the products varied across most of the parameters tested, including: data import options 
(LAS, LAZ, CSV, PTS, etc.), functionality, ease of use, reliability (software stability), 
processing speed, visualisation tools (including stereoptic 3D visualisation), and data output 
options (.TXT, .PLY, PCD, etc.). 
On balance, two of the software products were selected for use in additional trials using our 
own data.  These two were 3DForest and LiForest.  The following figures (Figures 1 – 6) 
illustrate the user interfaces and data extracted from our project datasets using 3DForest 
software. 
 

(a)  (b)  
Figure 1: (a) VUX-1 (Snow217) ALS data and (b) Springfield data imported into 3DForest. 

 

 
Figure 2: Point cloud segmentation of VUX-1 (Snow217) data using 3DForest.  

 



13 
 

 
Figure 3: Point cloud segmentation of Springfield data using 3DForest, 

(a)  
 

(b)  
 

Figure 4: Tree height measurement dialog window and graphical interface, using 3DForest. 
(a) VUX-1 (Snow217) data; (b) Springfield data. 
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Figure 5: DBH by least squares regression dialog window and graphical interface, 

Springfield data, using 3DForest: 
 

 
Figure 6: Stem curve measurement dialog window and graphical interface, Springfield data, 

using 3DForest. 

2. Immersive virtual reality technology and methods for interactive cruising6 
Currently, the choice of software environment for developing immersive VR environments is 
normally between Unity 3D7 (Unity Technologies) and Unreal Engine8 (Epic Games).  Both 
software platforms began as game engines, allowing game developers to develop and export 
those games to a variety of platforms (such as PC, console or mobile).  Since the emergence of 
advanced display headsets, both software development platforms have responded by 
positioning their products as software development tools for the new immersive VR hardware 
devices. 
Unity 3D is the more widely used of these game engines and with more assets (plugins) 
available from Unity 3D’s Asset store.  Specifically for this research project, there is a point 
cloud viewer utility asset available on the Unity 3D platform, called “Point Cloud Viewers and 
Tools”9.  This utility allows point cloud data to be loaded into the immersive environment.  
Common point cloud data formats can be loaded, including XYZ, XYZRGB, CGO, ASC, 
                                                           
6 Components of this section replicate content provided in Chinthammit et al. (2017). 
7 https://unity3d.com/ 
8 https://www.unrealengine.com/ 
9 https://www.assetstore.unity3d.com/en/?_ga=1.242197186.1904995280.1454048114#!/content/16019 

https://unity3d.com/
https://www.unrealengine.com/
https://www.assetstore.unity3d.com/en/?_ga=1.242197186.1904995280.1454048114#!/content/16019
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CATIA, PLY(ASC), PTS and LAS.  For these reasons, the Unity 3D software was adopted as 
the platform for this research project, and using the LAS data format. 
The Unity 3D platform allows customised software programs to be implemented inside the 
immersive VR environment. This is achieved by coding in either C# or JavaScript languages.  
The following are key functions: 

 First Person Viewpoint: This function enables users to view the dense point cloud within 
an immersive environment from a first person point of view. Users are able to explore a 
forest point cloud in a manner comparable to walking in a real forest, enhancing the 
immersion experience. Additionally, the software can make available unique viewpoint 
options that users would not normally experience, such as fly-through, teleporting from one 
location to another, or switching in and out of aerial views. 

 Measuring tools: Two measuring tools have been implemented that allow users to measure 
(i) a distance between two points and (ii) a stem diameter around a stem within the 
immersive environment. These are illustrated in Figure 7. 

(a) (b)  
Figure 7: Point cloud data and measurement tools in the pilot-project VR system. Note 

scalable point dimensions- scaled according to distance from viewer location. (a) Distance 
tool. (b) stem diameter tool. 
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Output data from two stem segmentation software were imported into the VR environment.  
One was 3D Forests; the other was the stem segmentation tools developed by SCION New 
Zealand (SCION 2017, Pont 2014).  These two were selected on the basis of recommendations 
from the review of segmentation software and in order to lever the stem segmentation tools 
developed by the SCION team and being further developed and tested in the current research. 
The output files from these two software are in pcd format. Using CloudCompare, LAZ 
(original point cloud data) and pcd (segmentation data) were converted to LAS format 
(uncompressed).  Using the Unity 3D asset “Point Cloud Viewers and Tools”, the LAS format 
data were converted to the asset’s own Binary (DX11) format (bin). Within Unity, a “Binary 
Viewer DX11” script (part of the Point Cloud Viewers and Tools asset) was attached to a game 
object.  Within the “Binary Viewer DX11” script, the previously converted bin file was selected 
to be rendered in the immersive environment. This process allowed the original point cloud 
and the segmented stem data to be visualised in an immersive environment.  Resulting 
combined data, displayed on the Unity 3D software’s desktop development environment, are 
shown in Figures 8 and 9 for the SCION and 3DForest segmentations respectively. These are 
for a pre-harvest inventory stand (thinned and pruned) from the Springfield (NE Tasmania) 
study site.  The data in Figure 8 were collected using a Leica MS50 Multi-station scanner; the 
data in Figure 9 comprise the same Leica MS50 Multi-station scanner data combined with a 
dense point cloud derived from UAS photogrammetry. 
 

 
Figure 8: Screen capture of Unity 3D rendering of TLS data acquired in a pre-harvest Pinus 

radiata inventory plot, showing SCION segmentation. 
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Figure 9: Screen capture of a Unity 3D rendering of combined TLS and UAS 

photogrammetry data acquired in a pre-harvest Pinus radiata inventory plot, showing 
3DForest segmentation. 

This proto-type VR application has been workshopped at a number of industry events, 
including ForestTech 2017 in New Zealand and Australia and at workshops associated with 
current FWPA research projects.  It has demonstrated the potential for operational field staff to 
transfer their skills to within a 3D and 1:1 scaled immersive environment, and to use natural 
interface functionality such as walking (within limited ranges), ‘teleporting’ across longer 
distances (horizontally and vertically) and ‘experiencing’ the data from within a forest plot. 
The findings of this pilot project indicate that the technology to support immersive visualisation 
and interaction with remotely sensed point clouds is available, that very dense 3D point clouds 
can be imported into current VR systems, that tools can be developed to allow users to measure 
stem and tree structure interactively, and that tree architecture segmented from 3D point clouds 
can be integrated within the same 3D immersive environment. 

 

3. Pathways to operationalising automated extraction of plot metrics using immersive 
VR technology 

The work reported above indicates that: 
i. the technology to support immersive visualization of remotely sensed 3D point clouds 

is available 
ii. very dense 3D point clouds can be imported into current VR systems 

iii. tree architecture segmented from 3D point clouds using separate software can be 
integrated within the same immersive environment 

iv. tools can be developed to allow users to measure stem and tree structure interactively 
and to view, quality assure or edit tree architecture data imported into a VR environment. 
 

Our recommendation is that future work should concentrate on: 

 further developing tools to allow users to interact with 3D data in order to capture or 
quality-assure tree metrics 

 further investigating both point cloud and alternative data representations in order to 
optimise the immersive experience 
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 discovering, describing and evaluating the ways in which users interact with forest point 
cloud data and measurement tools within a VR environment. 

 leveraging maximum returns from the data, in terms of: 
o the data spatial accuracy and resolution required in order for human operators 

to accurately visualise and measure forest plot measurements, such as DBH, 
stem diameters and tree height, as well as complex tree metrics such as 
branching angles and branch diameters 

o the capacity of human operators to undertake quality assurance assessment of 
tree metrics extracted such as stem circumference, tree height, branching, 
separately extracted from point clouds using automated software methods 

 assessing the performance of VR stem assessments, in terms of both task competency 
and the operational cost of the VR measurement processes, compared to current field 
assessments 

 transferring to industry a VR software application that can be used by forest managers 
to build experience and capacity with VR stem assessments and that has sufficient 
functionality to allow companies to assess and plan their future investments in VR-
based methods. 
 

These aims form a current FWPA research grant application, supported by key industry 
stakeholders and involving current and new research collaborations from the Australian and 
New Zealand research community.  An iterative design approach has been recommended, 
employing the rich point cloud data already acquired for FWPA projects PNC326-1314 and 
PNC377-1516, and with the following components: 

i. VR software design and development: Software development will extend from the 
current proof-of-concept to include all stem assessment operations that can be 
supported by the data.  Software design and development will be based on an iterative 
design methodology (design, prototyping, testing, analysing and refining) because, 
while the required tasks can be determined precisely, the implementation model in a 
VR environment largely depends on how effectively human operators can perform 
those task with the VR tools, which is unknown. 

ii. Usability design and testing: VR usability tests evaluate the effectiveness of interaction 
tools with respect to a pre-defined set of objectives, such as ease of use, functionality 
error, misrepresentation of the interaction cues (visual and auditory) and task 
performance.  The development team will work with collaborators to define the 
objectives of the testing that best capture the important attributes of practical stem 
assessment operations. The usability testing will measure/extract those attributes from 
observations of user behaviour and user-extracted data. 
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Introduction  
In recent years, there have been several major technological advances in unmanned aircraft 
systems (UAS, also referred to as UAVs, RPAS, or drones) and laser scanning devices. The 
development of small laser scanners, such as the Velodyne VLP-16 ‘Puck’, for the automotive 
industry has resulted in major opportunities for UAS-based laser scanning. The Velodyne 
scanners strike a nice balance between size/weight, accuracy, and cost. In addition, UAS 

mailto:Arko.Lucieer@utas.edu.au
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airframe technology has improved to the point where we can reliable fly a 3+ kg laser-scanning 
payload for ~15 minutes in a systematic survey pattern, facilitating UAS LiDAR surveys at 
unprecedented point density. The efforts in this project (FWPA PNC377-1516) have built onto 
a previous FWPA project (PNC326-1314) and a previous collaboration with DPI NSW through 
Dr Christine Stone. At the start of FWPA PNC377-1516, very few commercial UAS LiDAR 
systems were available. The systems that were available, such as the RouteScene LiDAR pod, 
were relatively expensive (AU$130K for LiDAR pod only) and without rigorous scientific 
testing. The TerraLuma UAS research group at the University of Tasmania has previously 
developed a UAS LiDAR system in-house, based on the Ibeo LUX laser scanner (2010 – 2014) 
(Wallace et al. 2012, 2016). In 2015-16, we developed a new system based on the Velodyne 
VLP-16 ‘Puck’ supported by DPI NSW and FWPA PNC326-1314. In the current project 
(PNC377-1516), the UAS LiDAR system was further optimised for use with a superior UAS 
multi-rotor platform. The in-house development allowed us to get the highest possible accuracy 
out of the laser scanner and positioning sensors, and fully understand and calibrate each 
component of the system. The aim of the UAS LiDAR work package was to identify optimal 
data UAS LiDAR data acquisition parameters for forest inventory. To achieve this aim, we 
first developed a calibration workflow and assessed the relative and absolute accuracy that can 
be achieved with current technology. We collected UAS LiDAR data at three study sites (two 
in Tasmania and one in New South Wales), and we tested multiple flying heights, flight patterns, 
and laser scanning angles. 

 

Objectives 
Objective 1: Develop an efficient and accurate UAS LiDAR calibration workflow for lever 
arm determination, boresight calibration, and quantification of IMU drift 

Objective 2: Quantify absolute and relative accuracy of a UAS LiDAR point cloud 

Objective 3: Collect UAS LiDAR data over pine plantation for dense point cloud input into 
‘WP2 visualisation’ and ‘WP3 automated extraction of individual trees and tree metrics’ 

Objective 4: Identify optimal UAS LiDAR flight parameters (flying height, strip overlap, strip 
pattern) for optimal data collection in pine plantation 

Objective 5: Collect UAS LiDAR data with SCION and UTAS systems over a common site 
for comparison of UAS systems and verification with plot data 
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Description of the UAS LiDAR system components 
 
The UAS LiDAR system developed for this project consists of the following components 
(Figure 1): 

 UAS airframe DJI Matrice 600: 
o https://www.dji.com/matrice600  
o Payload capacity ~5 kg 
o Flight duration: 12 – 15 mins (conservative battery use) 
o Survey grids flown with the Autopilot App on a iPad mini 
o Custom-built mounting brackets for LiDAR sensor mount and antennae 

 Laser scanner Velodyne VLP-16 ‘Puck’: 
o http://velodynelidar.com/vlp-16.html  
o 16 scan layers with a 30° degree vertical field of view (FOV), which equates to 

a 15° degree forward and backward distribution of the scan lines in the flight 
direction (+15° to -15° from nadir with scan lines separated by approximately 2 
degrees) 

o 300,000 pulses per second for the full 360° view of the scanner, but only 80° 
used (40° on either side of nadir) equating to  66,666 pulses per second within 
the FOV 

o Maximum distance range: 100 m 
o Absolute distance ranging accuracy: 3 cm 
o Beam divergence horizontal: 0.18° (3.0 mrad); vertical: 0.07° (1.2 mrad). Flying 

at 40 m above ground level (AGL) this beam divergence results in a laser 
footprint of 12.6 by 4.89 cm. 

o Dual return (strongest and last) 
 Global navigation satellite system (GNSS) receiver and inertial measurement unit (IMU) 

Advanced Navigation Spatial Dual: 
o http://www.advancednavigation.com.au/product/spatial-dual  
o Dual antenna, multi-constellation (GPS, GLONASS), multi-frequency (L1/L2) 

GNSS receiver 
o Accurate heading (~0.1°) from dual antenna 
o Calibrated MEMS-based IMU: ~0.8° absolute accuracy in pitch, roll, and yaw 

under typical UAS flight dynamics 
o Custom lightweight dual frequency antennae 

 Custom-built sensor frame and electronics for sensor synchronisation 
o Adjustable angle of laser scanner to allow for oblique (forward) scanning angles 

along the flight direction. 
 Machine vision camera: FLIR/Point Grey Chameleon RGB or Mono 

o Not used in this project, but can be used for generation of orthophotos and SfM 
point clouds. 

 Processing routines and scripts developed in-house by TerraLuma group 
o Flight planning calculator (spread sheet) 
o Flight path selection and filtering tool (online) for subsetting of flight lines 
o Production of LiDAR point clouds from raw laser scanner data, GNSS positions, 

and IMU readings: Python script 
o Boresight calibration: TerraSolid and TerraMatch workflow 
o Leverarm determination: 3D photogrammetric pointcloud of airframe and CAD 

processing 
o Point cloud noise filtering and classification: lastools script 

https://www.dji.com/matrice600
http://velodynelidar.com/vlp-16.html
http://www.advancednavigation.com.au/product/spatial-dual
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(a) 

 
 (b) 

 
Figure 1: (a) TerraLuma UAS LiDAR configuration with individual components; (b) CAD 

drawing of sensor frame showing adjustable angle of laser scanner. 
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Objective 1: Develop an efficient and accurate UAS LiDAR calibration 
workflow for lever arm determination, boresight calibration 
Tasks 

1. Optimise integration of hardware and sensor components on UAS LiDAR system 
i. Mounting position of laser scanner 

ii. Time sync between GNSS and Velodyne 
iii. Mounting of dual antenna 
iv. Modular LiDAR pod for DJI Matrice 600 (M600) 

2. Identify most suitable flight planning and navigation app for DJI M600 for reliable and 
smooth navigation 

i. Test several free and commercial flight planning and navigation apps with a 
dummy payload in outdoor test. A reliable airframe and smooth navigation is 
important for the collection of high quality LiDAR data from a multi-rotor 
platform.  

3. Dedicated calibration flight over a field with calibration targets 
i. Targets: light poles, building, 90x90 cm panels on tripods surveyed 

ii. 40 m AGL flying height in overlapping cross strips over the calibration field 
iii. Two flights: 

a. Heading of UAS in direction of flight 
b. Constant heading aligned with direction of flight strips 

4. Determination of lever arms of UAS LiDAR system 
i. Generate 3D point cloud based on photogrammetric structure-from-motion 

(SfM) techniques and export model to CAD for 3D measurements of XYZ 
offsets between GNSS antenna, IMU, and Velodyne laser scanner 

5. Determination of boresight angles 
i. Develop workflow in TerraSolid to derive boresight angles (angular offsets 

between laser scanner and IMU) from calibration flight 
6. Optimise LiDAR processing workflow 

i. Apply lever arm offsets and boresight angles to Python LiDAR processing code 
(applied to second flight) 

ii. Determine the impact of IMU drift and other residual errors/noise 
iii. Identify most optimal and efficient processing workflow with combination of 

in-house Python code and TerraSolid software 
 

Overview 
The UTAS team has concentrated on the calibration and accuracy assessment of the UAS 
LiDAR system developed by the TerraLuma research group. Dr Colin McCoull has been 
working on the determination of leverarm offsets (distances in X, Y, and Z between the primary 
GNSS antenna and the laser scanner) and boresight angles (angular differences between the 
laser scanner and inertial measurement unit (IMU)). This calibration procedure is standard for 
full-size LiDAR systems, but new methods had to be developed to accurately determine the 
calibration factors for a UAS LiDAR system. The calibration of the UAS LiDAR system is 
critical for accurate point cloud generation. Colin  worked on his Master of Applied Science 
(MAppSci) thesis during Feb. – Nov. 2016. The findings of his research contributed directly to 
the current FWPA project.  
 



25 
 

Lever-arm Offsets 
Lever-arm offset is the distance from the measurement system (the laser scanner) to the 
positioning system. Three possible measurements techniques to determine lever-arm offsets 
were considered for this study. Offsets could be measured using:  

1. direct measurement, i.e. using theodolite and standard surveying techniques (direct 
measurement); 

2. scanning of the UAS with a terrestrial scanner; or 
3. photogrammetric techniques based on images of the UAS positioned in a calibration 

frame.  
Due to the complexity and scale of the system, direct measurement was not attempted. 
Scanning of the UAV frame using a Leica MS50 was attempted, however, the resultant point 
cloud was very noisy. This was most likely due to the airframe’s shiny carbon fibre surfaces 
causing reflections. We developed a new technique based on photogrammetric 3D point cloud 
reconstruction of the UAS. The resulting 3D point cloud was exported to a CAD, which 
allowed direct measurement of X, Y, and Z offsets between the centre of the primary (front) 
GNSS antenna and the centre of the Velodyne scanner. This was achieved by aligning the UAS 
over a flat calibration frame consisting of a sheet of wood with small spherical red pins as 
position targets defining a horizontal grid system to locate all objects in a horizontal X and Y 
plain. The calibration frame X-axis was aligned as closely as possible to the GNSS antenna 
pair and IMU x-axis10. Twelve reference points were also marked on the UAS. The height and 
horizontal location of all reference points was determined using a tape measure and a plumb 
bob (when required) to mark the UAS mark locations on the calibration frame.  

Using a DLSR camera (NIKON D5100) 132 photographs of the UAS were taken at between 
0.5 m and 1.5 m from the UAS from a range of angles. In Agisoft PhotoScan, a high accuracy 
image alignment was undertaken, using standard settings with control identified in all images 
and camera calibration parameters optimised. A dense point cloud reconstruction (with 
moderate depth filtering) produced the detailed point cloud shown in Figure 2 (a). The error 
reported for control marker locations following alignment was 0.00097 m or 1.517 pixels 
indicating a high level of correlation between measured and modelled marker locations. The 
point cloud was exported in LAS format and converted to a format suitable for opening in 
Autodesk AutoCAD 2015 using Autodesk ReCap 360. Key features within the point cloud (i.e. 
the antenna and scanner positions) were then drawn or located (Figure 2(b)) and offset 
distances between these features were measured (Figure 2(c)). The key offset distance was 
measured from the centre of the base of the forward GNSS antenna to the centre of the LiDAR 
scanner unit.   

Measured lever-arm vectors were, X = -503.01 mm, Y = 3.15 mm and Z = 503.01 mm (in the 
Advanced Navigation Spatial DUAL GPS/IMU reference frame). Rotations of these vectors 
for calculation of the LiDAR unit reference locations were undertaken using the Advanced 
Navigation Spatial DUAL GPS/IMU Roll, Pitch and Heading values. 

 

                                                           
10 
https://www.advancednavigation.com.au/sites/advancednavigation.com.au/files/Spatial%20Dual%20Referenc
e%20Manual.pdf 
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(a) 

 

(b) 
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(c) 

Figure 2: (a) The coloured point cloud of the UAS derived using Agisoft PhotoScan. (b) The 
lever-arm offset from the GNSS antenna base to the centre of the LiDAR Scanner (in 
AUTOCAD2015) with the UAS point cloud. (c) The lever-arm offset from the GNSS 

antenna base to the centre of the LiDAR Scanner (in AUTOCAD2015) without the UAS 
point cloud. 

Boresight Experiment 
Boresight offsets are the physical angular mounting offsets (in roll, pitch and heading) between 
the IMU and the laser scanner. Measurement of boresight angles is only possible through 
experimental data collection. The UAS LiDAR unit had to be flown at a suitable, accurately 
surveyed, calibration site. Calibrations undertaken previously (in 2016) indicated that the 
optimal calibration field should include flat surfaces and vertical features. The vertical poles 
allow for precise alignment between flight strips, e.g. a pole should appear in the same location 
in each flight strip. For this work a suitable site on Mt Nelson (Hobart) was selected (Figure 4). 
The site is located at the Olinda Grove University of Tasmania Soccer Fields (Figures 3 & 4). 
The site provides several vertical light poles, a building with multiple roof surfaces and two 
open areas of short grass. The calibration field was set up with ten raised target pads (0.9 x 0.6 
m) and seven evenly distributed ground control points (GCP). The 0.3 x 0.3 m GCPs were 
constructed of highly reflective material ensuring they stand out in the lidar dataset to aid in 
GCP identification in the LiDAR point clouds (Wallace et. al. (2012). Raising flat targets on 
tripods provided the ability to physically identify targets as separate features to ground.  These 
raised targets and GCPs were measured with a rapid static GNSS survey (absolute accuracy ~2 
cm) on February 7, 2017. 
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Figure 3: Olinda Grove calibration site. 

 

Figure 4: Tripod mounted calibration targets. 
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LiDAR data was collected over the calibration site on February 7, 2017 (Figure 5). Two flights 
were undertaken in a grid pattern flight path. During both flights a Leica GNSS (Leica Viva 
GS14) collected static data at the base station established nearby for later post-processing of 
flight trajectories. Raw flight position and orientation information as well as ranging 
information collected by the UAS carrying the Velodyne VLP-16 LiDAR 'Puck' were stored 
on the on-board the Intel NUC data logging computer during flights. Flying height during the 
survey was approximately 45 m and flight velocity was approximately 3 m/s to simulate typical 
forest flight conditions.  Both flights were undertaken under automated control (Figure 6). 
Wind conditions during the flights were generally mild. 

 

Figure 5: UAS Lidar in flight. 

 

Figure 6: Calibration flight autopiloted by Hangar Autopilot App11. 

                                                           
11 http://autoflight.hangar.com/  

http://autoflight.hangar.com/
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Processing of UAS LiDAR Data 
After collection, the raw data from the on-board GNSS and base station, the IMU and the 
scanner were extracted. The on-board GNSS data was post-processed against base station data 
with RTKLIB12 software. This step produced a trajectory file with accurate UAS locations at 
10 – 20 Hz. In addition, the IMU outputs pitch, roll and heading angles at 100 Hz, and the 
Velodyne data are stored in one large binary file with laser fire packets. The GNSS, IMU, and 
laser data streams need to be combined to produce a georeferenced point cloud, which involves 
interpolation of the position and orientation of the laser scanner based on GNSS and IMU data 
respectively, and application of the LiDAR equation to compute the 3D coordinate of each 
laser return. Software code implementing the LiDAR equation was initially developed in 
MATLAB for earlier PhD research by Wallace et al. (2012). This code was rewritten in Python 
and further refined by Stephen Harwin, Arko Lucieer between 2016 and 2018. The code was 
optimised to work with the Velodyne laser scanner and Spatial Dual IMU. In addition, the 
LiDAR equation was optimised for lever-arm and boresight adjustments (with input from 
Deepak Guatam). Alexander Pishchugin was employed to implement an online data upload 
and visualisation tool to allow subsetting and selection of flight lines for processing (Figure 7 
-9).  

 

Figure 7: Lidar processing web interface - main screen. 

                                                           
12 http://www.rtklib.com/  

http://www.rtklib.com/
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Figure 8: LiDAR processing web interface - Selection tool map view. 

 

Figure 9: LiDAR processing web interface - Selection tool data views. 

Boresight Calibration 
Following the preparation of the data for boresight offset determination, a quasi-rigorous 
boresight calibration of the UAV LiDAR unit was undertaken using the un-calibrated (for 
boresight) LAS files and exported .csv trajectory information using TerraScan and TerraMatch 
(© TerraSolid). 

The first calibration stage involved a manual calibration of the flight lines using the TerraMatch 
“Apply Corrections” tool. Corrections were only applied to heading shift, roll shift and pitch 
shift. Figure 10 show a cross section of uncalibrated points. Determination of initial 
approximate correction values focused on rotating flight strips to produce well-matched 
overlaps of all flight strips. The light poles were used in this stage as they allow for quick 
assessment of the initial offset correction estimates as can be seen in the before and after cross 
sections (Figure 11). Initial calibration values identified using this method were heading shift 
0.2 degrees, roll shift -0.1 degrees and pitch shift 0.3 degrees.  
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Figure 10: Uncalibrated light pole. Flight lines 1 to 7 are depicted in cross section prior to 
boresight calibration. 

 

Figure 11: Calibrated light pole. Flight lines 1 to 7 are depicted in cross section following 
boresight calibration. 

 

Following identification of approximate correction values, the “Find Match” tool was applied 
such that a more exact solution for correction parameters could be found. In this step, 
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corrections for heading shift, roll shift and pitch shift were identified least squares adjustment 
between the seven overlapping flight strips. The LiDAR datasets were cleaned of all points that 
were not raised targets (0.9 x 0.6m) (see Figure 4 and Figure 12). This provided a set of small 
flat, low noise point cloud features that were well distributed to achieve an accurate match 
across the set of flight line point clouds.  

 

Figure 12: Location of raised targets (0.9x0.6 m pads on tripods) used for accurate 
calibration. 

 
This further refinement in boresight calibration identified a further heading shift of 0.0491 
degrees, roll shift of -0.0185 degrees and pitch shift of -0.0359 degrees. Final RMS errors 
improved from dz RMS 0.066 m to 0.063 m. Given these results, the additional calibration step 
appeared to slightly improve the result.. Figure 13 - Figure 20 show cross sections of the 
datasets before and after calibration. 
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Figure 13: Uncalibrated scan lines. Flight lines 1 to 7 are depicted in cross section prior to 
bore sight calibration. 

 

Figure 14: Calibrated scan lines. Flight lines 1 to 7 are depicted in cross section following 
accurate bore sight calibration. 

 

Figure 15: Uncalibrated scan lines. Flight lines 1 to 7 are depicted in cross section prior to 
bore sight calibration. 

 

Figure 16: Calibrated scan lines. Flight lines 1 to 7 are depicted in cross section following 
accurate bore sight calibration. 
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Figure 17: Uncalibrated LiDAR data points from flight lines 1 to 7. 

 

Figure 18: Calibrated LiDAR data points from flight lines 1 to 7. 
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Figure 19: Side view of uncalibrated LiDAR data points from flight lines 1 to 7. 

 

Figure 20: Side view of uncalibrated LiDAR data points from flight lines 1 to 7. 

 

Identification of heading drift, roll drift and pitch drift was also undertaken using TerraMatch. 
All flight flight lines were corrected for heading shift, roll shift and pitch shift based on the 
final boresight angles. Observation of these data indicated drift was not present in the dataset.  

 

Final LiDAR Point Cloud Properties 
Table 1 shows the point cloud properties including point density and point spacing for all flight 
lines used in this assessment. Point densities range from 270 points per m2 to 360 points per 
m2 for individual flight strips. The total point density of the final combined point cloud was 
1122 points per m2 and the average spacing of points was 0.03 m. Last return only density for 
this point cloud was 559 points per m2.   
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Table 1: Point densities and point spacing of flight strips for all strips used in the calibration 
process. 

Scan Line 
number 
of 
returns 

number 
of last 
returns 

covered area 
in square 
metres per 
length 

point 
density: all 
returns 
(per m2) 

spacing: 
all 
returns 
(m) 

point 
density: last 
returns (per 
m2) 

spacing: 
last 
returns 
(m) 

1 1130984 563733 4184 270.31 0.06 134.74 0.09 

2 1155468 576019 4068 284.04 0.06 141.60 0.08 

3 1278485 637249 4104 311.52 0.06 155.28 0.08 

4 1049900 523746 3816 275.13 0.06 137.25 0.09 

5 1850543 921884 5228 353.97 0.05 176.34 0.08 

6 1680408 837378 5096 329.75 0.06 164.32 0.08 

7 1845481 919450 5128 359.88 0.05 179.30 0.07 

All 
Flights 
Combined 

9,991,269 4,979,459 8908 1121.61 0.03 558.99 0.04 
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UAS LiDAR Flight Planning and LiDAR Configuration Tool 
To assist in UAS flight planning, we have developed a spreadsheet that calculates point spacing, 
flight strip overlap, beam size on the ground, etc., which allows for more informed flight 
planning and laser scanner configuration. This spreadsheet was adapted for the Interpine Riegl 
VUX-1 helicopter survey at Carabost, and helped to plan flying heights and speeds to achieve 
the desired point density. The spreadsheet is available from Arko.Lucieer@utas.edu.au on 
request. 

 

 

Flight Planning Apps 

We tested a range of Apps for flight planning and automated UAS navigation 

 Drones made easy (Map Pilot) 
 Drone deploy 
 Precision Flight 
 Pix4D capture 
 DJI ground station Pro 
 Auto Pilot 
 Litchi 

At the time of testing and writing (Jan - June 2018), we found Hangar AutoPilot to be the best 
App for UAS LiDAR purposes.  

mailto:Arko.Lucieer@utas.edu.au
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Objective 2:  Quantify absolute and relative accuracy of a UAS LiDAR 
point cloud 
 

Tasks 
1. Dedicated accuracy assessment flight over a field with surveyed targets 

i. Targets: light poles, building, 90x90 cm panels on tripods surveyed 
ii. 40 m AGL flying height in overlapping cross strips over the calibration field 

2. Relative accuracy assessment 
i. TerraMatch: translation and rotation to match overlapping flight strips 

ii. CloudCompare: rigid-body transformation on ground points to match ground 
points of photogrammetric model (used as a reference). Assessment of accuracy 
through: 

a) Rotation angles required for optimal match 
b) Point-to-point distance 

3. Absolute accuracy assessment 
i. Comparison of known distances in LiDAR point cloud 

ii. Comparison of absolute location of targets 
 

Overview 
The aim of this section is to determine the relative and absolute on-ground LiDAR point 
accuracy and internal noise of the LiDAR model through comparison of the scanned output to 
known control points / surfaces at the test site.  

Strip adjustment is a commonly used technique to assess the separation between overlapping 
flights strips as a measure for data quality. However, strip adjustment is primarily undertaken 
to correct systematic error in overlapping strips. In this study, the “Find Match” in 
TerraSolid/TerraMatch was the strip adjustment method used to determine the boresight angles 
and, therefore, this approach was not used to examine the final relative and absolute accuracy 
of the LiDAR datasets.  

 

Relative Accuracy Assessment 
Relative accuracy assessment is concerned with determining the degree of consistency between 
LiDAR points in overlapping strips and with determining the internal quality of individual 
strips. In this case, relative accuracy was quantified as the elevation difference between 
overlapping strips. 

The “Measure Match” tool in TerraMatch measures how well different strips match each other 
vertically. It computes the elevation difference between surfaces from individual strips and a 
mean surface. In this case, it was applied to filtered LiDAR flights strip containing only points 
representing areas of open ground (sports field) and roof areas. 

Table 2 shows the results for the relative accuracy assessment where the magnitude represents 
the absolute value of the elevation difference between a strip and the mean surface, and Dz is 
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the mean value of the elevation difference between a strip and the mean surface. The average 
magnitude (average absolute value of the elevation difference) of all strips is 0.075m.  

Table 2: Vertical strip agreement assessed using TerraMatch (Measure Match tool). 

Flight Scan 
Line Points Magnitude (m) Dz (m) 

1 1 3350089 0.06 0.0079 

1 2 3965812 0.0858 0.0350 

1 3 3950225 0.0753 0.0128 

1 4 3526028 0.0727 -0.0287 

1 5 4035226 0.0686 -0.0107 

1 6 3923924 0.0904 -0.0262 

1 7 3761887 0.0687 0.0083 

Average magnitude (m): 0.07488 

 

 

Absolute Accuracy Assessment 
For the absolute accuracy assessment, an independent point cloud dataset was created using 
photogrammetric/structure-from-motion (SfM) techniques. To construct this accurate site 
model, a DJI Phantom 3 Advanced UAV was flown at 40 m to capture 80% side and forward 
overlap photography and derive a high-density point cloud using Agisoft Photoscan (Figures 
21 and 22). The 3D model was controlled with the established GCPs resulting in an error of 
0.0367 m. In addition, the site was also surveyed using a total station (Leica MS50 MultiStation) 
on February 7, 2017. During this survey, additional control was collected and verification 
observations were made. 
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Figure 21: A photogrammetric point cloud of the main building and surrounding land at the 
Calibration Site (point cloud constructed using Agisoft Photoscan from Phantom 3 

photography flown at 45 m). 

 

Figure 22: Orthophoto of the Olinda Grove calibration site (created using a Phantom 3 UAV 
and Agisoft PhotoScan). 
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Both LiDAR and photogrammetric datasets were filtered such that only points representing 
areas of open ground (sport field) and the main roof were used. A mean distance and standard 
deviation between each data point of the LiDAR strips and its nearest neighbour in the 
photogrammetric reference cloud was determined using the “Cloud to Cloud Distance Tool” 
in CloudCompare13. The average distance between the LiDAR and photogrammetric point 
cloud quantifies the absolute accuracy of the LiDAR data. Furthermore, the Iterative Closest 
Point (ICP) algorithm was used to co-register the LiDAR point cloud to the photogrammetric 
point cloud to minimise the difference between the two dataset. After the ICP adjustment, the 
mean distance was measured again to determine the absolute accuracy in an optimally adjusted 
dataset. Table 3 show that the average distance between the seven flight strips and the reference 
dataset was 7.8 cm. After adjustment, the absolute accuracy improved to 4.6 cm. 

Table 3: Cloud/Cloud Distance analysis results for individual scan lines from flight 1 as 
calculated in Cloud Compare using the photogrammetric point cloud as the model surface. 
Results are for calibrated LAS data and for ICP co-registered data. 

Scan Line 

Raw calibrated flight lines Flight lines following ICP 
matching 

Mean 
Distance (m) Std. Deviation Mean 

Distance (m) 
Std. 
Deviation 

1 0.050553 0.039166 0.039751 0.032319 

2 0.092047 0.065437 0.048697 0.036939 

3 0.067794 0.054592 0.045506 0.033921 

4 0.084768 0.071107 0.045793 0.046860 

5 0.086105 0.048865 0.042694 0.030046 

6 0.116523 0.084335 0.057836 0.044512 

7 0.047065 0.035280 0.041502 0.030762 

Combined 0.0778  0.0459  

 

 

 

 

  

                                                           
13 http://www.danielgm.net/cc/  

http://www.danielgm.net/cc/
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Reference Distances Between Objects 
Distances were measured between objects in the field using direct traditional surveying. The 
distance between reference points (raised markers) on tripods was determined by undertaking 
a survey using the Leica MS50 MultiStation. In each flight strip the distance between 
identifiable objects was measured and compared to the surveyed values. The location of targets 
on tripods was identified by locating the average position of points on the tripod in 
CloudCompare. Distances between targets are presented in Table 4. Generally, agreement 
between distances measurements is better than 10 cm. 

Table 4: Differences between the distance between measured targets (on tripods) from point 
cloud measurements (per scan line) and “known” distances from the site survey. TL = Building 
target to west, TL = Building target to east, GL = Central western ground target in front row 
(row next to building), GR = Central eastern ground target in front row (row next to building) 

Flight Scan 
Line 

Measurement and Surveyed Distance (m) between Targets 

TL to TR GL to GR Tl to GR TR to GL TL to TR 

19.452m 11.004m 22.615m 26.245m 19.452m 

1 1 -0.12 0.001 -0.018 -0.007 -0.12 

1 2 0.015 -0.006 0.052 -0.007 0.015 

1 3 -0.021 0.016 0.019 -0.032 -0.021 

1 4 0.033 -0.015 -0.045 -0.054 0.033 

1 5 0.008 0.024 -0.001 0.04 0.008 

1 6 0.017 0.001 -0.054 0.096 0.017 

1 7 0.019 -0.001 -0.007 0.074 0.019 

Average -0.007 0.003 -0.007 0.016 -0.007 

Combined 
Average 0.001m (Range -0.12m to 0.096m) 
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Objective 3:  Collect UAS LiDAR data over pine plantation for dense point 
cloud input into ‘WP2 visualisation’ and ‘WP3 automated extraction of 
individual trees and tree metrics’ 

 

Tasks 
1. Collect UAS LiDAR over a pre-harvest Pinus radiata sites 

i. UAS LiDAR flight at two to three flying heights, e.g. 5 – 10 m above 23 m tall 
trees (~30 m AGL), 20 – 30 m above trees (~45 m AGL), 40 – 50 m above trees 
(~70 m AGL) at high overlap (>50%) to allow selection of flight strips at two 
perpendicular flight directions. 

2. Process LiDAR flight strips and check boresight calibration derived in Objective 1.1.  
3. Verify accuracy of point clouds against ground targets. 
4. Point cloud to be delivered to project partners via CloudStor 

 

Overview 
To achieve the objectives of the UAS LiDAR work package we performed four major field 
campaigns: 

1. Olinda Grove UTAS soccer field: calibration experiment (7 February 2017), described 
in Objective 1.1. 

2. Uxbridge, southern Tasmania, 15-year old Pinus radiata plantation managed by Norske 
Skog (thinned, unpruned): experiment to assess impacts of flying height and flight strip 
overlap on point density and canopy penetration (15 May 2017) 

3. Payanna, northeast Tasmania, 26-year old Pinus radiata plantation managed by 
Timberlands (thinned and pruned): experiment to assess optimal UAS flight parameters 
(17 – 21 September 2017) 

4. Carabost SF, New South Wales: collaborative field campaign for data comparison (18 
– 23 February 2018), described in Objective 1.5. 

 

Uxbridge, Tasmania (May 2017) 
We identified a mature (15 years’ old) pine stand at Uxbridge, one hour out of Hobart, to allow 
for efficient testing of the system (Figures 23 – 25). After calibration and accuracy assessment, 
a thorough UAS LiDAR survey was undertaken over this test site at flying heights of 50 m and 
70 m above ground level (AGL). The maximum tree height was 25 m. We flew high 
overlapping crossed flight strips to determine the impact of flight direction, flight strip overlap, 
and flying height (Figure 26). This survey was flown on 15 May 2017. The data was processed 
and calibrated and flight strips for both flying heights were made available on the shared online 
CloudStor project drive (Figures 27 and 28).  
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Figure 23: UAS LiDAR platform ready for take-off at the Uxbridge study site (15-year old 
thinned unpruned plot). 

 

Figure 24: Aerial view of the Uxbridge test site. 
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Figure 25: Photo taken inside the plot showing thin, unpruned stems. 

 

Figure 26: Crossed flight strips at 50% side overlap flown at 50 m and 70 m above ground 
level. 
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Figure 27: UAS LiDAR point cloud, combined flight strips from 50 m flight. 
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Figure 28: A terrestrial laser scan (TLS) was carried out by Robert Anders (UTAS) for a 
student project and comparison purposes. 

The data showed that we can achieve very high point densities of 1200 pts/m2 for the 50 m 
flight (all returns, 3 cm point spacing) and 388 pts/m2 for the 70m flight (all returns, point 
spacing 5 cm). Feedback from project members at the Parramatta workshop (May 2017) 
indicated that this study site is not ideal for demonstrating the ability of UAS LiDAR to capture 
tree stems in a pre-harvest and thinned stand. The trees at the Uxbridge site are 15 years’ old 
and unpruned, which makes for a complex environment and a very challenging task for 
automated stem extraction. Nevertheless, this dataset provided an early indication of the point 
densities that can be achieved with a low-cost UAS LiDAR system, and the data characteristics 
for different flying heights. These flights showed that we should aim to fly as close to the top 
of the canopy as feasible to optimise the number of stem strikes. 

Payanna, Northeast Tasmania (September 2017) 
Based on the Uxbridge UAS LiDAR datasets it was decided that an additional UAS LiDAR 
survey was required to demonstrate the potential for this technology to derive stem strikes. In 
addition, an additional survey was needed to test more flight parameters, such as oblique 
scanning angles. In consultation with Timberlands Pacific and with input from the FWPA 
project group, we selected a 26-year old site in northeast Tasmania (Payanna). The coupe had 
been thinned twice and pruned resulting in 375 stems per hectare with very few branches up to 
6 metres (Figure 29). The main argument for selecting this site was that it offered the most 
mature trees in the area, and offered the lowest stocking density, thereby optimising our 
chances of LiDAR stem strikes.  

We organised a field campaign from 17 to 21 September, and focused on a site of 200 by 150 
m. We were able to complete 8 UAS LiDAR flights under different flight configurations. The 
team consisted of a field crew of three (Dr Steve Harwin, Deepak Gautam, and Saroj Sharma), 
and a UAS team of two (A/Prof Arko Lucieer and Dr Darren Turner). Don Aurik and Gareth 
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Tempest from Timberlands Pacific visited on the 18th of September. The field team focused on 
terrestrial laser scanning (TLS) and accurate measurement of tree location (Figure 29).  

 

 

Figure 29: One of the field plots at the Payanna site. 

An overview of the data collected is provided below: 

UAS LiDAR Flights 
• 18 & 19 September: 10 flights 
• Size of survey area 200 by 150 m 
• 35 – 60 m flying height above take-off point (most flights at 35 – 40 m) 
• 3 m/s flight speed for 12 mins per flight 
• Five flights at 30 degree oblique (changing direction) (Figure 30) 
• Crossed overlapping flight strips at 50% overlap (Figure 31) 
• Summary of flights: 

• 2x flights nadir @ 40 m flying height, crossed flights strips 
• 1x flight 30° oblique, constant heading, descending from 40 to 35 m flying 

height 
• 4x flight 30° oblique, changing heading in flight direction (scanning trees from 

multiple sides) @ 35 m flying height, crossed flight strips (two flights out of 
four can be used for analysis) 

• 1x flight nadir @ 60 m flying height (larger area) 
• 1x DJI Phantom 4 Pro photogrammetric flight 
• 1x 3DR Solo with 4-band multispectral Sequoia 

 
On the evening of the first UAS flight day (18 September), preliminary processing was carried 
out to assess the impact of the flying height. We established that stem strikes and ground strikes 
were relatively sparse, which resulted in the decision to limit the number of flying height 
scenarios, and focus on low flights. In the end, we flew at 35, 40, and 60 m above ground level 
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(from take-off point) with the tallest tree near the take-off point at 28 m. We flew crossed strip 
flight paths, which meant approximately 10 parallel flight lines for each flight, changing 90 
degree in flight direction between flights (e.g. flight 1 east-west, flight 2 north-south). On 
average we flew 15 m above the canopy (any closer would have been too risky). We were able 
to maintain visual line of sight from a clearing above the stand. 

 
Figure 30: Velodyne scanner mounted at a 30 degree oblique angle. 

 
Figure 31: Flight path patterns. 

 
Inventory and TLS Plots 
A total of five circular plots (two 15 m radius plots and three 25 m radius plots) were established 
randomly throughout the site. For uniformity in the plot size, four 15 m radius plots were 
considered. Plots were positioned in the field by establishing a traversed network using a 
combination of total station and GNSS surveyed control. For each plot, each of the trees were 
uniquely numbered, and the stems were positioned by measuring radiation distance and bearing 
using a total station. The plots were relatively dense with an average of 396 trees per hectare 
(range was 325-438 trees per hectare, see Table 5 and Figure 32). The survey team survey and 
marked the following TLS plots (Figure 34 and Figure 35): 
Single dome scans: 

 I01 - Radiations to 25 trees within approx. 15 m 
 I02 - Radiations to 18 trees within approx. 15 m 
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 I04 - Radiations to 77 trees within approx.25 m 
Four Scans (one dome scan and three inward-looking side scans): 

 I03 - Radiations to 84 trees within approx. 25 m 
- I03S01, I03S02/I05S02, I03S03 

 I05 - Radiations to 76 trees within approx. 25 m 
- I05S01, I05S02/I03S02, I03S03 

From each inventory point (e.g. I01) each tree was given a number (painted) and a radiation 
distance and bearing taken (e.g. I01T01 is the first tree in the plot) 

 

Figure 32: The distribution of trees in different field sample plots. 

Table 5: Summary statistics of trees in different plots. 

Plot ID < 5m 5m -10m 10m -15m Total Density 

1 5 7 16 28 396 
2 6 8 17 31 438 
3 4 9 10 23 325 
4 2 11 17 30 424 

Total 17 35 60 112 396 

 



52 
 

Post-processing and Technical Developments 
 
After the field campaign, all UAS LiDAR, TLS, and Total Station survey data had to be post-
processed to produce georeferenced point clouds). All data were referenced against a local base 
station (setup over a star picket and processed through the national AUSPOS processing service 
to obtain a sub-decimetre accurate coordinate for the base station) (Figures 34 -35). 

Figure 33 provides an example for one of the resulting datasets, where we combined two nadir 
flights (20 crossed flight strips), containing ~94 million points over 6.5 hectares, 1500 pts/m2, 
3 cm point spacing. A lastools workflow was developed for noise removal and ground 
classification (tuning of lastools filtering parameters required). 

 

 

Figure 33: UAS LiDAR point cloud of 20 nadir crossed flight strips flown at 40 m AGL. 
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Figure 34: Top-down view of all radiations to individual stems (five plots). 

 

Figure 35: Oblique view of two TLS dome scans and two TLS side scans including 
radiations to trees. 
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Objective 4:  Identify optimal UAS LiDAR flight parameters (flying height, 
strip overlap, strip pattern) for optimal data collection in pine plantation 
 

Tasks 
1. Quantify point density for 

i. Single flight strips at different heights 
ii. Different overlap (side overlap and crossed overlap) 

2. Quantify percentage of ground strikes and vertical point distribution for 
i. Single flight strips at different heights 

ii. Different overlap (side overlap and crossed overlap) 
3. Assess impact of mounting angle of laser scanner on canopy penetration 

i. Nadir 
ii. 30 degrees oblique 

 

Overview 
This section is based on Saroj Sharma’s Masters research, which compared UAS LiDAR flight 
parameters against TLS data to determine optimal UAS LiDAR acquisition parameters for 
forest inventory. Plot level forestry metrics including height metrics and quantile based metrics, 
point cloud density, density of stem strikes and vertical profile of percentage strikes were 
generated, analysed and compared among 4 plots and between all UAS data collection 
scenarios. In summary, results indicate that UAS LiDAR is an ideal tool for capturing data for 
the estimation of forest metrics of upper canopy, however, TLS can provide the most accurate 
estimation of ground, stem and lower canopy areas. The drawback of TLS is that is a much 
more time-consuming process. The UAS results also indicate that LiDAR data point density is 
inversely related to flying height. Interestingly, despite more complex mechanical and data 
processing requirements, oblique UAS LiDAR flights may not result in higher density stem 
strikes than nadir flights of equivalent flying height. 

 
Flight Configurations and Data Analysis Scenarios 
We focused our analyses on eleven datasets. Separating these datasets allowed us to test the 
impact of flight overlap, flying height, flight direction, and oblique scanning (Table 6). 

Table 6: Summary description of the eleven Velodyne-UAS datasets 

ID Point cloud name Description 

F1_1Strip40m filtF140ms3singlenewnorm Nadir flight 1, 40 m AGL, single 
strip 

F1_10Strips40m filtF140ms0to9comb_lgnewnorm Nadir flight 1, 40 m AGL, 10 strips 
combined, 50% overlap 
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F2_1Strip40m filtF240ms3singlenewnorm Nadir flight 2, 40 m AGL, single 
strip 

F2_9Strips40m filtF240ms0to8combnewnorm Nadir flight 2, 40 m AGL, 9 strips 
combined, 50% overlap 

F1_F2_Grid40m filtF1_1Strip40mnd240mcombnewnorm Nadir flight 1  + 2, 40 m AGL all 
perpendicular strips combined 

F3_1Strip60m filtF560ms3singlenewnorm Nadir flight 3, 60 m AGL, single 
strip 

F3_6Strips60m filtF560ms0to6combnewnorm Nadir flight 3, 60 m AGL, all strips 
combined, 50% overlap 

O1_10Strips35m filtF135m0to10oblqnorm Oblique flight 1, 35 m AGL, 10 
strips combined, 50% overlap 

O2_10Strips35m filtF135m10to20oblqnorm Oblique flight 2, 35 m AGL, 10 
strips combined, 50% overlap 

O1_O2_Grid35m filtF135m0to20oblqnorm Oblique flight 1 +2, 35 m AGL, 20 
perpendicular strips combined 

TLS filtTLSnewnorm TLS plot scans 

 

All point clouds were filtered for noise and ground points classified (Table 7). In all data 
collection scenarios, accurate identification of noise points above the canopy and below the 
ground surface was a major challenge. However, we developed a novel multi-step lastools 
workflow (Figure 36 - 38-). All combined datasets (F1_F2_Grid40m, O1_O2_Grid35m, and 
TLS) were made available on CloudStor for use and testing by project partners, these combined 
datasets are the focus of the following analysis. 

For each point cloud, we quantified the following metrics: 

 Height  
o maximum height, average height and standard deviation in height 

 Quantile-based metrics 
o point cloud density (total point strikes per unit plot area) and ground strike 

percentage 
 Vertical profiles 

o percentage of point strikes in different height bins (using bincentiles,  
(sometimes also referred to as decile) gives the percentage or fraction of points 
between the specified height and the maximum height which can be further 
analysed to quantify and interpret the point distribution in defined height bins.) 

 Stem strike density 
o stem strikes per square metre 
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Figure 36: Raw LiDAR point cloud data with positive outliers (noise points above the 
canopy) and negative outliers (noise points below the ground). Different colours represent 

laser pulse intensity gradient. 

 

Figure 37: An example of classified ground (red) and non-ground (blue) points after 
removing outliers. 

 

Figure 38: An example of normalized point cloud. 
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Table 7: Summary statistics of classified ground points, non-ground points and noise points in 
different data collection scenarios. 

Scenario number of points % of noise 
filtered 

ground non-
ground ratio non-ground ground noise 

O1_10Strips35m 21821424 130292 1063 0.005 0.0060 
O2_10Strips35m 21957785 127346 759 0.003 0.0058 
O1_O2_Grid35m 43915570 254692 1518 0.003 0.0058 
F1_1Strip40m 2269252 31840 744 0.032 0.0140 
F2_1Strip40m 2994119 47801 873 0.029 0.0160 
F3_1Strip60m 1269159 22954 7038 0.542 0.0181 
F1_10Strips40m 14997397 132729 525 0.003 0.0089 
F2_9Strips40m 19303415 164356 556 0.003 0.0085 
F3_6Strips60m 4461779 58045 11205 0.247 0.0130 
F1_F2_Grid40m 34399736 198662 580 0.002 0.0058 
TLS 2004097 624623 7738 0.293 0.3117 

 

Height Metrics 
For each scenario, height metrics including maximum height, average height and standard 
deviation in height were calculated. With respect to maximum and average height, the UAS 
based data showed similar height metrics across the scenarios. In particular, the 40 m nadir and 
35 m oblique UAS scenarios were very similar, highlighting that oblique mounting does not 
seem to have a significant impact on tree height derivation. Comparison of height metrics 
between TLS and UAS based point cloud data showed that the maximum height detected by 
TLS was significantly lower than other scenarios. Also, the TLS data had the highest standard 
deviation in observed height among all data collection scenarios. A comparison of UAS based 
data with TLS data showed a difference of 1.5 m to 4 m in the maximum detected height (Figure 
39) and even larger differences of 13 m to 16 m in observed average heights in different plots.  
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Figure 39: Plot level summary of maximum height in different data collection scenarios – 
two combined 35 m oblique flights (O1_O2_Grid35m), two combined nadir flights of 40 m 

flying height (F1_F2_Grid40m), combined strips of a nadir flight of 60 m flying height 
(F3_6Strips60m) and ground-based terrestrial laser scanning (TLS). 

 

Quantile-based Forestry Metrics 
To facilitate the description of specific vertical structure of canopy, two sets of strata specific 
quantile-based forestry metrics were created (Tables 8 – 9):  

1) major height bincentiles (1st, 4th, 10th, 15th, 20th, 30th, 40th, 50th, 60th, 70th, 80th, 85th, 
90th, 95th and 99th represented as b01, b04, b10, b15, etcs) and;  

2) height percentiles (1st, 5th, 10th, 25th, 50th, 75th, 90th, 95th and 99th represented as p01, 
p05, p10, p25 and so on respectively).  
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Table 8: Height bincentile metrics of Plot 2 in different data collection scenarios. Values represent percentage of points below respective height 
bins (b01, b04, … b99). 

Scenario b01 b04 b10 b15 b20 b30 b40 b50 b60 b70 b80 b85 b90 b95 b99 
O1_10Strips35m 1.7 2.2 2.5 2.6 2.7 3.2 4.2 8.7 26.5 56.8 84.5 92.4 96.9 99.2 100 
O2_10Strips35m 2.1 2.7 3.1 3.2 3.4 3.8 5.1 10.7 30.1 60.4 87.2 94.1 97.9 99.6 100 
O1_O2_Grid35m 1.8 2.5 2.8 3 3.1 3.6 4.6 9.6 28.3 58.5 85.8 93.2 97.4 99.4 100 
F1_10Strips40m 3.9 5.2 5.8 6 6.2 6.9 8.2 13.7 33.2 61.6 85.9 93.1 97.1 99.2 100 
F2_9Strips40m 4.1 5.4 5.9 6.2 6.3 7 8.3 14.5 35 63.1 87.2 93.9 97.5 99.4 100 
F3_6Strips60m 4.4 5.1 5.4 5.5 5.6 5.8 6.4 10 24.7 53.8 83 91.8 96.6 99.1 100 
F1_F2_Grid40m 3.7 5.4 5.9 6.2 6.4 7 8.3 14.1 34.2 62.6 86.7 93.6 97.3 99.3 100 
TLS 38.4 44.6 56.2 64.3 71.7 82.4 89.8 95.2 98.4 99.4 99.9 100 100 100 100 
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The calculated bincentile metrics for plot 2 (see Table 9) showed that in all height strata, 
O2_10Strips35m (across plantation rows) had a higher percentage of points than 
O1_10Strips35m (parallel to plantation rows). The TLS data recorded more than 38% of the 
non-ground points below 40 cm and less than 5% of points from the upper half of the canopy. 
Only 0.6% points in top 30% were recorded with negligible points for the top one-fifth portion 
of the canopy. Hence, TLS data, although exceptionally good for detecting ground and stem 
points, was very poor for precisely detecting the upper half of the canopy.  

Table 9: Height percentile metrics of plot 2 with specified height cut-off of 1.37 m for different 
data collection scenarios. 

Scenario p01 p05 p10 p25 p50 p75 p90 p95 p99 

O1_10Strips35m 10.9 18.1 19.9 22.6 25.7 28.6 31.3 32.9 35.5 
O2_10Strips35m 10.2 17.6 19.4 22.2 25.4 28.3 30.9 32.5 35.2 
O1_O2_Grid35m 10.6 17.9 19.7 22.4 25.6 28.5 31.2 32.8 35.4 
F1_10Strips40m 6.47 16.9 19.1 21.8 25.3 28.4 31.1 32.8 35.4 
F2_9Strips40m 6.68 17.1 19 21.7 25.2 28.3 31 32.7 35.4 
F3_6Strips60m 12.9 18.6 20.5 23.1 26 28.9 31.4 33 35.4 
F1_F2_Grid40m 5.91 17 19.1 21.8 25.3 28.4 31 32.8 35.4 
TLS 1.5 1.94 2.41 4 7.39 12.7 17.3 19.9 25.4 

 

The findings relating to TLS data are corroborated by the height percentile metrics (see Table 
9). The TLS had very low percentile height values compared to the corresponding UAS based 
data. Data showed that more than 50% of the points were recorded below 7.5 m, and more than 
99% of points were recorded below 25.5 m. This means that the TLS data can produce 
exceptionally good point density for the lower half of the canopy including stems but is very 
poor for analysing upper canopy.  

Point Cloud Density 

Point cloud density describes the proportion of points in all height strata relative to plot area. 
Hence, point cloud density was calculated as a total number of point strikes (ground and non-
ground) per unit area of the plot (706.9 m2). Table 10 shows the point cloud density of different 
data collection scenarios over different plots. 

Table 10: Point cloud density of different data collection scenarios in different plots. 

Scenario Plot 1 Plot 2 Plot 3 Plot 4 
F2_9Strips40m 1591.0 1520.3 1240.8 1270.5 
F3_6Strips60m 284.1 290.5 275.5 358.5 
F1_F2_Grid40m 3049.6 3010.2 1409.6 2888.3 
O1_10Strips35m 1606.8 1596.5 1485.7 1566.9 
O2_10Strips35m 1596.0 1612.3 1717.4 1483.1 
O1_O2_Grid35m 3202.9 3208.8 3203.1 3050.0 
TLS 546.7 488.2 750.4 431.0 



61 
 

 

In terms of the point density seen in the different scenarios, Table 10 indicates that the point 
cloud density resulting from oblique flights is higher than that of nadir flights of equivalent 
flying height and that flying higher significantly reduces point density. The point cloud density 
has an inverse proportional relationship to flying height. i.e., increase in flying height sees a 
significant decrease in the point cloud density. For instance, the point density for the 60 m nadir 
flight was four times lower than the point density of the 40 m nadir flight. In regard to the TLS 
scenario, point density for the lower canopy including stems was very high, however, the 
overall density was approximately 1.5 to 3 times lower than that of the 40 m nadir and 35 m 
oblique UAS flight scenarios. Interestingly, in all cases, the TLS scenario had higher point 
densities (ranging from 431 points/m2 to 750 points/m2) than the point density from the 60 m 
nadir flight. These densities imply that the optimal flying height for achieving high point 
densities is just above the canopy. Unfortunately, this is also the most challenging and high-
risk areas for UAS operations. 

Percentage of Ground Strikes 

Extracting the ground surface is an important step in the point cloud processing workflow. 
Table 11 show the ground strike percentage for eight key scenarios. Unsurprisingly, the TLS 
data had a high percentage of ground strikes, in all plots, more than 30% of the total points 
were ground strikes. In contrast, the UAS based data collection scenarios resulted far fewer 
ground strikes below 1.5%).  

Table 11: Percentage of ground strikes in key data collection scenarios in each plot. 

Scenario Plot 1 Plot 2 Plot 3 Plot 4 

F1_10Strips40m 0.92 0.70 2.62 0.79 

F2_9Strips40m 0.87 0.79 1.00 1.02 

F3_6Strips60m 1.46 1.30 0.99 1.09 

F1_F2_Grid40m 0.51 0.47 0.91 0.56 

O1_10Strips35m 0.70 0.33 0.57 0.69 

O2_10Strips35m 0.81 0.42 0.56 0.86 

O1_O2_Grid35m 0.49 0.28 0.41 0.54 

TLS 33.36 30.87 32.81 33.00 
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Figure 40: Plot level summary of percentage of ground strikes in four data collection 
scenarios – oblique flight along the row (O1_10Strips35m), oblique flight across the row 

(O2_10Strips35m), 40 m nadir flight (F2_9Strips40m) and 60 m nadir flight 
(F3_6Strips60m). 

As seen in the point density comparison above (Table 10), of the two oblique flights, 
O2_10Strips35m (across plantation rows) recorded a higher percentage of ground strikes than 
O1_10Strips35m (parallel to plantation rows) in three of the four plots. Surprisingly, for the 
nadir flight scenarios, in 3 out of 4 plots, the 60 m nadir flight recorded the highest percentage 
of ground strikes. The greater flying height causes less shadowing of laser pulses by the tree 
canopy resulting in a higher percentage of ground strikes, however, the total number of ground 
points is still higher for lower flying heights. 
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Vertical Profile 
The vertical profiles for key flight scenarios in Plot 2 (Figure 41) show significant differences 
in point distribution percentages relating to height. As seen in the previous metrics, TLS results 
in the highest percentage of points in the lower half of the canopy and the UAS data captured 
most points in the upper half of the canopy. As expected, TLS is obstructed by the dense lower 
canopy resulting in less penetration to the upper canopy. 

 

Figure 41: Vertical profile diagram for plot 2 summarizing percentage of points in each 
height bin for key data collection scenarios – 40 m nadir flight (F1_10Strips40m), two 

combined 40 m nadir flights (F1_F2_Grid40m), combined 60 m nadir flight 
(F3_6Strips60m), two combined 35 m oblique flights (O1_O2_Grid35m) and terrestrial laser 

scanning (TLS). 

The UAS based data collection scenarios resulted in very similar point cloud structures with 
the highest percentage of points recorded in the 25 m to 30 m height ranges and the lowest 
percentage of points recorded for stem areas. The combined oblique flights scenario 
(O1_O2_Grid35m) had the highest percentage of points for 25 m to 28 m of tree height. Below 
25 m, the percentage of points for the oblique scenario was higher than seen for the 
F3_6Strips60m scenario and fewer than captured in the 40 m nadir flights. This similarity of 
results implies that flying oblique may not result in a significant increase in stem strikes or 
strikes in the canopy. It is important to understand that while the higher percentage of low 
strikes is seen in the 40 m nadir scenarios, this does not necessarily mean that they have a 
greater number of stem strikes. Since, the 40 m nadir flight recorded a lower percentage of 
points for canopy areas above 25 m, this might have resulted in higher percentage of points 
below 25 m. To assess this further we can investigate the density of stem strikes in the key 
scenarios.  
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Density of Stem Strikes 
Calculation of plot based stem point density (stem strikes per square metre) was done for all 
data collection scenarios by analysing stem points from 3 m to 7 m on the normalised point 
cloud. The plantation was pruned and thinned so there were no significant branches present 
between 3 m and 7 m, however significant understory vegetation was present below 3 m.  

Table 12: Plot level density (points/m2) of stem strikes (3 m to 7 m) in different data collection 
scenarios. 

Scenario Plot 1 Plot 2 Plot 3 Plot 4 

F1_10Strips40m 9.70 9.22 0.33 7.32 

F2_9Strips40m 7.98 8.81 1.78 7.90 

F3_6Strips60m 0.92 0.88 0.11 1.39 

F1_F2_Grid40m 17.93 18.15 2.08 15.41 

O1_10Strips35m 5.87 4.85 1.64 7.14 

O2_10Strips35m 6.92 6.75 1.78 5.85 

O1_O2_Grid35m 12.77 11.79 3.45 12.84 

TLS 50.68 84.38 58.27 31.26 
 

As shown in Table 12 stem strike density was highest for the TLS scenario and lowest for the 
60 m nadir flight scenario. The oblique flight across the plantation rows (O2_10Strips35m) had 
higher stem strike density than the oblique flight parallel to the plantation rows 
(O1_10Strips35m) in three out of four plots. In general, the 40 m nadir flights had the highest 
density of stem strikes. When comparing the 40 m nadir flights with the 35 m oblique flights. 
The nadir flights resulted in a higher density of stem strikes than the oblique scenarios.  

In comparison to UAS data, TLS is a more effective method for characterising stems due to 
the very high density of stem strikes. As seen above, UAS based 40 m nadir flights just above 
the canopy can record a higher density of stem points than when flying higher (60 m). 
Furthermore, the multiple cross strip flights at same flying height nearly double the number of 
stem strikes (and ground strikes) when the perpendicular flight datasets are combined. When 
comparing the oblique flight scenarios to the nadir flight scenarios the stem strike density is 
not significantly improved by flying with the scanner mounted obliquely. This was not 
expected, however the laser scanner fire lasers at a range of angles both in nadir and oblique 
mounting configurations and this in combination with flying a grid pattern results in higher 
stem strike densities for the 40 m nadir scenario (F1_F2_Grid40m). This may improve in the 
result of stem detection and precise ground point delineation.  
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Summary of findings 
In this project, the quality of the stem strikes has not been assessed. The density of the stem 
strikes quantified here can only be used to compare different UAS LiDAR acquisition scenarios. 
The absolute density and accuracy achieved on stem strikes is still highly dependent on the 
footprint size of the laser pulse, the error in the laser distance measurement, and all errors 
associated with pose determination. The stem retrieval algorithms developed in this FWPA 
project were primarily developed (Joel Gordon, SCION and Mitch Bryson ACFR) for TLS and 
high density VUX1 data collected by helicopter. Their algorithms were briefly tested on UAS 
LiDAR data collected at Uxbridge and Payanna, however, more rigorous testing needs to be 
carried out to identify the full potential for UAS LiDAR data to quantify stem properties. Based 
on the analysis presented here, we conclude that with the current Velodyne system it is best to 
fly low (closer to the canopy the better, within practical reason), e.g. 35 – 40 m AGL for 25 m 
canopy. We also conclude that an oblique mounting angle of the laser scanner does not improve 
penetration to the stems and the ground. A nadir scanning angle is optimal. A high side overlap 
between adjacent scan lines (30 – 50% at the tops of the trees) and overlapping flight paths at 
perpendicular flight angles ensure a regular and dense distribution of points, thereby 
maximising the number of stem strikes.  
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Objective 5:  Collect UAS LiDAR data with SCION and UTAS systems 
over a common site for comparison of UAS systems and verification with 
plot data 
 

Tasks 
1. Capture UAS LiDAR data with UTAS and SCION system over inventory plot(s) at 

optimal flying height and flight line configuration. 
i. Capture inventory data at the same time 

ii. Collect TLS data at the same time 
 

Summary of Carabost SF Campaign 
Between 18 and 23 February 2018 a large multi-disciplinary team came together at Carabost, 
NSW (near Tumut) to collect the penultimate datasets for this FWPA project. Staff from 
Forestry Corporation New South Wales, Department of Primary Industry New South Wales, 
Interpine, and the University of Tasmania joined the field campaign. The TerraLuma team from 
UTAS was represented by Arko Lucieer, Darren Turner, and Stephen Harwin. Darren and Arko 
performed 35 UAS flights, including12 hours of air time with 3 UAV platforms (multi-rotor), 
collecting LiDAR, RGB/SfM, Multispectral (4-band Sequoia), and thermal data with the key 
focus on LiDAR collection. Over 1 billion points of LiDAR data was collected over five sites 
(200 by 200 m for each site). All flights were flown at 40 m AGL in nadir configuration, apart 
from site 9, which has to be flown at 50 – 60 m AGL due to sloping terrain. Sites 4 and 8 were 
the focus sites (because of their low stocking density and absence of undergrowth), and both 
sites were flown in an overlapping cross pattern. We selected these flight parameters based on 
previously identified optimal acquisition parameters. Operationally, it was challenging to 
maintain line of sight of the UAS LiDAR airframe. We surveyed all sites with RGB UAS 
imagery for future SfM studies. We surveyed two sites with UAS thermal imagery and three 
sites with MicaSense Sequoia multispectral imagery to test these alternative sensing 
technologies for detection of blackberries and understory growth. Also, Professor Anthony 
Finn (Adelaide) reported that SfM based on thermal imaging can potentially be used to identify 
stems. We wanted to collect data to test this approach. Steve focused on collected TLS scans 
at site 4 and 8. He collected two dome scans, each with overlapping three side scans. An 
overview of the UTAS data collection efforts is presented in Table 13 and examples of the 
types of acquired data illustrated in Figures 42 – 45. 

  



67 
 

Table 13: Overview of UTAS data collection in Carabost SF, NSW. 

   TLS  UAV 

             

 

Site GCP Plot TLS  Under canopy LiDAR RGB Thermal Multispec 

2A 5 0   x X 
Single 40 m x 

   
1        

3 2 - 
      x x 

x 
(blackberry 
trial) 

4 5 
4 x x 

X 
Double/cross 40 m x 

   
5     x x 
6        

5 5 7     X 
Single 40 m x 

   
8        

6 5 9   x        

8 5 15   x X 
Double/cross 40 m x 

  x 
16 x      

9 5 16     X 
Double/cross 50-60 m x 

   
17        
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Figure 42: Overview of UAS LiDAR scans at site 8. 
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Figure 43: Subset from UAS LiDAR dataset (two combined flights) of two trees at site 8. 
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Figure 44: Multispectral orthomosaic acquired at site 4 (Micasense Sequoia flown on 3DR 
Solo). 

 

Figure 45: Example of blackberry patch/carpet at site 3. Left: RGB Phantom4 Pro imagery, 
Right: thermal imagery (FLIR Vue Pro R, yellow/red is hot and blue is cool). Blackberries 

appear to be warmer than the tree canopy. 
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Key findings 
 

Sensors 
The Velodyne ‘family’ of laser scanners provides a ground-breaking combination of low cost, 
high density, and high accuracy sensing, compared to the previous generation of laser scanners 
(Ibeo LUX, SICK, and Hokuyo). The point density that can be achieved with the Velodyne 
scanners is in the order of 200 – 1200 points/m2, which is sufficient for very dense 
reconstruction of individual trees. Velodyne scanners, however, are primarily designed for the 
automotive industry, e.g. self-driving cars, so they are not specifically designed for aerial 
surveying and mapping. The accuracy requirements for forest inventory surveys at the 
individual tree level demand a very high level of absolute accuracy (< 3 cm), especially when 
stem reconstruction is required. The absolute ranging accuracy of the Velodyne scanners is 3 
cm at best. However, when taking into account the positioning accuracy of the GNSS (3 – 5 
cm), orientation accuracy of the IMU (0.1° IMU orientation accuracy equates to a 7 cm 
positional uncertainty at 40 m flying height), and the laser footprint size of ~10 cm (at ground 
level for a flying height of 40 m), we come to the conclusion that sub-decimetre absolute 
accuracy is very difficult to achieve with these systems.  
A laser scanner with a narrower beam divergence and a higher ranging accuracy is required for 
stem extraction and characterisation. Also, an IMU with a higher absolute accuracy is required. 
These sensor improvements add a significant amount to the overall budget of a UAS LiDAR 
system. Current commercial UAS LiDAR systems based on Velodyne scanners cost between 
$80K and $150K. Newer high-accuracy UAS LiDAR systems based on Riegl scanners, such 
as the VUX1-UAV and miniVUX, cost between $230K and $600K. 
 

UAS Operations 
UAS operations in a forested environment are challenging. An open space of at least 10 x 10 
m needs to be found for safe take-off and landing. One of the key challenges is the current 
CASA regulation that requires the UAS to be within visual line of sight (VLOS) from the 
operator. Flying the UAS at 40 – 60 m above the ground over a plantation with ~25 m tall trees 
results in loss of sight within tens of metres from the take-off point. Indirect line of sight can 
be achieved with a spotter flying a DJI Phantom (or similar) UAS with a live camera view of 
the UAS LiDAR platform. The smaller UAS effectively acts like a “camera on a pole”. This 
setup can help to keep the UAS LiDAR platform in sight, and potentially guide the pilot in case 
of an emergency (e.g. eagle attack), however, this solution does not strictly conform to current 
CASA regulations as it is an indirect line of sight.  
Auto-piloted operation of the UAS platform is required to achieve the desired flying speed and 
overlap between flight strips, and ensures consistency in flight dynamics. Many Apps exist for 
DJI autopilot navigation, but we found Autopilot (http://autoflight.hangar.com/) to be most 
suitable in terms of customisation and reliability. In auto-navigation mode, the UAS tends to 
speed up through the turns when moving between flight lines. The increase in speed causes 
some instability that can affect the accuracy of the LiDAR point cloud. We have taken the 
approach to cut out the flight line sections where the UAS turns. This has an impact on the total 
size of the survey area that can be covered. In flight planning, the UAS has to ‘overshoot’ the 
edge of the survey area. 

http://autoflight.hangar.com/
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Typical flying heights were between 35 m and 70 m with 40 m flying height typical (for 25 – 
30 m canopy height). At flying height >50 m the laser penetration to the ground and resulting 
point density at ground level are very low.  
 

Processing 
Lever-arm and boresight calibrations are essential for high-accuracy 3D point clouds from 
UAS LiDAR. New calibration techniques were developed in this project for both lever-arm 
and boresight calibration. The use of 3D photogrammetric models for lever-arm determination, 
and the use of large poles for boresight calibration were found to perform well. We have 
demonstrated the importance of lever-arm and boresight calibration for the final accuracy of 
the data product. UAS LiDAR system calibration is essential for future systems and projects. 
GNSS data processing is an important aspect of the LiDAR processing workflow. We deployed 
a local GNSS base station, recording raw data at 10 – 20 Hz. We post-processed the GNSS 
data recorded on the UAS against the base station data. This can be a time-consuming process, 
and requires expertise in GNSS processing. A real-time kinematic (RTK) radio link between 
the base station and the GNSS receiver on the UAS can help to achieve high-accuracy 
coordinates in real-time without the need for post-processing. The radio link relies on visual 
line of sight. While this approach can reduce the GNSS processing time, the performance of 
RTK GNSS in a forested environment still needs to be tested. 
We developed an online flight line sub-setting tool, which was valuable and important to split 
the raw data into individual flight lines before processing. All LiDAR data processing was 
carried out with Python code developed by the TerraLuma group. We also developed a lastools 
script for noise removal and ground classification. 
 

Data Characteristics 
In our calibration and accuracy assessment experiment, we achieved an absolute accuracy of 7 
cm for a direct georeferencing solution. This was further improved to 4.6 cm after strip 
adjustment and fine-tuning. The overall point densities varied from 300 points per m2 for single 
flight strips to 1200 points per m2 for combined flight strips (50% overlap between adjacent 
flights lines and two crossed strip flights).  
Based on the analysis from the Payanna dataset, we conclude that with the current Velodyne 
system it is best to fly low (closer to the canopy the better, within practical reason), e.g. 35 – 
40 m AGL for 25 m canopy. We also conclude that an oblique mounting angle of the laser 
scanner does not improve penetration to the stems and the ground. A nadir scanning angle is 
optimal. A high side overlap between adjacent scan lines (30 – 50% at the tops of the trees) 
and overlapping flight paths at perpendicular flight angles ensure a regular and dense 
distribution of points, thereby maximising the number of stem strikes. At best, we achieved 17 
points per m2 on stems between 3 and 7 m above ground level. The absolute accuracy of these 
stem strikes and the suitability of these points for quantitative and automated stem retrieval 
needs to be further tested.  
The absolute density and accuracy achieved on stem strikes is still highly dependent on the 
footprint size of the laser pulse (>10 cm for Velodyne at typical flying heights), the error in the 
laser distance measurement, and all errors associated with pose determination (~7 cm at best 
for direct georeferencing). The VUX1 data collected at Carabost appears to show a much higher 
point density on stems. The Riegl VUX1 is a survey-grade instrument that was coupled with a 
survey-grade GNSS/IMU sensor capable of achieving sub-5cm absolute accuracy. Our 
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recommendation is that this level of absolute accuracy is further pursued in future forest 
LiDAR project if the focus is on stem characterisation. 
 

Recommendations for Future Work 
1. To test the SCION and Interpine voxel approach to plot-based forest inventory on UAS 

LiDAR data for the Carabost site. To expand the plot-based voxel approach to a tree 
based approach. 

2. To test new machine learning techniques on UAS LiDAR datasets to predict tree-level 
inventory metrics. 

3. To test if advanced crown metrics can be developed based on dense UAS LiDAR data 
for prediction of stem characteristics. 

4. To test Mitch Bryson’s (ACFR) and Joel Gordon’s (SCION) stem fitting algorithms on 
Carabost UAS LiDAR data. 

5. To compare and optimise individual tree and crown detection (ITCD) algorithms 
optimised for UAS LiDAR point clouds. ITCD algorithms for UAS data should focus 
on methods that can segment points from the point cloud (as opposed to a CHM 
approach). 

6. To pursue future UAS LiDAR studies based on survey-grade sensors. The new UAS 
LiDAR kit that was recently by CR Kennedy in Australia (late May 2018) appears to 
meet the desired specifications. The UAS LiDAR unit is based on the DJI Matrice 600, 
but it carries a Riegl miniVUX-UAV laser scanner and is coupled with a high-end IMU 
sensor. An early price indication is AU$230K for the full system. A rigorous accuracy 
assessment (and system calibration) would have to be undertaken to verify the absolute 
accuracy and suitability for individual tree characterisation. 

7. We recommend that the commercial UAS industry and the forest industry continue to 
lobby CASA and CAA for beyond visual line of sight (BVLOS) operations. BVLOS 
operations within a short range (1 – 2 km) could be developed as a separate class of 
operation (without the need to cover systems that can fly for hundreds of kilometres 
and need multiple redundant communication links). This would meet the need of the 
forest industry for future UAS operations.  
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1. Introduction  

Recently, Light Detection and Ranging (LiDAR) has been widely applied in forest inventory 
to improve precision. The tendency is to use Airborne Laser Scanning (ALS) data as standard 
practice for inventory surveying, in New Zealand and Australia (Watt et al, 2013 a & b) as in 
the rest of the world (Næsset, 2004 & 1997; He et al, 2017, Magnussen, 2018). Current 
technology can collect more dense point clouds than in the past, and at a more reasonable price 
than older sensors. These denser point cloud datasets are being evaluated for their suitability 
for tree-level on screen visual assessments and 3D reconstruction modelling.  

There are several tasks currently performed manually in inventory assessments, including 
diameter and height measurements, branch size estimation, sweep estimation and stem quality 
assessments. Virtual Reality (VR) technology offers an opportunity to replace these in forest 
measurements for which human skills are required (Widjojo, 2017). VR is a 3D human 
computer interface technology that enables users to be immersed in a computer generated 
virtual environment.  3D point clouds can be imported into a VR system and tools developed 
that will allow users to interactively measure stem and tree structure.   

The Riegl VUX-1LR datasets were acquired as part of a FWPA Trans-Tasman project that 
links forest inventory, data processing and VR. Data was also collected by several different 
sensors mounted on unmanned aerial vehicles flown over the same stands. The helicopter 
mounted Riegl VUX-1LR used in this study is an example of new light-weight, survey-grade 
laser scanners  

In this report, we compare the VUX-1LR point cloud datasets that were acquired at three 
different altitudes and four different flight path directions in order to identify optimal 
acquisition specifications for the acquisition of ultra-dense point clouds that may be suitable 
for application in a virtual reality environment.   
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2. Materials and Methods 

2.1 Study Area  

The Carabost State Forest (SF) is a Pinus radiata plantation, near Tumut, in southern New 
South Wales, Australia, managed by Forestry Corporation of NSW. 

 

Figure 1: Detailed map presenting the relative location of each study area. 

 

Four stand areas were selected targeting a diverse range of Pinus radiata structures, including 
unthinned, single thinned and multi-thinned as well as stands varying in tree age and form 
(Figure 1, Figure 1). 

Table 1: Description of the seven P. radiata stands measured for reference data as part of the 
Carabost SF acquisition campaign.     

Site Age Cpt/Stand Thinning Stocked Area Pruned 

2 1987 1/1 Delayed thinning (2009) 19.65 1999 
4 1995 455/1 T2 (2017) 61.51 2004 
8 1995 454/1 T2 (2017) 33.97 2004 
9 1989 383/1 T2 (2013) 53.00 1998 
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2.2 Data 

2.2.1 Remotely sensed data from helicopter 

On the 22nd of February 2018 a flight was carried out by Geomatics Technologies (Melbourne, 
Victoria) using a helicopter equipped with a Riegl VUX-1 long range LiDAR sensor 
(specification of the sensor reported in Table 2) and a Nikon D810. A full-waveform ALS data 
was registered and discretized to a point density of over 8,000 points/m2 (the emission was 
between 5,000 and 9,000 points/m2). Digital orthophotos with 1cm spatial resolution were 
taken with the Nikon D810 RGB camera in the blue (400-540 nm), green (480-600 nm) and 
red (580-600 nm) wavelengths. 
 
Table 2: VUX-1LR standard specifications. 

VUX1-LR 
Eye Safety Class Laser Class 1 
Max. Range @ Target Reflectivity 60% 1,350 m 
Max. Range @ Target Reflectivity 20% 820 m 
Minimum Range 5 m 
Accuracy/Precision 15 mm / 10 mm 
Max. Effective Measurement Rate 750,000 meas./sec 
Max. Scan Speed 200 scans/sec 
Field of View (FOV) 330° 
Max. Operating Flight Altitude AGL 530 m / 1,740 ft 
Inertial Measurement Unit (IMU) Trimble Applanix AP20 

 

The LiDAR survey consisted of three flights by Site (200 x 200 m), the flight altitudes were 
selected to be as close to the canopy as possible, approximately 30 m, then at 60 m and 90m. 
The flight speed was set around 5m/s or 10 knots. The trajectory has been set 15 m apart with 
14 flight lines per flight altitude. Flight lines were done from east to west and from north to 
south, in two sites the same pattern was done also at a 45 angle from northeast to southwest 
and from northwest to southeast (a summary of the flight directions is reported in Table 3, 
while an example of the flight lines is reported in Figure 2). 

 
Figure 2:  Flight plan. 
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Table 3: Summary of acquisition specifications for each study site.  

   VUX-1LR 
    400Mhz  600Mhz 

Site GCP 
Field 
plot 30 m 60 m 90 m 60m 

2 5 0  NWSE    
SWNE 

 NWSE    
SWNE 

    
1     

4 5 
4 

NS            
EW 

 NWSE    
SWNE 

NS            
EW 

  
5   
6   

8 5 15 NS            
EW 

NS            
EW 

NS            
EW NS 

16 

9 5 16    NWSE    
SWNE 

    
17       

 

2.2.2 Ground-based data 

A local forest inventory was carried out in the study area the same week of the helicopter 
acquisition. The nine plots were established with a radius of 13.82m (=0.06 ha). At each site at 
least two plots were collected (Table 4). A wooden pole with a reflective poly ball on top was 
positioned in the centre of each inventory plot. The x,y coordinates of the plot centre were 
collected using a Trimble® Geo 7X receiver connected to an external high quality GNSS 
antenna, with a positional error of 5-50 cm (see Attachment 1). For each tree, distance and 
magnetic bearing of the tree stem and tree top from the plot centre (CP), were collected.  For 
each tree the species was noted, the diameter was measured using a DBH tape, the height was 
measured with a Haglof VL5 Vertex and the tree was cruised using the PlotSafe Overlapping 
Feature Dictionary (PLOTSAFE, 2007) (example of PlotSafe collected data reported in Figure 
3). In each plot five photographs were also captured (i.e. N, E, S, W facing to the plot centre 
and crown cover from the plot centre).   

Table 4: Summary of field data collection. 

Plot 
Establishment  

Location 
Plot Centre Coordinates 
Size and type 
Slope adjustment 
Hazardous 

Tree 
Measurement 

Species 
Bearing and distance 
Marginal tree checks 
Tree marking  
Diameters  
Pruned Heights  
Tree Heights 

Tree Cruising  Forks / reductions / top outs 
Features - (spike knots, rot, fluting, etc.) 
Tree quality assessment- Sweep & Branching 
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Figure 3: Example of PlotSafe collection Site 18 Plot 15 and details of tree number 1. 

The collected field data was then processed and used as references for the validation of the 
VUX-1LR datasets.  Through an application written in the statistical program R software 
(version 3.4.1), stem maps were produced for each plot using both the stem and crown top 
positions.  

An example of the derived plot stem maps is illustrated in Figure 4. 
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Figure 4: Example of Stem and tree top map, Site2 Plot1 and Site8 Plot16. 

 

2.2.3 Ground Control Point 

Before the flights, to match the point cloud with the field data, 20 high reflective Ground 
Control Points (GCP) (five for each site) were positioned on the ground in open spaces (Brede 
et al., 2017) and geo-located with a high grade GPS (Trimble® Geo 7X with the same antenna 
used for the plot centre collection).  

The GCP consisting of two equally sized closed cell foam panes (50 cm x 50 cm with a base 
of 80 cm), covered with high retro-reflective tape, connected via piano hinges. When set up the 
panes form a 110° angle between them, which makes them look like tents (Figure 5).  

The GNSS fixing location report (see Attachment 1 in this Section) was computed to measure 
the positioning error of the GPS, necessary for the subsequent LiDAR analysis. 

Figures 6 and 7 show the actual LiDAR locations vs GNSS measured locations of GCP and CP 
for each site and a close example for Site4 Plot4. 

 

Figure 5: Ground Control Point. 
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Figure 6: GNSS Centre Plot and Ground Control Points locations measured (yellow) and 
the actual LiDAR location (red) for each Site. 

 

Figure 7:  Detail of measured GNSS location of PC (yellow dot) and GCP (blue square) with 
the actual LiDAR location shown with a black circle for Site4 Plot4. 

 

2.3 Processing VUX-1LR Data 

The raw LiDAR dataset acquired by Geomatics was divided by site, height and direction of 
acquisition. 

The trajectory lines were generated, and we used a procedure to transform the point cloud in 
shapefile line with the information of the flights as the swaths were not ordered chronologically 
due to the helicopter different fly path. The User data field on the LiDAR data was used to 
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define the flight altitude. The Point source id field on the LiDAR data was updated with the 
corresponding flight line. 

The raw LAZ data points were then classified, with LAStools (version 14 September 2017- 
rapidlasso GmbH) as ground and non-ground, then de-noised and clipped by site and by plot 
and finally separated by User Data. QTModeler (8.0.7 - Quick Terrain Modeler, Applied 
Imagery) was used mainly to visualize the point cloud and to generate 1m resolution Digital 
Terrain Model (DTM) by each site. Five meters contours from the DTM were derived with 
ArcMap (version 10.5.1 - Esri).  

The quality of the VUX-1LR datasets and the derived products were checked using QTModeler 
software. A formal list of all the complete data checks is provided at the end of the QA-QC 
Report (see Attachment 2).  

For each site, the specifications of the LiDAR data (such as intensity, scan angle, classification) 
were summarized. The overlap of flights and the difference with the ground (if there is offset) 
were also checked. This process measured the relative accuracy between flight lines, or how 
well one flight line fits an overlapping flight line vertically. Some noise points were 
misclassified as ground, but this problem was fixed. 
Due to the high point density of the data, the LAZ file was divided in tiles of 30 m x 30 m. 
After the pre-process steps, the coverage was checked, and all the tiles supplied were found to 
be uncorrupted and readable. 

The pulse and point density were very high: between 5,000 and 9,000 points/m2 and over 8,000 
points/m2 respectively (Table 5). Nominal Point Spacing was checked and confirmed that the 
constant down track and cross track point spacing meet the LiDAR specifications (i.e. the 
spacing of all returns and the last return is 0.01m). No issues were found during this step. 

Table 5: Pulse and point density by Site. 

Variables Site 2 Site 4 Site 8 Site 9 

Pulses/m2 9,234 6,824.6 7,955 5,322.1 

Returns/m2 16,830 11,947 14,064 8,734.1 
 

Therefore, based on the procedures and quality assurance checks, we confirmed that the data 
classification conformed with the project specifications set by the scope of work. All issues 
found during the qualitative QC were fixed. In addition, the datasets conformed to project 
specifications for format and header values. 

The pre-processed 3D laser point cloud classified datasets were then subjected to a 
normalization process. The first step was to define a tile size. Since this database is 
characterized by a high dense point cloud, several tests were made to find the working 
specifications. Then the height of each point above the ground was computed. After that the 
normalized dataset were clipped by plot and separated by User Data. 

The RGB images collected were processed with Pix4D (version 4.1.24) software to create 
orthoimages.  
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The point clouds were coloured with the RGB imagine. At this stage there was an offset 
between the LiDAR data and the images, solving this issue remains a subject for future 
research.  

 

3. Results 
3.1 Height Analysis 
 
A 0.3 m resolution Canopy Height Model (CHM) raster for each flight height was also 
produced using a pit free algorithm developed by Khosravipour (2015). Due to the high dense 
point cloud duplicate points were found and removed, and the point cloud was thinned and 
rasterized by height-layers.  

The percentile p95 metric raster was derived to check the validity of CHM. 

The potential tree tops, peaks, were computed with the CanopyMaxima method using the free 
software FUSION (version 3.42 - USDA Forest Service), the duplicated peaks were cleaned as 
well as the overlapping (distance <30cm) ones.  
The images reported in Figures 8 and 9 are an example of the different CHM computed by User 
Data. 

 

Figure 8: PEAKS (points) detected at 30m, 60m and 90m with potential crown estimation 
(circles) - Scale at 1:400 - Site4. 

 

Figure 9: PEAKS (points) detected at 30m, 60m and 90m with potential crown estimation 
(circles) - Scale at 1:400 – Site9. 

The CHM at 30 m presented several canopy misclassifications in comparison with the other 
two altitudes.  As shown in Figures 8 and 9 the differences between the 3 altitudes can be 
appreciated.  
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An automatic procedure was developed by Interpine with R software (version 3.4.1 - CRAN-
R) to understand which flight altitude returns the closest peaks to the field measurement. The 
inputs were peaks and the field tree top, the process is based on Euclidean distance and 
difference of height. The results are reported in Table 6. On a total of 74 trees, the 30m CHM 
produced the best match between peaks and tree tops on 31 occasions, the 60m CHM produces 
the best match on 28 occasions and the 90m CHM produces the best match on 15 occasions. 

Table 6: Best match between peaks and tree tops at different AGL flights. 

AGL Count TreeID 
30 31 
60 28 
90 15 

Total 74 

The maximum height detected at different flight heights was compared with the field data. All 
flight altitudes produced acceptable results for height deviation (Figure 10): the field data = 
31.00 m, 30 m AGL (height above ground level) = 30.60 m, 60m AGL = 30.70 m and 90 m 
AGL = 30.65 m. The mean for the field data was 27.31 m, while the mean for the 30, 60 and 
90m is respectively 27.17 m, 27.15 m and 27.40 m. The R2 and RMSE show that the best result 
is achieved with the 60 m flight (Table 7). 

 

Figure 10: Distribution for maximum height. 

Table 7: Results of maximum height analysis at different AGL flights. 

AGL R2 RMSE 
30 0.5303 1.73 
60 0.5867 1.61 
90 0.5808 1.62 
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3.2 Stem Detection 

Because of the survey-grade instrumentation used to acquire the point cloud dataset, this aspect 
of the work it is assumed to be very precise, while the field measurements are affected by a 
double positioning error: a random error due to the bearing collecting and a GPS error (see 
Attachment 1). These factors were considered when the point cloud was compared with the 
field data. For these reasons a buffer of two meters was applied to the field tree tops and with 
the best peaks detected previously.  

The points cloud was sliced between 1 m and 2 m at different AGL and intersected with the 2 
m buffer generated from the Tree Top field position (TT) and the selected Peaks position (P). 
In Figure 11 there is an example of the stem detection at different AGL, the green one is at 30 
m, the red one is at 60m and the yellow one is at 90m.  The 90 m AGL was found to 
unacceptable at capturing DBH accurately so it was discarded.   

The results of the intersection between TT and P buffers with the point cloud, for the five plots 
were considered, are reported in Table 8. The best combination is Tree Top location buffer 
with the 60m AGL point cloud. Only 6 trees out of 74 weren’t detected (with a percentage 
accuracy of 91.9%). With this intersection the point cloud of the stems was identified with the 
field TreeID, using R software. After the intersection an automatic clean-up was done based 
on the distance of point from the xmean and ymean of the stem centre. An example is reported 
below in Figure 13. The threshold for the automatic clean-up was chosen as the quantile three; 
this number is still error affected but produces a first approximation of the real DBH (the error 
of overestimation is 3-15%) (Table 9). 

Figure 11: Example of stem detection at different AGL (green=30 m, red=60 m, yellow=90 
m). 
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Table 8: Stem detection: intersection between Point cloud and Tree Top field position (TT) 
and the selected Peaks position (P). 

  30m PointCloud 60m PointCloud 

Plot # 
Field 
count 

Buffer 
TT 

Buffer  
P 

Buffer 
TT 

Buffer  
P 

4 15 14 15 13 15 
5 15 8 6 11 10 
6 12 12 11 12 11 

15 15 8 15 15 15 
16 17 8 11 17 13 

Tot 74 50 58 68 64 
% accuracy 100% 67.6% 78.4% 91.9% 86.5% 

 

 

 

Figure 12: Plot 16 stem detection of Point Cloud at 60m (blue dots) and field Tree top 
(triangles) and the corresponding buffer of two meters. 
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Figure 13: Plot 4, tree number 11 and Plot 15, tree number 2. The top left graphic represents 
the stem before the automatic clean-up. The top right graphic represents the stem after the 

automatic clean-up without outliers. The bottom graphics represent the same in 2D. 

 

Table 9: Example of automatic diameter detection from the outliers cleaned stems. 

 Site 4 Plot 4 Site 8 Plot 15 
ID Tree 11 2 
Field DBH (mm) 358 435 
Automatic Diameter DBH (mm) 403 537 
RMSE 0.04 0.10 

 

 

4. Discussion and Conclusion 

The study was conducted to find the optimal parameters of the VUX-1LR to obtain an ultra-
dense point cloud suitable for a virtual reality environment.  Four sites of 200 m square were 
flown, a total of nine field plots (radius 13.82 m) were measured. Two sites, number 4 and 8, 
were flown at 30, 60 and 90 m AGL. This study is a comparison on the five plots inside those 
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two sites. The analysis investigates which point cloud from three different flight altitude 
produces the height and the diameter closest to the field measurements. 

The pulse and return density of this LiDAR dataset was very high: between 5,000 and 9,000 
pulses/m2 and over 8,000 pulses/m2.  Meanwhile the field measurements are affected by a 
double positioning error: a random error due to the bearing collecting and a GPS error (<50 
cm). This discrepancy is a weakness for making an acceptable comparison. Nevertheless, with 
the automatic procedure developed in this study the point cloud trees were successfully 
assigned to the Field Tree Id. 

For the height analysis the 0.3 m resolution CHM was compared at different altitudes. The 90 
m height and the 60 m height gave a positive result, while the 30 m height presented an 
inaccurate canopy representation. The analysis of potential tree tops is based on the peaks at 
different height, peaks computed from the CHM, showing that the best flight altitude is 60 m, 
with an R2 and an RMSE respectively of 0.5867 and 1.61. This analysis provides a comparison 
of the influence of the sensor altitude.  

This study computed the peaks using a 0.3m canopy height model resolution raster to identify 
the local maxima in the canopy. Since numerous Individual Tree Detection (ITD) algorithms 
now exist including a software application ‘PointcloudITD’, developed by Mitch Bryson 
(Australian Centre of Field Robotics) further work can be done in this area, knowing that the 
peak detection base on point could improve significantly the peak detection accuracies 
(Kaartinen et al., 2012). 

The stem detection, with a 91.9% accuracy, confirmed that the optimal flight altitude is 60m. 
The stem detection analysis is at the first stage, further analysis will be made in the near future 
comparing different algorithms, some of them based on a machine learning approach. At the 
same time this dataset will be tested in a virtual reality environment. 

 

Future Work 
These results present a preliminary analysis of the Carabost SF point cloud dataset. With a 
large group of researchers, the possibilities for analysing this dataset are enormous. The VUX-
1LR data is available for any researchers or organizations interested in analysing a high density 
point cloud. Feel free to contact Interpine Group or FWPA to request a copy. 

Under the next FWPA project, it is anticipated that researchers will analyse the data using the 
Cloud2Stem software developed by Joel Gordon at Scion. Additionally, the data will be 
interrogated by Mitch Bryson at the Australian Centre for Field Robotics using stem 
segmentation algorithms developed in the current FWPA project. Both approaches together 
will produce automatic tree detection, stem reconstruction and estimation of stem-level 
diameters, volumes, taper and log products. 

A new FWPA grant application has been successfully accepted giving the opportunity to the 
Human Interface Technology Laboratory (HIT Lab), University of Tasmania, to carry on with 
the project VR in Tree Cruising, under the supervision of Winyu Chinthammit and the 
assistance of the Interpine team.  
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Attachment 1 

FWPA Carabost SF study site - GNSS Plot And Ground Control 
Location Fixing - April 2018 

Overview 
Interpine established the location of 9 Plot Centers (CP) and 5 Ground Control Points (GCP) 
for each Site in the Carabost study area (Figure 1) using a survey grade decimeter GNSS 
(Trimble® Geo 7X). This was for the purposes of fixing CP and GCP pegs for subsequent 
LiDAR analysis. 

Figure 1 shows the area of interest with all Sites covered during the field inventory. 

Figure 2, 3, 4, 5 shows the actual LiDAR locations vs GNSS measured locations of GCP and 
CP for each Sites. 

 
Figure 1: Operational area where inventory was completed. 
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SITE 2 

 
Figure 2: GNSS CP and GCP location measured (yellow) and the actual LiDAR location 

(red) for Site2. 

SITE 4 

 
Figure 3: GNSS CP and GCP location measured (yellow) and the actual LiDAR location 

(red) for Site4. 
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SITE 8 

 
Figure 4: GNSS CP and GCP location measured (yellow) and the actual LiDAR location 

(red) for Site8. 

SITE 9 

 
Figure 5: GNSS CP and GCP location measured (yellow) and the actual LiDAR location 
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(red) for Site9. 
 

 

Figure 6: Example of measured GNSS location of CP (yellow dot) and GCP (blue square) 
with the actual LiDAR location shown with a black circle for Site4. 

 
Equipment and Methodology 

Extracted from: Herries et al, 2014 Interpine Guide to PlotSafe Data Collection - Capture of 
LiDAR Field Reference Inventory. Locating Plot Centre in the field, To establish a new plot 
follow these steps: 

1. Calibrate your compass on your Garmin GPS unit prior to each day’s field inventory. 
2. Using a Garmin 62s or 64s (or equivalent unit with GPS / GNSS with digital active 

compass and barometer) should be used to navigate to within 15-20 m of the plot centre. 
At this point use the magnetic compass bearing and horizontal distance provided by the 
GPS, to navigate to the plot centre. 

3. While crew member 1 remains where the GPS reading is taken, crew member 2 navigates 
to the approximate plot centre using the distance and compass bearing taken from the 
GPS. 

4. Crew member 1 uses the Vertex to confirm horizontal distance and re-checks the compass 
bearing to confirm the plot centre. 

5. Confirm that the location of the plot on the ground matches the map provided. 
 
Technical Note: 
An unbiased location is very important. The purpose of this procedure is to ensure the 
inaccuracies of navigation with the GPS do not influence the plot location in a bias manner. 
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For slopes > 5 degrees the Vertex function for slope distance must be used in conjunction 
with slope to provide a horizontal distance. 

Fixing the Plot Centre and Ground Control Points with High Grade GPS: 

Record the location using a high grade GPS such as the Trimble® Geo 7X with Floodlight 
Technology connected to an external high quality GNSS antenna. 

1. Position the high grade GPS unit exactly over the plot centre or the ground control point. 
2. Open TerraSync software, and select Data menu screen. 
3. Create New Datafile for each plot using the Dictionary LiDAR. 
4. Set the antenna height to 0m if placed on the ground. 
5. Record high grade GPS data for the full measurement time at the plot (as a guide a 

minimum of 500 data collection points should be collected if time is limited). 
 
Technical Note: 
This fix is one of the most important characteristics aside from crop tree measurements. 
This will be used to extract the matching aerial LiDAR survey data for this plot area. 

 
Post Processing 

Data was post-processed using Trimble Pathfinder Office V5. Trimble® Geo 7X GNSS units 
deployed were H-star enabled and three base stations closest to the survey site were selected 
for processing. 

Base Provider: Trimble Positioning Services – Holbrook, Tumbarumba and Walwa. 
Differential Correction Summary Ground Control Point: 
3.12% of positions were code corrected by post-processing against three base providers 
96.88% of positions were carrier corrected by post-processing against three base providers 
Differential Correction Summary Plot Centre: 
28.12% of positions were code corrected by post-processing against three base providers 
71.88% of positions were carrier corrected by post-processing against three base providers 
 

Estimated accuracies GCP during processing for corrected positions are as follows: 

Range 
Percentage 

(%) 
0-5cm 0.00 
5-15cm 34.38 
15-
30cm 

28.12 

30-
50cm 

28.12 

0.5-1m 9.38 
1-2m 0.00 
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Estimated accuracies CP during processing for corrected positions are as follows: 

Range 
Percentage 

(%) 
0-5cm 0.00 
5-15cm 50.00 
15-
30cm 

41.67 

30-
50cm 

8.33 

0.5-1m 0.00 
1-2m 0.00 

Precision Fixes: 

Figures 7 and 8 shows precision estimates at 68% and a 99% confidence interval (CI) of the 
dataset for GCP and CP respectively. 

Estimated mean precision during processing ground control point positions were: 
CI Mean (m) 

68% 0.29 
99% 0.72 
Estimated mean precision during processing plot centre positions were: 
CI Mean (m) 

68% 0.18 
99% 0.56 

 
Figure 7: GNSS Horizontal Precision GCP (m). 
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Figure 8: GNSS Horizontal Precision CP (m). 

Technical Note: 
A recreational style GPS/GNSS typically displays its precision to the user at a 50% 
confidence interval or less. Survey grade GPS/GNSS usually represent precision at a 68% 
CI. For the purposes of this work Interpine also display a precision interval of 99%. 

Variation to GNSS Locations: 

Figures 9 and 10 displays the distribution of LiDAR plots locations vs GNSS measured 
locations.  

 
Figure 9: Measured GNSS Ground Control Point location vs actual LiDAR location. 

The following GCPs are the outliers in Figure 7, being greater than 2 m from their intended 
location: 

GCP 16 
GCP 39 
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The following is the RMSE mean and distance for the plots from their GNSS locations vs 
actual LiDAR locations. 

Mean Distance: 0.72 
RMSE: 1.09 
Max Distance: 3.01 

 
Figure 10: Measured GNSS Centre Plots location vs actual LiDAR location. 

The following plots are the outliers in Figure 8, being greater than 2 m from their GNSS 
location: 

PLOT 1 

The following is the RMSE mean and distance for the plots from their GNSS locations vs actual 
LiDAR locations. 

Mean Distance: 0.73 
RMSE: 0.9 
Max Distance: 2.03 

 
Outputs 

Post processed plot and ground control location shapefiles can be provided by request to 
Interpine or FWPA. The attribute table of the shapefiles includes details on the quality of the 
location fix and collection parameters. The file contains the Inventory Population Name and 
Plot/Ground Control No. for linking to original plot/ground control locations. 

  



98 
 

Attachment 2 

Carabost SF Study Site – LIDAR VUX-1LR QA-QC Review  
Interpine undertook the review of the VUX-1LR LiDAR data captured over the Carabost SF 
study site, near Tumut, N SW, on 22nd February 2018.  This attached document discusses some 
of the key points of the LiDAR quality assurance and quality control. 

 
1. Introduction 

1.1 Project Overview 

This report includes attributes of the quality review across the extended Area of Interest 
(AOI) (Figire 11) for representation purposes only. 

 
Figure 11: Operational area where LiDAR data was collected. 

1.2 Purpose of this Report 

Interpine conducted a number of quality assurance workflows across the VUX-1LR datasets 
acquired as part of the FWPA Carabost SF data acquisition campaign in February 2018. This 
report shows the quality of the VUX-1LR LiDAR dataset and the derived products. It aims to 
provide a high level overview of the dataset quality and its contents. A formal list of all the 
complete data checks is provided at the conclusion of this Attachment. 

1.3 LiDAR Metadata 

SUPPLIER: Geomatics Technologies 
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LiDAR SENSOR: Riegl VUX-1LR 

LiDAR FORMAT: 1.4 LAZ Point Format 6 

DATUM: D_GDA_1994 

MAP PROJECTION: GDA94/MGA zone 55 

TILE SIZE: 30m x 30m 

1.4 Software Used in Analysis and Processing 

The raw LiDAR point cloud was processed for this delivery using: 

• LASTools (14 September 2017) 

• Quick Terrain Modeler (8.0.7) 

• ArcMap (10.5.1) 

•  

2. Objective 
Ensure LiDAR data products meet project standards. 

 

3.Terminology 
ACCURACY: The statistical comparison between known (surveyed) points and measured 
laser points. Typically measured as the standard deviation (𝑅2) and root mean square error 
(RMSE). 

BEAM FOOTPRINT: The size (radius) of the laser pulse once it starts interacting with 
objects. 
DATA VOIDS: Considered as areas greater than four times the post-spacing of data (for the 
purposes of QA/QC this excludes dropouts caused by normal water bodies, or low near infra-
red (NIR) reflectivity such as asphalt or composition roofing). 
EFFECTIVE FIELD OF VIEW (FOV): When flight lines are merged, excessive scan angles 
are often trimmed / reclassified as overage or withheld points to suit the required scan angle 
specification. This is especially relevant for scanners with a fixed FOV. This results in an 
effective scan swath width. 
FIELD OF VIEW (FOV): The total opening view of the sensor or “sensor scan window” 
i.e. scan angle of 80° = 160° FOV. Rotating polygon mirror scanners will often have a fixed 
FOV, oscillating mirror scanners can be varied. 
FLIGHT LINE ALIGNMENT: The flight of horizontal and vertical flight line swath overlap 
merging. 
NADIR: A single point or locus of points on the surface of the Earth directly below a sensor 
as it progresses along its line of flight. 
NOMINAL POST SPACING: A measure of LiDAR resolution, measured as the average 
distance between laser footprints. 
POINT DENSITY: A measure of LiDAR resolution, measured as total returns per square 
meter. This will include all returns from a single pulse. 
PULSE DENSITY: A measure of LiDAR resolution, measured as total pulses reaching the 
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surface per square meter. For post capture analysis this is often considered as the last return 
point density. 
OVERAGE (OVERLAP): A survey AOI which gets covered by more than a single swath 
flight line. This is also known as overlap during flight specification. 
SCAN ANGLE: The angle from nadir to the edge of the scan, measured in degrees.  
SCAN WIDTH: Width of the FOV as projected on the ground along the flight line. Can also 
be considered as Effective Swath Width when considering effective FOV. 
SURVEY AREA OF INTEREST (AOI): 
Total survey area covered that is specified by contract as the focal area of interest. 

 
4. Pre Processing Supplied Data Products 
Prior to review Interpine undertook the following activities on the RAW dataset supplied: 

• Set up project level file structure 

• Validate that files are readable and uncorrupted 

• Check all data geo-referencing: GDA_1994_MGA_Zone_55 

• Spatial indexing built into LAZ: index files for fast search and use, this is incorporated 
into the LAZ file. 

 
5. File Summary 
All parameters have been checked and are within acceptable limits (Tables 1 and 2). 

Table 1: File summaries for Sites 2 and 4. 

 
Site 2 Site 4 

FEATURE MinValue MaxValu
e MinValue MaxValu

e 
X 313,899 1,887,646 547,503 1,347,689 
Y 399,539 1,892,019 690,295 1,490,482 
Z -748,513 175,926 -772,479 179,994 
Intensity 0 65,535 0 65,535 
return number 1 7 1 7 
number of returns 1 7 1 7 
edge of flight line 0 1 0 1 
scan direction flag 0 0 0 0 
Classification 1 7 1 7 
scan angle rank -89 84 -88 86 
user data 3 6 3 9 
point source ID 201 254 401 476 
gps time 361,396 367,639 341,971 350,278 
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Table 2: File summaries for sites 8 and 9. 
 Site 8 Site 9 

FEATURE MinValue MaxValu
e MinValue MaxValu

e 
X 330,123 1,130,313 313,636 1,363,403 
Y -350,486 449,705 -334,743 739,253 
Z -746,780 127,966 -276,293 171,787 
Intensity 0 65,535 0 65,535 
return number 1 7 1 7 
number of returns 1 7 1 7 
edge of flight line 0 1 0 1 
scan direction flag 0 0 0 0 
Classification 1 7 1 7 
scan angle rank -85 85 -86 83 
user data 3 9 6 6 
point source ID 801 879 901 931 
gps time 350,477 361,194 367,922 369,545 
 
 

6. Coverage and Overlap 
6.1 Coverage Review 

The number of tiles is 239 (30m x 30m). All tiles supplied are uncorrupted and readable 
(Figures 12 – 15). 

SITE 2 

 
Figure 12: LiDAR tiles overview. 
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SITE 4 

 
Figure 13: LiDAR tiles overview. 

 

SITE 8 

 
Figure 14: LiDAR tiles overview. 
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SITE 9 

 
Figure 15: LiDAR tiles overview. 

6.2 Flight Lines Review 

The LiDAR survey consisted of several flights; the flight altitudes have been selected as close 
to the canopy as possible or a maximum of 30 m, then at 60 m and 90 m. The flight speed was 
set around 5m/s or 10 knots. The trajectory has been set 15m apart with 14 flight lines per flight 
altitude. Flight lines were done from east to west and from north to south, in two sites the same 
pattern was done also at a 45 angle so from northeast to southwest and from northwest to 
southeast (Figures 16 – 27). 

SITE 2 

 
Figure 16: All trajectories coloured by height Site 2. 
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Figure 17: Trajectories 30m height Site 2. 

 
Figure 18: Trajectories 60m height Site 2. 
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SITE 4 

 
Figure 19: All trajectories coloured by height Site 4. 

 
Figure 20: Trajectories 30m height Site 4. 
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Figure 21: Trajectories 60m height Site 4. 

 
Figure 22: Trajectories 90m height Site 4. 
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SITE 8 

 
Figure 23: All trajectories coloured by height Site 8. 

 
Figure 24: Trajectories 30m height Site 8. 
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Figure 25: Trajectories 60m height Site 8. 

 
Figure 26: Trajectories 90m height Site 8. 
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SITE 9 

 
Figure 27: Trajectories 60m height Site 9. 

 

6.3 Flight Coverage Review 

Survey area covered by at least 5 flights (Figures 28 – 31). 

 
Figure 28: Flight Coverage Site 2. 
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Figure 29: Flight Coverage Site 4. 

 

 
Figure 30: Flight Coverage Site 8. 
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Figure 31: Flight Coverage Site 9. 

 
 

6.4 Flight Alignment Review 

No significant flight line misalignment (Figures 32 – 35) 

 
Figure 32: Flight alignment Site 2. 
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Figure33: Flight alignment Site 4. 

 
Figure 34: Flight alignment Site 8. 
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Figure 35: Flight alignment Site 9. 
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7. Pulse and Point Density 

Nominal Point Spacing was checked, there is a constant down track and cross track point 
spacing that meets the LiDAR specifications (Tables 3 -6 , Figures 36 – 43) 

SITE 2 

Table 3: Pulse and point density.  

Variables Value 
Pulses/m2 9,233.99 

Returns/m2 16,829.95 
Spacing: all returns(m) 0.01 
Spacing: last returns(m) 0.01 
 

 
Figure 36: Accumulated pulses. 

 
Figure 37: Counted pulses. 
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0.1% of area covered by < 2500 pulses/m2 

92.1% of area covered by > 4000 pulses/m2 
 

SITE 4 

Table 4: Pulse and point density.  

Variables Value 
Pulses/m2 6,824.55 

Returns/m2 11,946.81 
Spacing: all returns(m) 0.01 
Spacing: last returns(m) 0.01 

 
Figure 38: Accumulated pulses. 

 
Figure 39: Counted pulses. 

3.6% of area covered by < 2500 pulses/m2 

49% of area covered by > 4000 pulses/m2 
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SITE 8 

Table 5: Pulse and point density. 

Variables Value 
Pulses/m2 7,954.95 

Returns/m2 14,063.74 
Spacing: all returns(m) 0.01 
Spacing: last returns(m) 0.01 
 

 
Figure 40: Accumulated pulses. 

 
Figure 41: Counted pulses. 

3.1% of area covered by < 2500 pulses/m2 

86.2% of area covered by > 4000 pulses/m2 
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SITE 9 

Table 6: Pulse and point density. 

Variables Value 
Pulses/m2 5,322.1 

Returns/m2 8,734.05 
Spacing: all returns(m) 0.01 
Spacing: last returns(m) 0.01 
 

 
Figure 42: Accumulated pulses. 

 
Figure 43: Counted pulses. 

11.3% of area covered by < 2500 pulses/m2 

57.2% of area covered by > 4000 pulses/m2 
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8. Return Intensity 

All points have valid intensity values Range 0 – 65535 (Figures 44 – 47). 

 

Figure44: Intensity example Site 2. 

 

Figure 45: Intensity example Site 4. 
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Figure 46: Intensity example Site 8. 

 
Figure 47: Intensity example Site9. 
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9. Point Classification 
 
SITE 2 

Table 7: LiDAR classification. 

Class Description # returns 
1 unclassified 601,374,882 
2 ground 87,260,622 
7 noise 988,481 

 

Figure 48: Classification example. 

Example of the point classification provided in Figure 48  
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SITE 4 

Table 8: LiDAR classification. 

 Class Description # returns 
 1 unclassified 412,027,232 
 2 ground 73,962,506 
 7 noise 1,487,745 

 

Figure 49: Classification example. 

Example of the point classification provided in Figure 49  
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SITE 8 

Table 9: LiDAR classification. 

 Class Description # returns 
 1 unclassified 477,318,962 
 2 ground 94,912,945 
 7 noise 1,624,835 

 

Figure 50: Classification example. 

Example of the point classification provided in Figure 50.  
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SITE 9 

Table 10: LiDAR classification. 

Class Description # returns 
1 unclassified 299,983,331 
2 ground 62,625,293 
7 noise 378,371 

 

Figure 51: Classification example. 

Example of the point classification provided in Figure 51. 
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9.1 Class 1 

Class 1, unclassified data, corresponds mainly to the vegetation class in this project. This 
class is acceptable as per requirements (Figures 52 – 55). 

 

Figure 52: Site 8, 3m width, Classification Profile. 

 

Figure 53: Site 4, 3m width, Classification Profile. 
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Figure 54: Site 8, 3m width, Classification Profile. 

 

 

Figure 55: Site 9, 3m width, Classification Profile. 
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9.2 Class 2 

All the tiles contain Class 2 (ground), acceptable as per requirements (Figures 56 – 59) 

 
Figure 56: Ground coverage Site 2 

 
Figure 57: Ground coverage Site 4. 
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Figure 58: Ground coverage Site 8. 

 

 
Figure 59: Ground coverage Site 9. 
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9.3 Class 7 

Areas of concentrated noise were investigated for outliers or misclassification Figures 60 – 
63). 

 

Figure 60: Noise Site 2. 

 

Figure 61: Noise Site 4. 
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Figure 62: Noise Site 8. 

 

Figure 63: Noise Site 9. 
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10. Noise and Data Errors 

All noise was correctly classified as noise. All errors found in the dataset were corrected. 

 

Figure 64: Digital Terrain Model (DTM) Error. 

 
11. Spatial Products 

Interpine have derived a number of additional spatial products from the raw LiDAR data 
provided by the supplier (Figures 65 – 68). 

 DTM  

1m digital terrain model derived through triangulated mesh. 
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Figure 65: DTM Site 2. 

 

Figure 66: DTM Site 4. 

 
Figure 67: DTM Site 8. 
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Figure 68: DTM Site 9. 

 
 HILLSHADE 

This raster is derived from the DTM for 2D representation (Figures 69 – 72). 

 

Figure 69: Hillshade Site 2. 



133 
 

 

Figure 70: Hillshade Site 4. 

 
Figure 71: Hillshade Site 8. 
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Figure 72: Hillshade Site 9. 

 
 CONTOURS 

5m contours derived from the DTM were computed (Figures 73 – 76). 

 

Figure 73: Contours Site 2. 
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Figure 74: Contours Site 4. 

 

Figure 75: Contours Site 8. 
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Figure 76: Contours Site 9. 

 
 
 Canopy Height Model (CHM) 

The Canopy Height Model is a type of DSM (digital surface model) specific to the 
vegetation canopy. This is derived using a pit-free algorithm at 0.3m resolution 
(Figures 77 – 80). 

 

Figure 77: CHM at 60m with 0.3m resolution Site 2. 
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Figure 78: CHM at 60m with 0.3m resolution Site 4. 

 

 

Figure 79: CHM at 60m with 0.3m resolution Site 8. 
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Figure 80: CHM at 60m with 0.3m resolution Site 9. 

 
 
 PEAKS 

Potential tree tops and crown detection (Figures 81 - . 

SITE 2 
 

 

Figure 81 – 84: Peaks detected at 30m (left) and 60m (right) with potential crown estimation 
- Scale at 1:400. 
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SITE 4 

 

Figure 82: Peaks detected at 30m (left), 60m (central) and 90m (right) with potential crown 
estimation - Scale at 1:400. 
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SITE 8 

 

Figure 83: Peaks detected at 30m (left), 60m (central) and 90m (right) with potential crown 
estimation - Scale at 1:400. 

 

SITE 9 
 

 
Figure 84: Peaks detected at 60m with potential crown estimation - Scale at 1:400. 
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13. Summary and Next Steps 
 

 

Table 11: Check list 

QC CHECKED CHECKE
D BY 

CHECKED 
ON 

PAS
S/F
AIL 

COMMENT 

Lidar Sensor Scan Set SG Feb/March 
2018 

Pass VUX-1LR 

Footprint SG Feb/March 
2018 

Pass  

Laz files SG Feb/March 
2018 

Fail Conversion from LAS to LAZ 

Correct Header Information SG Feb/March 
2018 

Pass  

Contains Gps Times SG Feb/March 
2018 

Pass  

Contains Intensity Values SG Feb/March 
2018 

Pass  

Contains Easting SG Feb/March 
2018 

Pass  

Contains Northing SG Feb/March 
2018 

Pass  

Contains Elevation SG Feb/March 
2018 

Pass  

Tile To 30 m X 30 m Tile 
Grid 

SG Feb/March 
2018 

Pass Tiles were generated  

Classified with Class 1 – 
Unclassified 

SG Feb/March 
2018 

Pass  

Classified with Class 2 – 
Bare-Earth Ground 

SG Feb/March 
2018 

Pass  

Classified with Class 7 – 
Noise 

SG Feb/March 
2018 

Pass  

Classified With User Class SG Feb/March 
2018 

Fail User data was defined as 3, 6 
and 9 

Check For Any 
Misclassification 

SG Feb/March 
2018 

Fail Full dataset was reclassified 

Check for False Low and 
High Points That Are 
Wrongly Classified to 
Ground Class. 

SG Feb/March 
2018 

Pass  

Check for Abnormal Spikes 
in Data. 

SG Feb/March 
2018 

Warni
ng 

Reviewed rasters: DTM and P95 

All Files Contains First 
Return Lidar Data 

SG Feb/March 
2018 

Pass  

All Files Contains Last 
Return Lidar Data 

SG Feb/March 
2018 

Pass  

Files Contain Multiple 
Returns (Minimum First, 
Last, And One Intermediate) 

SG Feb/March 
2018 

Pass  

Files Contain Single Returns SG Feb/March 
2018 

Pass  

Number Of Returns SG Feb/March 
2018 

Pass  

At Least 90% Of the Tiles 
Contain At Least 3 Points 

SG Feb/March 
2018 

Pass  

Shapefile of Area of Interest SG Feb/March Fail Shapefile created 
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2018 
Shapefile of Planned Flight 
Lines 

SG Feb/March 
2018 

Fail Shapefile created 

Index Project Boundary 
Delivered as Shapefile 

SG Feb/March 
2018 

Fail Shapefile created 

Project Area Coverage – 
Buffered by A Minimum of 
X Meters 

SG Feb/March 
2018 

Pass  

Tile Named According with 
Shapefile 

SG Feb/March 
2018 

Pass Tiles were naming according 
with the project name 

Non-Overlapped Tiling 
Scheme 

SG Feb/March 
2018 

Pass  

Projection Information, 
Datum and Units 

SG Feb/March 
2018 

Pass  

Control Points - Gps 
Checkpoints 

SG Feb/March 
2018 

Pass GPS report generated 

Vertical Accuracy / Vertical 
Offset 

SG Feb/March 
2018 

Pass  

Horizontal Accuracy SG Feb/March 
2018 

Pass  

Scan Angle Rank SG Feb/March 
2018 

Pass  

Correct Number of Files 
Delivered and All Files 
Adhere to Project Format 
Specifications 

SG Feb/March 
2018 

Pass Data supply check 

Las Statistics Are Run to 
Check for Inconsistencies 

SG Feb/March 
2018 

Pass Created P95 raster and compared 
with plot height and plot metrics 

Density Raster SG Feb/March 
2018 

Pass dns rasted created 

Excessive Noise SG Feb/March 
2018 

Fail Data was corrected 

Elevation Steps SG Feb/March 
2018 

Pass  

Other Anomalies Present in 
The Point Cloud 

SG Feb/March 
2018 

Pass  

Deliverable Tiles Checked 
for Significant Gaps Not 
Covered By Aerial 
Acquisition Checks And/Or 
Caused By Data Post-
Processing/Filtering 

SG Feb/March 
2018 

Pass  

Duplicated Points SG Feb/March 
2018 

Pass Duplicated points were removed  

 
• Some misclassification in class 7 (noise), but within the tolerance allowed for contract, 

this was fixed. 
• Interpine recommends acceptance of the supplied data. 
• The VUX-1LR LiDAR dataset meets specifications. 
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Although all reasonable care has been taken to ensure that the information contained in this 
document is accurate, neither Interpine nor its respective officers, advisers or agents makes 
any representation or warranty, express or implied as to the accuracy, completeness, currency 
or reliability of such information or any other information provided whether in writing or 
orally to any recipient or its officers, advisers or agents. 
Interpine and its respective officers, advisers, or agents do not accept: any responsibility 
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document or for any lack of accuracy, completeness, currency or reliability of any information 
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its accuracy, completeness, currency or reliability.  

 

  

mailto:susana.gonzalez@interpine.co.nz


145 
 

3.3. A Comparison of Helicopter-based VUX-1LR LiDAR with 
Below-canopy UAV Photogrammetry and Manual Measurements 

 
Sean Krisanski1,2**, Mohammad Sadegh Taskhiri1, Paul Turner1 

1 University of Tasmania, eLogistics Research Group 
2 Australian Research Council – Centre for Forest Value 

** Presenting Author: sean.krisanski@utas.edu.au 
 

Aim 

This study aims to determine which sensing approach captured the greatest detail in the sub-
canopy, and to provide an initial recommendation for the flying height of the VUX-1LR sensor 
to capture this information. 

 

Introduction 

UAV Photogrammetry is typically performed from above the forest canopy, however it suffers 
from poor penetration when compared to LIDAR systems such as the VUX-1LR. One way to 
capture sub-canopy information using photogrammetry, is to avoid the need to penetrate the 
canopy entirely. Close-range photogrammetry (CRP), a technique typically performed by 
walking through a plot taking still photos, has been demonstrated as an effective method of 
capturing sub-canopy information by Mikita et al. (2016). In their study, they achieved a root 
mean square error (RMSE) of less than 1 cm for their diameter measurements. In this study, 
CRP was performed using a UAV, allowing flight over challenging terrain (such as areas with 
a dense blackberry understorey) as well as the ability to capture images from a variety of 
heights within the forest.  

 

Method 

The sub-canopy data captured by the VUX-1LR LiDAR was compared in performance to the 
first trial of a below-canopy UAV photogrammetry system. The baseline used for comparison 
was the manual measurement of the diameter at breast height for each tree in the plot. These 
were collected with a measuring tape at 1.3 m above the highest side of the tree base. Note that 
if the tree had significant branching or bulges at 1.3 m, the tape was moved up or down to the 
nearest representative location. The plots used for this study were selected because there was 
data from each sensing method for them. The below-canopy UAV system was also tested in 
plots of higher tree density (where airborne laser scanning was not applied) as this is the 
intended use case for such a system. 

The purpose of using this approach is to develop an efficient alternative to taking manual 
measurements. This system is most practical in areas where canopy density prevents above 
canopy techniques from providing useful information from the understorey. With this system, 
a 13m radius plot can be mapped in a little over 20 minutes by flying the plot manually and 
taking a single, identifiable distance measurement and bearing for scaling and orientation 

mailto:sean.krisanski@utas.edu.au
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purposes. The improvements in data acquisition time over manual measurements are more 
apparent in denser forest than the plots used for this analysis. The plots used for this study had 
a density of approximately 283 stems/hectare. Another plot which is not considered in this 
study, had a density closer to 717 stems/hectare with 38 trees in the plot and was still flown in 
approximately 20 minutes. An example point cloud generated using this approach can be seen 
in Figure 1. 

 

 

Figure 1: Below-canopy UAV-based photogrammetric point cloud of Site 8, Plot 15 shown 
in CloudCompare (2018) 

The below-canopy UAV point cloud was created using the photogrammetry software MicMac 
(Rupnik et al., 2017). The scale of this point cloud was initially arbitrary and so was scaled 
using a single known measurement between the centre marker and a given tree for each point 
cloud.  

The various point clouds were trimmed to a 15-
metre radius from the plot centres and were 
aligned using CloudCompare (2018).These point 
clouds were exported to .LAS format, then 
imported into DendroCloud (Koreň, 2018). 

A digital terrain model (DTM) was generated in 
DendroCloud using a 2D grid with a spacing of 
1.5m. This spacing was chosen to deal with gaps 
in the ground point data in some samples. The 
minimum point option was used to generate this 
DTM.  

The DTM was visually inspected to ensure that 
the model was appropriate for the point cloud 

Figure 2: Example VUX-1LR point cloud 
with 1.5m DTM grid at the base. DTM 
created in DendroCloud. 
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and that the slices of the trees would be generated appropriately in the next step. An example 
DTM can be seen in Figure 2. Using the point cloud and the DTM as inputs, the surface cross-
section tool is used to extract a slice of the trees at breast height (1.3 m). With the below-canopy 
UAV data, this slice could be thin (5-10 cm) due to the high point density, however due to the 
sparser points from the VUX-1LR LIDAR, the slice was taken between 1.15 m and 1.45m so 
that there were sufficient points for circle fitting. 

As this slice contained points from branches, small bushes and noise, cleaning of the point 
cloud was necessary. Many filtering approaches were tested to perform this automatically on 
the analysed data sets, however this is a highly complex problem with imperfect data, and there 
is no explicit definition of how a stem should look in a point cloud. Humans can easily identify 
a stem from branches and noise, so this was the approach taken for this study. This problem 
may be a suitable application for the use of artificial neural networks, however this was beyond 
the scope of this project. 

The slices were exported to a .CSV file and imported into CloudCompare for manual cleaning. 
Where the stem circles were clear, the surrounding points from branches and other objects were 
removed. Any clusters without a clear stem circle were only minimally cleaned using the 
unsliced point cloud for clarification. This was to avoid misinterpretation of the stem shape 
where the points were sparse. Figure 3 shows a VUX-1LR slice from Site 4, Plot 4, with the 
original (LEFT) and the cleaned slice (RIGHT). 

 

 

Figure 3: LEFT: Raw slice 1.15m to 1.45m above DTM. RIGHT: Cleaned and grouped slice 
ready for circle fitting. 

The cleaned slice was exported to a .LAS file and imported back into DendroCloud. The group-
by-distance function was used to group the clusters of points belonging each tree. The 
maximum distance between points belonging to the same group was set to 1m, and each cluster 
was required to have greater than 10 points. 
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The clusters were inspected in the cross-section analyst tool to ensure that the circle fitting 
appeared appropriate for each cluster. Figure 4 shows an example circle fitting from this tool 
of the same tree from two different data sets. Once inspected, the automated circle fitting tool 
was used with the Optimal Circle function (Koreň et al., 2017), with the Monte Carlo option 
selected, a count limit of 10,000, and a root mean square limit of 0.001. The positions and 
diameters of the clusters were then saved to a .CSV file for analysis. 

 

Figure 46: Examples of fitted stem circles created in DendroCloud. LEFT: VUX-1LR, 
RIGHT: Below Canopy UAV Photogrammetry. 

 

Results 

The below results are from combining the measurements from Site 4, Plot 4 and Site 8, Plot 
15. Each plot contained 15 trees within a 13m radius of the plot centre, giving a plot density of 
approximately 280 trees per hectare. Figure 5 shows the difference between the DBH measured 
from the point clouds, and the manually measured DBH on an individual tree basis (rather than 
a plot level comparison). The statistical analysis was performed using “R: A Language and 
Environment for Statistical Computing” (R Core Team, 2018). 
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 VUX1LR 30m VUX1LR 60m VUX1LR 90m BCUAV 
Min. (m) -0.07300 -0.06300 -0.15900 -0.1080 

1st Quartile (m) 0.01300 0.00350 -0.05750 -0.0575 
Median (m) 0.02550 0.04500 -0.00300 -0.0210 
Mean (m) 0.02620 0.03467 0.00817 -0.0305 

3rd Quartile (m) 0.05025 0.06275 0.05825 -0.0070 
Max. (m) 0.12700 0.14500 0.18400 0.0570 

RMSE (m) 0.05600 0.05700 0.08200 0.0500 
 

Figure 5: A boxplot comparing the differences between the DBH measurements made with 
sensed methods, with the DBH measurements taken manually using a measuring tape in the 

field. 

As seen in Figure 6, linear model analysis was performed on the DBH data to explore how 
accurate each sensing method was relative to the manually measured DBH. 

The below-canopy UAV data most closely matched the manually measured tree diameters with 
an R2 value of 0.698 and a p-value of 9.1e-09 showing a very high confidence in the fitted 
model. The VUX-1LR data captured from 60m altitude gave the second closest DBH estimates 
with an R2 of 0.563 and a p-value of    1.8e-06. The 30m flying height was close behind with 
an R2 of 0.447 and a p-value of 5.3e-05. The 90m flying height was found to be poor at 
capturing the DBH accurately as no statistically significant correlation (p-value = 0.5) was 
observed with the manually measured DBH for this data set and method. 
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Figure 6: Linear Model Analysis comparing the DBH estimates from the sensing systems 
with the manually measured DBH. 

 

Limitations of This Study 

It is important to acknowledge that with all the presented data sets, accuracy may be improved 
with a DBH measurement technique that accounts for a larger section of the stem. The 
technique used in this report only makes use of the region within ±15cm of 1.3m above the 
DTM. 

This comparison assumes that the manually measured DBH were perfect measurements and 
were taken at 1.3m. Each measurement may have been shifted vertically due to branching or 
bulges in the tree. The measured diameter will have also been affected by the shape of the stem 
not being a perfect circle. 
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The manual cleaning of the point clouds is subject to misinterpretation of the points and may 
experience bias depending on the person cleaning the point clouds. To combat this, a single 
person performed all the cleaning and where there was doubt about a point, minimal or no 
cleaning was performed. 

 

Conclusion  

The helicopter-based VUX-1LR LIDAR and a sub-canopy UAV photogrammetry system were 
compared based on their accuracy for providing diameters at breast height in an openly-spaced 
radiata pine forest. A consistent method was used to extract the measurements from the point 
clouds and these were compared with the manually measured diameters at breast height. Based 
on a sample size of 30 trees from 2 plots, the 60m flying height gave the most consistent data 
from the VUX-1LR LIDAR. When considering the height measurement performance in the 
previous section, a flying height of 60m appears to be an appropriate choice for capturing useful 
data from both the canopy and the sub-canopy in openly-spaced forests. When high tree density 
prevents airborne laser scanning from effectively capturing sub-canopy data and/or greater 
accuracy is required, below-canopy UAV photogrammetry presents an interesting solution. 
With further development, sub-canopy UAV inventories are expected to become largely 
automated and approach the accuracy of manual tree measurements. 
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Introduction 
 
Individual Tree Detection (ITD) involves the detection, segmentation, counting and 
quantification of structural parameters (such as height, shape) of trees from remotely sensed 
data over potentially large areas of a forest. Traditionally, ITD methods have used imagery 
sources such as from aerial photography or satellite remote sensing. Commonly used 
approaches include valley-finding algorithms (Gougeon, 1995; Leckie et al., 2005) or local-
maxima finding algorithms (Dralle & Rudemo, 1997; Wulder et al., 2000) that search for local 
peaks in the image intensity data that correspond to the shading of well-delineated tree crowns. 
(Pollock, 1996) presented an approach to tree detection based on template matching of using a 
crown shape to create a shaded appearance model, which is used to detect tree crowns. 
(Olofsson et al., 2006) use a similar template based approach and use the unshaded sections of 
canopy to additionally classify tree species based on spectral bands. 
 
With the increased use of LiDAR in forestry applications, more recent approaches to ITD based 
on pointcloud data have appeared. Algorithms that have been adapted to locate trees in 
rasterised canopy height models generated from airborne LiDAR include pouring algorithms 
(Weinacker et al., 2004), adapted watershed (Ziegler  et al., 2000) and region-growing 
approaches (Hyyppa et al., 2001). These algorithms detect and segment trees based on the 
shape and structure of the canopy surface height, while ignoring sub-canopy LiDAR returns.  
More recently, with the advent of high-resolution airborne scanners, techniques have emerged 
that exploit structural data below the canopy; (Reitberger et. al., 2009) develop a tree 
segmentation approach based on the normalised cut algorithms that segments 3D pointclouds 
directly in 3D while (Ayrey et. al., 2017) develop an approach to segmenting trees that find 
local density maxima in multiple vertical slices of sub-canopy LiDAR points. Approaches have 
also been developed that detect trees based on stem strikes; (Lamprecht et al., 2015) describe 
a ITD method based on the detection of trunk points in LiDAR below the canopy. 
 
In contrast to ITD methods using airborne LiDAR, tree/trunk detection and segmentation 
algorithm using Terrestrial Laser Scanning (TLS) are mature: for example, (Raumonen et. al., 
2013; Wang et. al., 2017) and (Bienert et. al., 2007) all present examples of tree trunk 
segmentation using TLS datasets with greater than 5000 points per m2 and algorithms that can 
exploit these densities to segment/measure tree trunks. These existing TLS algorithms are 
designed to work with near perfect data and do not scale to datasets beyond the size of a small 
plot (tens of meters and tens of trees), due to the computational complexity of the algorithms 
involved. Recently acquired UAV-borne LiDAR pointcloud datasets such as (Wallace et al., 
2014) and from the Reigl VUX-1 used in this project exhibit point densities of approximately 
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200-700 points per m2 that lie in between traditional ALS and TLS datasets. The aim of this 
work was therefore to develop new approaches adapted to the medium density pointclouds 
gathered using UAV-borne sensors such as the VUX-1, while exploring the potential of 
existing approaches designed for either low resolution airborne pointclouds or high-resolution 
TLS pointclouds. 
 
This chapter discusses work performed towards individual tree detection, 3D reconstruction, 
segmentation and measuring stems using dense airborne LiDAR pointcloud data. Two separate 
sets of algorithms/workflows have been developed in parallel: a “top-down” approach to tree 
detection and stem-fitting and a “bottom-up” approach to tree detection and stem profile 
measurements. The aim of the “top-down” approach is to extend existing algorithms and 
methods used for individual tree detection using conventional, lower resolution (5-30 points/m2) 
pointclouds to work with dense pointclouds and detect and reconstruct stems below the canopy. 
The “bottom-up” approach builds upon existing algorithms and a SCION-developed software 
package “Cloud2Stem” used for measuring trees in Terrestrial Laser Scanning (TLS) datasets, 
extending the approach to deal with lower-resolution scans and scans presenting occlusions. 
Both approaches use a combination of different stem-fitting strategies (circles and vertical 
linear sections) that are robust to noise to detect trees and model the shape (sweep and lean) 
and diameter profiles along the stem. Results of the two approaches are shown using TLS 
LiDAR and VUX-1 LiDAR pointclouds over relatively low-density stands (~400 stems per 
hectare), for which stem maps and tree-level measurements of DBH, sweep and taper profile 
are shown and compared to measurements made in the field.  
 
A workflow that includes the two different algorithms is described that would allow for 
efficient processing of dense pointclouds for providing tree stem maps and basic inventory 
attributes over both plot-scale and larger areas as part of future work. The overall idea of the 
workflow is to initially perform tree detection based canopy-based peak models and the 
RANSAC-based model fitting algorithms, which are potentially fast and scalable to larger 
LiDAR datasets. These detections could then provide refined candidate search regions in the 
pointcloud data that could be passed to Cloud2Stem for a more accurate and computationally-
intense search for tree stems from which basic stem attributes could be extracted.  
 

Methodology 
 

Tree Detection and Segmentation Algorithms using a “Top-down” 
Approach 
Algorithms were developed that use a combination of crown peak detection and fitting to 
circular stem sections and vertical curve segments to detect trees and fit tree stem models to 
LiDAR pointclouds. The algorithms and processes were developed keeping in mind the 
resolutions of points observed in typical pointclouds from the VUX-1 datasets available and 
the types of occlusion structures (partial circumferential coverage, missing sections of stem 
etc.) observed in this data (i.e. see Figure 1). Rather than use point segmentation strategies 
sometimes used in TLS-based tree detection algorithms (for example (Raumonen et. al., 2013)), 
the approach used a robust modelling-fitting approach (based on RANdom SAmple Concensus 
(RANSAC) (Fischler & Bolles, 1981)) which is designed to fit models in a computationally-
efficient manner, with partial data and in the presence of noise. 
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Figure 1: Examples of LiDAR stem hits using aerially-acquired data (VUX-1): the density of 
stem hits is typically lower than that of Terrestrial Laser Scanning (TLS) and occlusions 

through the canopy mean that stems sometimes only contain visible hits along one side of the 
stem. 

 

   
(a) (b) (c) 

Figure 2: (a) Original/raw LiDAR pointcloud, (b) extracted ground plane and (c) tree/canopy 
points coloured by height above ground (ground shown in black). These points are 

maintained in their original global coordinate system for further processing 
 
The approach takes raw LiDAR pointclouds and produces a stem map which contains the 
location data of detected trees in the area and reconstructed segments of the tree stem. The 
algorithm proceeds with the following steps: 

1. Ground plane estimation: The algorithm creates a digital terrain model of the ground 
by finding local minima points within a search radius of 2m. These points are then 
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converted into a triangulated surface model (using Delaunay triangulation) (see Figure 
2 (a) and (b)). 

2. LiDAR point height above ground: Using the ground plane, the height above ground 
for each point is calculated and recorded by interpolating the ground height at the 
point’s horizontal location. Points below 1m are classified as ground and discarded 
from further processing (see Figure 2 (c)). Unlike in traditional ALS pointcloud 
processing, points are maintained in global (un-normalised) coordinates for further 
processing (stem fitting). The reason for this is to prevent further measurements of the 
stem (i.e. diameters, sweep etc.) from being skewed by the shape of the terrain. 

3. Canopy Peak Detection: Canopy peak points are detected in the non-ground points by 
finding local maximas (based on height above ground) within a radius of 2m. These 
points are used to guide a stem finding strategy discussed in step 5 below. 

4. Stem Circle Fitting: The above ground LiDAR points are separated into a number of 
1m vertical bins, starting from the lowest non-ground point in the data and moving up 
to the top of the canopy. For each bin, the points are flattened into a horizontal 
pointcloud and a RANSAC algorithm is used to detect and fit circles to the data (see 
details in subsection below). This stage of the processing can reconstruct circles from 
partial data (i.e. stems hits that have a limited circumferential coverage) and produces 
circles that correspond to tree stems and other parts of the canopy that are fortuitously 
“circular” in shape. 

5. Stem Vertical Profile Fitting: In order to extract circles that correspond to real tree 
stems and turn these into coherent stem profiles in 3D space, a second RANSAC 
algorithm is used to fit a cubic spline curve through the centers of detected circles (see 
details in Section 2.3 below). A cubic spline is a curve in space defined by three points, 
and when oriented in a vertical direction, provides a simple model of the centreline of 
a tree stem that can account for sweep and lean in a way not possible by using a straight-
line segment. This process begins by defining the top point of each spline based on the 
detected peak points described in step 3 above. 

6. Final Stem Output: A final stage of processing is used to merge overlapping stems 
into a single model (by selecting the model with the best fit) and provide a finalised list 
of stems. 

Further details of the circle-fitting and cubic spline fitting steps in the process are discussed in 
more detail in the sections below. 
 

Detection of Stem Circles From Points Using a RANSAC-based Algorithm 
During step 4 of the detection procedure, the above-ground points are separated into a number 
of 1m thick vertical bins, and for each bin, horizontal circles are detected in the points using a 
RANSAC procedure. The procedure consists of the following steps: 

1. Randomly select three nearby points: At first one point is selected at random. A further 
two points are selected at random from all points within a 1m radius. 

2. The parameters of a circle (x-y position and radius) are calculated that fit exactly 
through the three points. 
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3. The remaining points are tested to determine their distance from the boundary of the 
circle. The number of points that “fit” the circle (lie within 5cm of the circle boundary) 
are counted (fitting points). The number of points that lie inside the circle, including a 
5cm inner buffer are also counted (inner points). If the number of inner points is zero 
and the number of fitting points is greater than a threshold (currently 10 points), then 
the circle is maintained as a potential candidate. The presence of inner points indicates 
that the circle is not likely to come from a stem as the LiDAR is not expected to 
penetrate into stems. 

4. If maintained as a potential candidate, the stem is compared to any other existing circles 
that overlap, and in this case only the circle with the maximum number of fitting points 
is maintained. 

5. The process is repeated from step 1 by selecting another random point. The process is 
repeated a large number of times (currently 200 times for each 1x1m horizontal grid in 
the data).  
 

Once the algorithm has finished computing circles within one bin, it repeats the whole 
procedure for each remaining vertical bin of points and assigns a height to each circle based on 
the average height of the fitting points. The idea of the RANSAC algorithm is to repeatedly try 
to fit a randomised circle to the data, while only maintaining fits that meet the above-mentioned 
criteria. The greater the number of times that the process is repeated, the greater the probability 
that all “real” circles have been detected in the data (i.e. probability that at least once for each 
stem, three points have been selected together that lie on the stem). The number of required 
samples depends on the density of points and ratio of actual stem points to other “clutter/noise” 
points, and was determined experimentally from the datasets examined. 
Figure 3 illustrates the resulting detected circles overlaid with the non-ground LiDAR points. 
The process detects multiple circles that correspond to both stems and other “circular-looking” 
arrangements of points. 

  
(a) (b) 

Figure 3: (a) Original LiDAR pointcloud (coloured by height above ground), (b) pointcloud 
overlaid with detected circles at 1m height intervals 
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Detection of Tree Stem Arcs From Points Using a Cubic Spline RANSAC-based 
Algorithm 
Once circles have been detected, a second processing stage is used to detect vertically coherent 
tree stems using the circles. The procedure consists of the following steps: 

1. A crown point is selected at random and two circles are selected at random from all 
circles within a 4m horizontal distance of the selected crown. Circles are selected from 
different vertical bins. 

2. A cubic spline is computed that runs through the three points (crown points and circle 
centers). A cubic spline is a curve that passes through all three points and minimises 
the maximum bending (curvature) between the three points. 

3. LiDAR points are tested for fit with the generated cubic spline. The distance of each 
point from the centreline of the spline is measured and, similarly to the case with circles, 
we measure the number of points that are at a distance to the line that is equal to the 
radius of the corresponding fitted circles (fitting points), and also measure the number 
of points closer to the line than the fitted circle radius (inner points). The candidate stem 
is kept if the number of fitted points is above a threshold of 10 in at least three different 
vertical bins and if the number of inner points is zero. 

4. The process is repeated from step 1 by starting from another random crown point. The 
process is repeated a large number of times (currently 200 times for each 4x4m 
horizontal grid in the data).  

 

 
(a) 

 
(b) 

Figure 4: (a) Original LiDAR pointcloud, coloured by height above ground, (b) pointcloud 
overlaid with detected canopy peaks (yellow) and detected cubic-spline fitted stems (purple) 

Figure 4: (b) illustrates the resulting set of candidate tree stems that are detected from the 
cubic spline fitting process. 
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Combined Detection Algorithm 
The resulting candidate tree stems are converted into a final set of stems by comparing and 
merging nearby stems. Stems that are found to be within a horizontal distance of 1m from each 
other, measured from the base of the tree are merged into a single stem. The number of fitting 
points in each vertical bin is compared, and the stem segment with the greatest number of fits 
for a given vertical bin is kept. Each stem is then defined by the diameters and segment of 
spline function of the remaining segments for each vertical bin. 

 
 
Tree Detection and Segmentation Algorithms using a “Bottom-up” 
Approach: Cloud2Stem 
 
In parallel to the “top-down” approach, a “bottom-up” approach for tree detection and 
reconstruction of stem profiles from dense LiDAR pointclouds was developed. The approach 
built upon existing algorithms and a SCION-developed software package “Cloud2Stem” that 
has been developed for processing TLS datasets. Development focussed on extending the 
approach to deal with lower-resolution scans (than TLS) and scans presenting occlusions that 
are representative of the dense aerially-acquired datasets collected so far. 
Cloud2Stem is a command line software application which: 

 Identifies stems in point clouds based on stacks of circles. 
 Refine these stacks by “walking” the stem. This aligns the circles with the stem 

orientation to produce more diameter estimates (particularly diameter estimates within 
the canopy) and potentially more accurate diameter estimates.  

 Stem modelling by creating a model of each stems based on the refined circle stacks. It 
may involve merging multiple stacks into one coherent stem model, for example when 
forked stems are encountered and/or sections of stem are missing as they have not been 
scanned. 

 Crude stem height estimation based on the highest point found above the refined circle 
stack. 

 Use a custom volume/taper function to predict whole stem volume and diameter at any 
level. 

 Comparison of measured DBH’s with estimated DBH’s (i.e. those estimated from the 
point cloud). 

Currently Cloud2Stem is designed to work with a circular area (defined by a centre and radius). 
Cloud2Stem does not identify or model the stem canopy/branches and only identifies stem 
diameters which are greater than approximately 100mm. 
Cloud2Stem has been used with point clouds produced from terrestrial and aerial scanners 
including the ZEB1, FARO, Leica and VUX-1. The focus of recent work has been pointclouds 
produced by dense aerially acquired data, such as from the VUX-1 scanner (for example see 
Figure 1). Cloud2Stem has also been run on a point cloud generated by a UAS-borne Velodyne 
Puck laser scanner, flown by the University of Tasmania in September 2017. This was not 
successful due to the “noise” or error present in the point cloud and the low number of points 
on the stem beneath the canopy. 
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Volume/Taper Model 
Given that a number of diameters can be measured by the algorithm on a given stem identified 
from a point cloud, it is necessary to augment this information so that diameter and volumes of 
any stem section, both over- and under-bark, can be predicted. This provides estimates of 
potential log size and yield which are the key variables of interest of any commercial forest 
assessment. The approach taken was to merge prior knowledge of stem shape with the 
empirical measurements of diameter taken from the stack of circles to fit a stem profile model 
(Van Laar & Akça, 2007). The resulting algorithm is robust and flexible but also efficient in 
the sense that it uses all the information that is provided to it and can exclude unreliable 
measurements. 
 

Model of Stem Shape 
The diameter of a tree's stem can be modelled as a monotonic curve which decreases from a 
maximum at ground level to reach zero at the tip of the tree (Larson, 1963). A stem’s diameter 
profile is approximately neiloidal in the lower third, conic in the central third and paraboloidal 
in the upper third of the stem. To model the profile of the diameter of the tree against height, a 
segmented approach (Max and Burkhart, 1976) was used with join-points at one-third and two-
thirds of the stem height. The resulting curve is continuous but not strictly smooth. 
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Algorithm for Fitting the Model 
The algorithm for fitting the model involves the following steps: 

1. The lower curve is fitted via linear regression to all diameters below half height. If the 
fit fails due to insufficient, or very noisy, data, a fall-back approach is taken by 
estimating the ground-level diameter as the largest diameter found, and the rate of taper 
from the mean diameter in the lower half of the stem. 

2. The upper curve is fitted via linear regression to all diameters above half height. If the 
fit fails due to insufficient or very noisy data, a fall-back approach is taken by assuming 
a paraboloid that intercepts at the stem height. The rate of taper is estimated from the 
mean diameter in the upper half of the stem. 

3. A quadratic is used to cover the central third of the stem, passing through the mean 
diameter in this segment of the stem. 

4. Any diameters which are more than P percent from the Step 1 curve estimates are now 
identified as outliers. The diameter data are filtered to exclude these points. P is a 
parameter to the algorithm. 

5. If one or more outliers are found, the step 1 fitting process is repeated using the filtered 
data. 

 
Volume Calculation 
Volumes are calculated using a stepped approximation. A step length of 0.1 metres produces 
good accuracy without excessive calculation. Each section is treated as a frustrum of a cone. 
For example, the volume of a log from 0.27 metres to 5.77 metres above ground is calculated 
by summing the fifty-four section volumes from 0.3 to 5.7, then calculating and adding on the 
0.27 to 0.3 and 5.7 to 5.77 volumes. 
 

Bark Thickness 
Pointclouds reflect the shape of the surface of objects, whereas foresters are often interested in 
the volume and diameters under-bark. To provide this information, a bark function is 
incorporated in the algorithm. A default set of parameters is provided but these can be over-
ridden on construction. The default parameters were estimated for radiata pine (Gordon & 
Budianto, 1999). 

 
Diameter Estimation 
In some cases, there are insufficient points present to reliably estimate a diameter. Figure 5 
shows a stem where the lack of points at the base of the stem is evident. Circles are colour 
coded by circumferential coverage. The bottom circle shown is approximately 1.8m above 
ground and in fact both the bottom two circles will be discarded due to having low scores. 
Given cases like this, a 3 piece-wise curves to the stem profile has been developed. Diameters 
which are more than 15% different from the fitted (predicted) values are discarded, then the 
curve is re-fitted to the trimmed diameters. Therefore a continuous (but not necessarily 
completely smooth) curve from ground to tip is calculated, from which diameters, over- and 
under-bark, can be calculated. 
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Figure 5: An example of a detected stem with very few LiDAR strikes (points) across one 

side at the base of the stem. Diameters fits on this section of the stem are inaccurate. 

 
 
Recommendations for an Efficient Prototype Workflow Pipeline for 
Estimating Stem-level Data from Dense Aerially-acquired Pointcloud Data 
 
Based on the current progress achieved in individual tree detection and stem modelling, we 
considered how the two different algorithms/workflows could be potentially merged into a 
single workflow that would allow for efficient processing of dense pointclouds for providing 
tree stem maps and basic inventory attributes over both plot-scale and larger areas as part of 
future work. Figure 6 presents a potential workflow including both modules that have currently 
been developed (in blue) and modules to be developed in future work (in green). 
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Figure 6: Proposed efficient prototype workflow pipeline for estimating stem-level data from 

dense aerially-acquired pointcloud data 
The pipeline would perform the following steps: 

1. LiDAR pre-processing: LiDAR pointclouds would be pre-processed by estimating a 
ground terrain model and generating both a set of normalised canopy height model 
points and assigning height above ground to the original LiDAR points (see Section 2.1) 

2. Peak Detection: Local maxima would be detected in the canopy points and used to 
provide a crude estimate of crown locations and provide data for further processing 
steps (see section on “top-down” approach above) 

3. Find stems using “top-down” RANSAC-based approach: Stems would be initially 
identified using RANSAC modelling-fitting algorithms (see section on “top-down” 
approach above) to provide candidate search regions that could be fed to Cloud2Stem 
for a refined search and extraction of stem properties. Data on crowns identified via 
peak points but not located using this step could be provided in the form of height and 
location, and stem-DBH models used to estimate the DBH of these stems. 

4. Detect and fit stems using Cloud2Stem: Rather than searching across the entire 
pointcloud, Cloud2Stem (see section on “bottom-up” approach) could potentially be 
used in a more computationally efficient and scalable way by providing candidate 
search regions from stems identified in step 3, when applied to larger LiDAR datasets. 

5. Make estimates of additional variables necessary for estimates of log products: 
Additional variables such as the sweep, position of major branches, defects and the 
vitality of the tree should be identified before feeding outputs to an external software 
package designed for making log product estimates. The estimation of these variables 
would form part of future work. 
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The overall idea of the workflow is to initially perform tree detection based canopy-based peak 
models and the RANSAC-based model fitting algorithms, which are potentially fast and 
scalable to larger LiDAR datasets. These detections could then provide refined candidate 
search regions in the pointcloud data that could be passed to Cloud2Stem for a more accurate 
and computationally-intense search for tree stems from which basic stem attributes could be 
extracted.  

 
 
Results 
 

“Top-down” Combined Detection Algorithm Results 
Figure 7 illustrates results of the top-down RANSAC-based tree detection algorithm applied to 
a 65-by-65m section of VUX-1 LiDAR data collected at Tumut, NSW in 2016. Shown in 
purple are the remaining detected stem segments for each tree. Trees have varying numbers of 
reconstructed segments based on where an acceptable fit to the stem was found. Currently the 
algorithm detects and reconstructs stems for 27 of the 29 trees in this dataset.  
 

 

 
(a) 
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(b) 

Figure 7: Stem detection and model-fitting results: (a) Original LiDAR pointclouds coloured 
by height, (b) detected stem sections (shown in purple) overlaid with LiDAR points 

 
Figure 8: (a) TLS pointcloud of plot at Springfield, Tasmania with defined plot radius shown 
in green, (b) detected stem profiles using “Cloud2Stem”. The large green circle near ground 
level identifies the boundary of a circular plot with a radius of 20m (a 3m buffer is present to 

allow for stems leaning out of the plot). 
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“Bottom-up”/Cloud2Stem Tree Detection and Stem Measurement Results 
Using TLS Data 
 
TLS datasets of Pinus radiata plantation plots at the Springfield, Tasmania site, provided by 
Jon Osborn and researchers at the University of Tasmania were used initially to test algorithms 
within the “bottom-up”, Cloud2Stem software. Figure 8 shows one of five 20 m radius TLS 
plots examined, with detected stems and stem profiles at a range of heights using 
“Cloud2Stem”. All stems in the plot were identified correctly when compared to measurements 
taken in the field. Detected stem profiles were then used to extract DBH of each stem, and 
estimates of stem volume. Estimated DBH were then validated by comparing to DBH 
measurements made in the field (Figure 9). A strong correlation to field measurements was 
found with few outliers, which were manually investigated and found to be likely due to errors 
made during fieldwork. 

 
Figure 9: (a) Comparison of stem profiles detected using “Cloud2Stem” with stem locations 
and diameters (DBH) measured in the field. (b) Estimated DBH using “Cloud2Stem” versus 

field-measured DBH for six TLS plots at Springfield Tasmania. 
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“Bottom-up”/Cloud2Stem Tree Detection and Measurement Results Using VUX-1 Data 
 
The Cloud2Stem software was used to detect and segment trees from aerially-acquired VUX-
1 pointcloud data. Figure 10 shows a circular section of VUX-1 pointcloud data with 
corresponding fitted stem profiles (yellow, green and blue circles) using Cloud2Stem. 

 
Figure 10: Identified stems superimposed over the normalised input point cloud produced by 

the VUX-1 scanner 
 

Examples of Fitted Taper Curves 
Figure 11 illustrates the initial tree diameters measured by the Cloud2Stem software taken from 
stacks of detected circles from the raw LiDAR pointclouds. Figure 12 shows a stem taper curve 
fitted to a well-formed set of diameters derived from the stacks. Outlier detection is set at 10% 
resulting in three diameters being excluded from the fit (at 10.9, 28.9 and 37.9m). Figure 13 
shows a test case where only three diameters and stem height are measured. All three are in the 
lower half of the stem. The resulting curve is logical although supported by very few data points. 
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Figure 11: Example of stem diameters derived from a VUX-1 pointcloud 

 

 
Figure 12: Taper curve fitted to diameters measured from VUX-1 pointcloud 
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Figure 13: Taper curve fitted to test case with only three diameters and stem height 

 

Example of Diameter Estimation 
Figure 14 shows the upper and lower curves fitted to diameters derived from the point cloud 
for a particular stem using the 3 piece-wise curves to the stem profile. The un-trimmed 
diameters are present. The central curve (from H/3 to 2*H/3) is not shown. 
 

 
Figure 14: Upper and lower curves fitted to a set of diameters calculated from the VUX-1 

point cloud 
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Figure 15: Diameters modelled over the entire stem 

 
Figure 16: DBH, height and volume estimates displayed at the base of each stem 

 
Final Stem Modelling Results: Detected, fitted stem sections 
Figures 15 and 16 show red circles representing diameters modelled using the volume taper 
function calculated at regular intervals over the entire stem. These circles are superimposed 
over the original point cloud in the figure on the left. In the figure on the right the original point 
cloud is not shown and a fork is visible in the stem fourth from the left. An estimate of DBH, 
height and volume is written at the base of each stem and displayed alongside 3D models of 
the pointclouds and stem diameters (Figure 16). 
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Comparison with Measured Stems 
Field measurements were taken of the scanned stems shown in Figure 10. All estimated stems 
were successfully matched with a corresponding measured stem. There was one omission (i.e. 
a measured stem was present which was not matched to a stem estimated by the Cloud2Stem 
software). In general, the DBH’s were slightly under estimated by the Cloud2Stem software. 
 

Stem Map Results 
Figure 17 presents a resulting stem map showing the location of both measured (field 
measurements) and estimated stems within the plot for comparison. The large green circle is 
the plot boundary, while the green line is drawn from the plot centre to the plot boundary. The 
green circles represent measured stems, while the red circles represent estimated stems. A green 
line has been drawn from the centre of the measured stem to the corresponding estimated stem. 
On average the distance between centres is approximately 1.6m. The circles are at breast height 
(so represent DBH) and are to scale. 
The red circles (i.e. estimated DBH’s) are in general slightly smaller than the green (i.e. 
measured DBH’s). Also, there is a green circle (i.e. measure stem) present in the top right of 
the figure which has no corresponding estimated stem. 
 

 
Figure 17: Stem map showing the location and size of all measured stems (green) and 

estimated stems (red) 
 
On closer inspection, this missing estimated stem was identified by the software but was 
discarded as it was out of the plot. Figure 18 below shows the measured stem locations (green 
circles) superimposed over the point cloud produced by the VUX-1. The measured stem (in the 
right hand side of the figure below) has in fact been identified by the Cloud2Stem software, 
but as it is beyond the plot boundary (identified by the large green circle) it has been discarded. 
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Figure 18: The omitted stem shown on the far right (identified by the stack of green, blue 

and yellow circles) is in fact beyond the plot boundary 
 
This difference in stem locations may be caused by a difference in plot centre. If all the green 
circles in the stem map shown in Figure 17 were moved “up” by approximately 1.5m, (along 
the line drawn from the plot centre to the plot boundary), then the measured stem locations 
would closely match those of the estimated stems. Also, this would explain why the measured 
stem at the top right of the stem map was included, while the corresponding estimated stem 
was discarded as it fell outside the plot boundary. 
It is important to note that errors in locating plot centre can cause differences in stocking 
estimates (as is the case with this plot). 
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Figure 19: Comparison of ground-measured DBH to DBH estimated by Cloud2Stem for the 

10 stems identified 

 
Table 1: Comparison of Measured vs Estimated DBH. 
Measured 
Stem No. 

Estimated 
Stem No. 

Measured 
Stem DBH 
(mm) 

Estimated 
Stem DBH 
(mm) 

Absolute 
Difference 
(mm) 

Percentage  
 Difference 
(%) 

2 1 830 738 -92 -11.1 
11 2 868 784 -84 -9.7 
6 3 889 911 22 2.5 
7 4 733 688 -45 -6.1 
5 5 734 669 -65 -8.9 
8 6 840 790 -50 -6 
9 7 967 961 -6 -0.6 
3 8 705 625 -80 -11.3 
1 9 876 830 -46 -5.3 
4 10 942 842 -100 -10.6 
10  723    

 

DBH Comparison Results 
Figure 19 and Table 1 show a comparison of the DBH of estimated stems with the DBH of 
field measured stems. On average the DBHs estimated from the point cloud are approximately 
7% less than the measured DBHs. 
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Conclusion and Future Work 
 
This chapter has described the development of algorithms and workflows for tree detection and 
individual tree-level estimates of diameter, volume and taper from high-resolution aerially-
acquired LiDAR pointclouds. Algorithms were developed for a “top-down” detection of trees 
using a computationally-efficient RANSAC detection model and a “bottom-up” approach to 
circle detection, stacking and fitting algorithms, implemented in the software Cloud2Stem, for 
measuring stem position, diameter, volume and taper. A prototype workflow that combines the 
“top-down” and “bottom-up” processes and algorithms explored in this chapter was also 
proposed and described. This work flow would exploit the computational performance of a 
RANSAC-based detection system for initial detection of stems and the accurate stem modelling 
capabilities of the “Cloud2Stem” process to make estimates of stem diameters, volume and 
taper. 
 
In order for the algorithms implemented in Cloud2Stem to work successfully, the input point 
cloud must have the following characteristics: 

 A significant number of “stem hits” (i.e. points on the main stem below the canopy). 
Ideally there should be points on the main stem close to breast height so that an 
accurately assessment can be made of whether the stem’s which are close to the plot 
boundary are to be included or excluded (particularly if the stems are leaning). For 
aerial scanners this involves penetrating the canopy (which can be particularly difficult 
with the dense canopy present in radiata pine  stands) 

 At least 50% circumferential coverage around the stem. This is important in order to 
estimate diameters reliably. 

 A low level of positional error in the location of the points. This may lead to diameters 
being unreliable, or in some cases stems not being detected (particularly with small 
stems). 

Most of these characteristics are related to the scanner used, whether or not the scanner is 
mobile and whether the scanner is terrestrial or aerial. For the aerially-acquired datasets using 
the VUX-1 scanner in this project, tree detection and diameter/volume calculations algorithms 
performed with a precision comparable results to field-based measurements. The nature of 
radiata pine and the stems being scanned most likely also affect the accuracy of estimated 
diameters and radii; radiata pine is not particularly uniform and the dense nature of needles 
makes it difficult for aerial scanners to penetrate the canopy or “see” the stem. When scanning 
radiata pine aerially the point clouds tend to contain a very high point density in the crown and 
few stem hits below the canopy. 
 
Currently it is not possible for the algorithms presented here to produce log product estimates. 
The further estimation of log products relies on a number of pieces of information about stems 
that have not yet been successfully extracted using the currently developed approaches (such 
as the sweep, position of major branches, defects and the vitality of the tree). Tree sweep could 
potentially be measured from the cubic spline curves and direction and orientation of stem 
sections currently drawn out by Cloud2Stem. The detection of the position of major branches 
and defects in the tree requires additional work; potentially ideas for extracting this data include 
extending cubic spline fitting algorithms up into the canopy in a horizontal direction and the 
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use of point segmentation algorithms to identify stem points for fine resolution modelling of 
stem surface geometry. These areas are left to future development. 
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Introduction 
Light detection and ranging (LiDAR) is an established, active remote sensing technology that 
has been widely used in vegetation assessment. There has been a rapid uptake of lidar over the 
last two decades as this technology can finely characterise the three-dimensional structure of 
both the forest canopy and underlying terrain across broad spatial scales. Previous research has 
demonstrated the utility of LiDAR for a diverse range of applications such as habitat analysis 
(Hyde et al. 2005; Vierling et al. 2008; Palminteri et al. 2012), predicting forest inventory 
attributes (e.g. Nilsson 1996; Næsset & Okland 2002; Næsset & Bjerknes 2001; Popescu et al. 
2002; Holmgren et al. 2003; Watt & Watt 2013), change detection (Hudak et al. 2012; Yu et 
al. 2004; Teo & Shih 2013) and estimation of wildland fire parameters (Hall et al. 2005; Mutlu 
et al. 2008a; Mutlu et al. 2008b). When included within a forest inventory framework, auxiliary 
data from LiDAR allows the spatial projection of forest inventory attributes and has been 
shown to markedly improve the inventory precision compared to conventional approaches with 
only plot data (Dash et al. 2015a; Næsset 2002, 2004; Naesset 2007). The use of airborne 
LiDAR surveys have become common practice for stand-wise forest inventories in several 
countries (e.g. Næsset et al. 2004) and this technology underpins several national forest 
inventories (Stephens et al. 2012).  
Almost all LiDAR surveys use low (≤4 pulses/m2) to moderate (4 − 20 pulses/m2) density 
LiDAR collected from manned aircraft and little research has investigated the utility of high-
density LiDAR (> 20 pulses m2) for predicting forest inventory attributes. The development of 
LiDAR sensors that can be carried at low altitude by unmanned aerial systems (UAS) provide 
a means of acquiring far more detailed point clouds than is possible from manned aircraft. 
Typical point densities from these platforms range between 60 − 1,500 points/m2 (Puliti et al. 
2015) which exceeds the point densities that can ordinarily be collected from conventional 
fixed-wing aircraft by up to two orders of magnitude. Studies demonstrating the utility of 
LiDAR from UAS are still sparse but do demonstrate relatively accurate predictions of forest 
dimensions within a range of forest types using high (Brede et al. 2017) and moderately precise 
scanners (Wallace et al. 2016; Wallace et al. 2012; Wallace et al. 2014; Jaakkola et al. 2010). 
Prevailing approaches to LiDAR analysis for forest inventory use standard statistical metrics 
derived from discrete return data. Standard metrics, which are obtained from LiDAR point 
cloud data, generally include height percentiles, distributional statistics, and estimates of 
canopy cover. These metrics have been previously used to predict stand height and volume 
with high precision (Watt & Watt 2013; Coops et al. 2007; Means et al. 2000; Means et al. 
1999) basal area with moderate precision (Næsset 2004, 2005; Nord-Larsen & Schumacher 
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2012; Means et al. 1999; Means et al. 2000) and stand density with a low to moderate degree 
of precision (Næsset & Bjerknes 2001; Hall et al. 2005). 
Another class of LiDAR metrics, termed voxel-based metrics, have emerged over the last 
decade (Sumnall et al. 2016). Using this approach, the LiDAR point cloud is sliced in both the 
vertical and horizontal dimensions into volumetric pixels (volume pixel or voxel) which can 
be visualised as an array of 3-D cubes. Voxel-based metrics are then created by describing the 
LiDAR point cloud data in relation to each voxel space. Compared to standard metrics, voxel-
based predictors have the advantage of representing LiDAR point cloud information within 
different strata in the forest canopy and offer the potential to better characterise the fine-scale 
distribution of returns. 
Voxel-based metrics have been used relatively widely with terrestrial laser scanning (TLS) data 
to predict forest inventory attributes (Moskal & Zheng 2011; Ehbrecht et al. 2016; Bienert et 
al. 2014) and leaf area index (Grau et al. 2017; Béland et al. 2014). However, less research has 
investigated the utility of voxel-based metrics from airborne LiDAR data. These predictors 
have been used to model above-ground biomass (Kim et al. 2016), canopy base height (Maguya 
et al. 2015; Popescu & Zhao 2008), leaf area index (Pearse et al. 2017) and canopy attributes 
(Sumnall et al. 2016). We are unaware of any research comparing the precision of voxel-based 
and standard metrics for predicting forest inventory attributes from airborne LiDAR data. 
Given that high-density LiDAR is becoming more commonly available and acquisition costs 
are decreasing, comparison of these approaches across a wide range of LiDAR pulse densities 
would be useful and timely. 
Using high-density LiDAR acquired across 73 plots from a helicopter-mounted VUX-1 
scanner, the objective of this study was to compare the precision of models predicting forest 
inventory attributes (top height, basal area, stand density and total stem volume) created using 
standard metrics, voxel-based metrics and both types of metrics at pulse densities ranging from 
1 to 280 pulses m-2. 

Methods 
Study Site and Plot Location 
The study area, managed by the Forestry Corporation of New South Wales, is located in the 
Snowy Mountains in southeastern New South Wales, Australia. The plots were divided 
between two adjacent Pinus radiata D. Don plantations (Figure 1). Field plots (n = 73) were 
deliberately located to target a broad range of stand conditions within these two plantations 
(Table 1). Several of the included plots from the southern study area were part of a long-term 
trial block which had recently been measured. Differential GPS was used to determine the 
centre coordinates of each of the 0.13 ha bounded circular plots. 
Table 1: Variation in summary statistics for the dataset. Shown are the mean, standard 
deviation and range for data from the 73 plots. 

Variable Mean SD Range 
Age (years) 26.8 5.3 15.0 – 48.2 
Top Height (m) 26.8 3.3 17.3 – 35.0 
Basal Area (m2 ha-1) 34.5 11.8 4.14 – 63.9 
Stand Density (stems ha-1) 422 304 33 – 1,683 
Total Stem Volume (m3 ha-1) 312 119.8 58.1 – 692.8 
Pulse Density (pulses m-2) 270 53 163 – 452 
Point Density (points m-2) 436 99 260 – 800 
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Figure 1: Map of the study plots (n=73) near Tumut, New South Wales, Australia. 

Field Measurements 
Plot measurements, which were taken during the latter half of 2016, included diameter at breast 
height, D, for all trees within the plot (1.3 m) and height, H, on a sub-sample of three trees, 
covering the D range within the plot. These measurements were used to fit a regression between 
D and H that was subsequently used to estimate H for all plot trees where H was not measured. 
Top Height was then calculated as the average height of the largest 100 trees per hectare, where 
largest was defined in terms of D. Plot basal area and stand density were calculated from the 
plot measurements. Total under-bark stem volume, V, was derived from height and diameter 
using the following volume function (Baalman 2003):   

𝑉 = exp(𝑎)𝐷𝑏 (
𝐻2

𝐻−1.3
)
𝑐

        (1) 

 
where a, b and c are empirically determined coefficients.  
Summary statistics for all of the plots included in the study (Table 1) show wide variation in 
forest inventory attributes and stand ages. Stand age varied three-fold, averaging 27 years and 
ranging from 15 − 48 years. Other forest inventory attributes also showed large variations that 
ranged from two-fold, 15 fold, 51-fold and 12-fold for top height, basal area, stand density and 
volume respectively. 

Lidar Data 
Lidar data were acquired using a VUX-1 (RIEGL, Horn, Austria) laser scanner mounted on a 
helicopter flying at < 8 m s-1 and an altitude of approximately 90 m above ground. A large 
buffer was defined around each plot and flight plans were designed to ensure high overlap and 
minimal occlusion of all trees within each buffered plot. The LiDAR data coincident with the 
plots were extracted, processed and, classified using LAStools (Rapidlasso GmbH, Gilching, 
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Germany). The high scan rate (+- 200 scans per second) of the VUX-1 combined with a 
specified value of up to 5 returns per pulse generated extremely dense datasets (Figure 2). Up 
to three-fold variation in pulse density was observed in the final plot data (Table 1). This 
resulted from the combination of the scan rate and unavoidable variations in helicopter flight 
trajectories and inclusion of additional flight lines to avoid stem occlusion in difficult plots. 
To determine the relative importance of pulse density and metric type, we thinned the LiDAR 
data. All plots were thinned to an initial, maximum pulse density of 280 pulses m-2 based on 
the lowest pulse density of the included plots. Target pulse densities of 260, 240, 220, …20, 
15, 10, 5, and 1 were specified and an iterative algorithm was devised to systematically remove 
all returns associated with individual pulses until the target pulse density was achieved with a 
reasonable homogeneity of spacing. 

 
Figure 2: Example of lidar data acquired from the VUX-1 sensor in a stand of Pinus radiata 

(top). Cross-section (bottom) showing detail from a strip of 10 m width running North to 
South. 

Variables Used 
The very high pulse density provided by the VUX-1 scanner motivated an investigation of 
novel metrics for prediction of key forest plot attributes. Metrics proposed for use with TLS 
data and others proposed for the fine-scale characterisation of point clouds were identified for 
this purpose. For this study, descriptive metrics such as percentile heights, measures of skew, 
and other common metrics were termed ‘standard’ metrics (Appendix 1). These metrics have 
been widely used to predict forest attributes from LiDAR (Dash et al. 2015a; Naesset 2002) 
and are often available as outputs from widely used LiDAR processing software (Pearse et al. 
2017; McGaughey 2015). The remaining metrics were termed ‘voxelised’ metrics on the basis 
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that they required the division of the point clouds captured from each plot into voxels. The 
rationale and the method of construction for the selected metrics are provided in the sources 
listed in Appendix 2. Several common forms were used and these are described in the following 
section. 

General Description of Voxelisation 
The number of dimensions considered during the voxelisation process was a useful property 
for grouping the different metrics. The majority of metrics used regular, fixed-size voxels 
whereby the point cloud was divided into sub-voxels with each voxel having fixed dimensions 
of 𝑋 × 𝑌 × 𝑍 m - equivalent to a 3-dimensional histogram. The points falling within each cell 
formed the basis for further operations. For example, the variable sub-voxels (SVi) and variable 
density (Di) metrics (Kim et al. 2016; Sheridan et al. 2014) and the effective number of layers 
(ENL) defined by Ehbrecht et al. (2016) consider the density, proportion or distribution of 
different return types falling within each sub-voxel (Figure 3). 

 
Figure 3: Example lidar data showing the division of the vegetation returns into regular, 

equal size voxels. 

Metrics dividing the point cloud into two dimensions, similar to the canopy closure measure of 
Pope and Treitz (2013), allocate points to bins using only the x and y axes (bivariate histogram) 
before characterising the point cloud based on the distribution of returns within each sub-voxel 
(Figure 4). 
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Figure 4: Example of bivariate voxel metric quantifying canopy closure as the fraction of 

empty voxels at 10 m height. 

Unidimensional metrics such as the vertical complexity index (VCI) (Van Ewijk 2015) seek to 
characterise the evenness, or relative abundance of points using strata or layers of a fixed size 
(Figure 5). 

 
Figure 5: Division of the point cloud into layers (univariate voxelisation) as a precursor to 

calculating the relative abundance of points in each stratum. 
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The final class of metrics used a dynamic process to characterise the point cloud. For example, 
the moving-voxel metrics of Maguya et al. (2015) use an iterative searching process to identify 
gap sizes in 3-dimensions. Similarly, the variable sub-voxel metrics (SVM) of Kim et al. (2016) 
characterise the point cloud with reference to a specific sub-voxel of interest (e.g. sub-voxel 
with the median point density) that must first be identified (Figure 6A) before the distribution 
of points relative to the identified voxel are characterised (Figure 6B). Many of these processes 
require decisions around the appropriate sub-voxel size or methods of characterisation. In some 
cases, recommendations are available based on previous sensitivity analysis (e.g. Van Ewijk 
(2015)). However, in others research the choice has been subjective or multiple permutations 
of voxel-based metrics with different dimensions have been used simultaneously during model 
fitting (Kim et al. 2016; Pope & Treitz 2013). The values chosen for this analysis were partially 
informed by previous work in a similar context (Pearse et al. 2017). Where these values were 
indeterminate, several permutations were trialled e.g. voxels varying in size from 1, 2…, 5 m. 
To limit over-fitting and reduce dimensionality, a process of screening was then carried out to 
remove permutations with excessively high inter-correlation. The threshold for exclusion was 
defined as any permutation of a base metric with a Pearson’s correlation coefficient greater 
than 0.9. 

 
Figure 6: Adaptive voxelisation identifying the voxel with the median density (A) and the 

relative fraction of returns in the voxels above (B). 

Statistical Analysis 
The random forests algorithm was selected for modelling of plot attributes (Breiman 2001) and 
modelling was carried out using the package RandomForests (Liaw & Wiener 2002) in the R 
statistical language (R Core Team, 2016). Random forests is an ensemble learning algorithm 
that is well suited to both classification and regression. The algorithm grows a large forest of 
decision trees, utilising both random permutations of data available to each tree as well as 
permutation of variables at each splitting node. In this way, the algorithm avoids overfitting 
when dealing with a large number of covariates such as the LiDAR metrics assembled in this 
study. Random forests models were used to model mean top height, basal area, stand density 
and volume from standard LiDAR metrics (Appendix 1), voxelised metrics (Appendix 2) and 
both classes of metrics combined. Because data are withheld during construction of each tree, 
an estimate of model performance can be obtained by making predictions on the withheld ‘out-
of-bag’ data during the model fitting process. However, we opted to include a strategy of 10-
fold cross-validation combined with resampling (100 repeats). This approach was chosen to 
guard against overfitting, minimise fold effects and to produce conservative estimates of model 
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precision. The model fitting process described was then repeated using LiDAR metrics 
constructed from the thinned datasets to assess the impact of pulse density on the choice of 
metrics and predictive accuracy of the models. 
Comparisons of model precision for each of the four forest inventory attributes were made to 
determine the relative effect of pulse density and the type of LiDAR metrics included within 
the models. Precision was evaluated by the coefficient of determination (R2) and the root-mean-
square error (RMSE), which was normalised with respect to the overall mean of each of the 
four dimensions (ym) as nRMSE = RMSE/ym x 100. Variation in model precision between the 
three metric types was examined both at the highest pulse density and plotted against the 
complete range in pulse density to examine how thinning the dataset affected model precision. 

Metric Importance 
The importance of voxel-based and standard LiDAR metrics was evaluated for each of the four 
forest inventory attributes using the models that included all LiDAR metrics (voxel-based and 
standard). Random forests computes a measure of variable importance through random 
permutation of variable values in the withheld data. For regression, the importance of the 
variable is then scored by observing the increase in mean squared error (MSE) after 
permutation (Genuer et al. 2010; Liaw & Wiener 2002). At each pulse density, the variable 
importance scores obtained from the random forests algorithm were used to identify the most 
important predictors contributing to the model. While this measure had been widely used for 
variable selection, the absolute importance scores have been shown to be unreliable in some 
situations (Strobl et al. 2008). For this study, we were concerned only with patterns of variable 
importance between the two groups of voxel-based and standard metrics rather than the 
absolute importance of individual metrics. To evaluate potential trends, a threshold for 
importance was required to compare the many models obtained for each of the inventory 
attributes at each pulse density. Inspection of variable importance scores (not shown) showed 
that, for the majority of models, separating metrics above an importance score of 3 worked 
well. This value excluded nearly all metrics with similar, low importance scores for the 
different models while retaining the key variables that showed a marked increase in importance 
as assessed by a large increase in MSE after permutation. The number of these important 
variables within each group (voxel-based or standard) was then plotted against pulse density 
and averaged across all pulse densities to gain insight into which metric types were the most 
influential within the models for each of the four inventory attributes. 

 
Results 
Model Predictions at the Highest Pulse Density 
At the highest pulse density, models created using standard LiDAR metrics had an R2 of 0.72, 
0.44, 0.34 and 0.53, respectively, for top height, basal area, stand density and volume (Fig. 7a). 
Use of voxel-based metrics substantially improved the R2 of these models by 0.23, 0.24 and 
0.22 respectively, for basal area, stand density and volume, but resulted in only a small 
improvement of 0.04 for top height. Use of all metrics in predictive models had little effect on 
predictive precision over models that included only voxel-based metrics (Figure 7a).  
The pattern described above reflected changes in nRMSE (Figure 7b). Using standard LiDAR 
metrics, nRMSE was 7, 25, 60 and 25%, respectively, for top height, basal area, stand density 
and volume. Use of voxel-based metrics substantially improved the predictive precision of 
these models, for all dimensions apart from top height, reducing nRMSE by 0.6, 6, 12 and 7%, 
respectively, for top height, basal area, stand density and volume. Model precision using both 
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types of LiDAR metrics was very similar to the precision of models that used only voxel-based 
metrics (Figure 7b). 

 
Figure 7: Influence of predictor type on model precision for the four stand metrics at the 

highest pulse density with results showing (a) RMSE as a percentage of the mean and (b) the 
coefficient of determination (R2). 

Effect of Thinning on Model Precision Between the Three Metric Groupings 
With the exception of stand density, pulse density had little effect on model precision (Figure 
8). When averaged across the three groups of independent variables, the R2 for models of stand 
density gradually increased from 0.45 at 1 pulse m-2 reaching a maximum of 0.54 at 60 pulses 
m-2 before declining slightly (Figure 8c). 
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Figure 8: Variation in the (a-d) coefficient of determination, R2, and (e-h) root mean square 

error as a percentage of the mean across the pulse density range for the three predictor groups 
(standard, voxel-based and all metrics) in models of (a, e) top height, (b, f) basal area, (c, g) 

stand density and (d, h) total stem volume. 

Variation in mean R2 for the three other forest inventory attributes across the pulse density 
range was only slight, ranging from 0.73 – 0.75 for top height (Figure 8a), 0.58 – 0.60 for basal 
area (Figure 8b) and 0.65 – 0.69 for volume (Figure 8c). Similar patterns were observed for 
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nRMSE (Figures 8e – h). For all variables, apart from top height, the lowest mean precision 
was recorded at 1 pulse m-2.Differences in predictive precision between the three groups of 
metrics remained relatively similar across the pulse density range (Fig. 8). Averaged across all 
pulse densities, the R2 for models fitted using standard metrics were respectively, 0.71, 0.44, 
0.34 and 0.53 for top height, basal area, stand density and volume. The use of voxel-based 
metrics resulted in average gains in R2 for these four metrics of 0.05, 0.22, 0.24 and 0.23, 
respectively (Table 2). These gains had a relatively low range between pulse densities with 
gains varying from 0.03–0.06, 0.19–0.25, 0.21–0.27 and 0.19–0.25, respectively, for top height, 
basal area, stand density and volume. As data were thinned to the lowest pulse density (1 pulse 
m-2), models constructed using voxel-based metrics showed a decline in predictive precision 
that contrasted models using standard metrics where precision did not change (Figures 8a – d). 
Consequently, exclusion of the lowest pulse density from these analyses further reduced the 
range in predictive precision across pulse densities to 0.04 – 0.06, 0.20 – 0.25 and 0.21 – 0.25, 
respectively for top height, basal area and volume but had little effect on the range for stand 
density. 
Models that included all metrics had slightly lower mean R2, than models with voxel-based 
metrics, for both mean top height (0.74 vs 0.76), stand density (0.57 vs. 0.58) and very similar 
R2 values for both basal area and volume (Table 2). Changes in precision for models with all 
metrics across the pulse density range were very similar to models with voxel-based metrics 
(Fig. 8a – d). 
As patterns of nRMSE were very similar to those already noted for R2 only the key statistics 
are given below. The mean nRMSE for models that used standard metrics were, respectively, 
6.6, 25.2, 60.1 and 25.5% for top height, basal area, stand density and volume (Table 2). 
Reductions in nRMSE for top height, basal area, stand density and volume were, respectively, 
0.6, 5.6, 11.5 and 6.8% when voxel-based metrics were used and 0.4, 5.7, 11.1 and 6.7% when 
all metrics were used within models (Table 2).  
 
Table 2: Variation in mean coefficient of determination and normalised root mean square error 
for models of top height, basal area, stand density and volume created using standard metrics, 
voxel-based metrics and all metrics. Values shown are the average of 18 pulse densities, 
ranging from 1 to 280 pulses m-2.  

 Coefficient of determination  Normalised RMSE (%) 
 Standard Voxel-based All metrics  Standard Voxel-based All metrics 
Height 0.71 0.76 0.74  6.6 6.1 6.2 
Basal area 0.44 0.67 0.67  25.2 19.6 19.5 
Stand density 0.34 0.58 0.57  60.1 48.6 49.0 
Volume 0.53 0.75 0.75  25.5 18.7 18.8 

 

Metrics Included Within Models 
The random forests variable importance scores, calculated through permuting of individual 
predictors, indicated that voxel-based metrics were important predictors of forest inventory 
attributes. Within the models that included all metrics, voxel-based metrics were far more 
common than standard Lidar metrics. When averaged across all pulse densities, voxel-based 
metrics constituted 73, 97, 94 and 98%, respectively of all important metrics for mean top 
height, basal area, stand density and volume. This ratio remained relatively constant across the 
range in pulse densities varying from 65 – 81%, 91 – 100%, 76 – 100% and 93 – 100%, 
respectively, for mean top height, basal area, stand density and volume. While general trends 
in the relative importance of metrics from different groups could be ascertained from the results, 
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identification the best metric(s) from each model was not attempted due to known issues in the 
scoring of variable importance in the presence of correlated predictors such as those produced 
from LiDAR data (Pearse et al. 2017) which limited detailed analysis of individual variable 
importance. These issues are expanded on in the discussion. 
 

Discussion 
This research clearly demonstrates the utility of voxel-based metrics for the prediction of key 
forest inventory attributes. Gains in predictive precision afforded by voxel-based metrics over 
the use of standard LiDAR metrics were substantial for predictions of basal area, stand density 
and volume and moderate for predictions of top height. The relative invariance of model 
precision to pulse density demonstrated that precision gains can be achieved using voxel-based 
metrics at pulse densities typical of current operational LiDAR acquisitions. 
Although the predictive precision of the four forest inventory attributes made using standard 
LiDAR metrics had a ranking that was consistent with previous research, the absolute values 
of precision reported here were generally lower than most previously reported values. The 
model coefficient of determinations for mean top height (R2 = 0.71) and basal area (R2 = 0.44) 
were lower than those previously reported within studies in coniferous forests, where values of 
R2 ranged, respectively, between 0.82−0.99 (Watt & Watt 2013; Coops et al. 2007; Means et 
al. 2000; Naesset 2002; Means et al. 1999; Watt et al. 2013b; Dash et al. 2015b) and 0.62−0.94 
(Naesset 2004, 2005, 2002; Means et al. 1999; Nord-Larsen & Schumacher 2012; Dash et al. 
2015b; Watt et al. 2013b). Similarly, the precision around the estimate of stand density (R2 = 
0.34) was lower than that of previous research, where R2 values have been found to range from 
0.42−0.84 (Naesset & Bjerknes 2001; Watt et al. 2013b; Næsset 2002; Dash et al. 2015b). The 
coefficient of determination for volume (R2 = 0.53) was within the range cited by previous 
studies for coniferous species that vary from 0.46−0.97 (Means et al. 2000; Naesset 1997, 2002; 
Watt & Watt 2013; Watt et al. 2013b; Dash et al. 2015b). 
The generally lower precision of our predictions was not attributable to any anomalies in the 
LiDAR or field plot data. The strength of single variable relationships in the fitting dataset was 
consistent with previously reported values. For instance, using the highest pulse density data, 
the relationship between top height and the 90th LiDAR percentile, had an R2 of 0.87 (nRMSE 
= 5.0%) while basal area was most strongly related to a voxel-based cover metric (percentage 
canopy cover at 10 m) with R2 = 0.68 (nRMSE = 19.4%). Instead, we attribute the lower 
precision of our models to the combination of cross-validation and the internal data splitting of 
the random forests algorithm on the available data. These two approaches would have acted in 
combination to limit the size of the training and test data used during construction of the 
regression trees. The high variability of the dataset could also be expected to impact the 
measures of model performance. In combination, these factors are likely to make the results 
presented conservative estimates of model precision achievable using this approach. 
Voxel-based metrics provided significantly improved predictions of basal area, volume, and 
stand density than standard metrics. Given the importance of canopy percentiles in predicting 
tree height, it was somewhat surprising to see that voxel-based metrics provided greater 
predictive power than standard metrics. However, differences in predictive power between 
metric classes were moderate and it is worth noting that canopy percentiles were the most 
important variables amongst the top 22 variables when all metrics were used to predict top 
height (data not shown).  
We are unaware of any research that has comprehensively investigated the utility of voxel-
based metrics from ALS for predictions of forest inventory attributes used for inventory 
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purposes in plantation forests. However, it is worth noting that ALS voxel-based metrics using 
the approaches shown in Figures. 3-6 and Appendix 2 have been successfully used to predict 
more ecological forest metrics such as above-ground biomass (Kim et al. 2016), canopy base 
height (Maguya et al. 2015; Popescu & Zhao 2008), leaf area index (Peduzzi et al. 2012; Pearse 
et al. 2017), and canopy attributes (Sumnall et al. 2016). Sheridan et al. (2014) also used 
standard LiDAR metrics and density metrics derived from height bins (univariate voxelisation), 
that covered the horizontal extent of the entire plot, to predict both volume and above ground 
biomass in natural forests within the United States (Sheridan et al. 2014).  
Consistent with the gains attributable to use of voxel-based metrics, most important variables 
found in the model that included all metrics, were voxel-based. While it is desirable to identify 
key metrics, the method used to determine variable importance within random forests is known 
to produce biased values in the presence of correlated predictors (Strobl et al. 2008). Solutions 
utilising importance scores assessed conditionally on correlated predictors are available (Strobl 
& Zeileis 2008; Strobl et al. 2008); however, these are computationally intensive. It was not 
feasible to compute the conditional importance scores given the large number of models 
required to assess the impact of both pulse density and metric type. Switching to the use of 
conditional variable importance scores would be most likely to impact the relative rankings of 
predictors, but not the overall composition of the group of ‘top’ predictors that were usually 
clearly identifiable. This was confirmed by inspecting the fluctuations in the variable 
importance scores produced across several of the repeats. 
We hypothesise that the greater predictive precision of models that include voxel-based metrics 
is due to their greater ability to represent complex canopy structure than standard metrics. This 
may be particularly true with respect to horizontal structure within the highly variable plots 
included in the study. The majority of the standard metrics described in Appendix 1 could be 
expected to adequately describe vertical structure and this would explain the high accuracy and 
increased importance of these metrics for predicting top height. In contrast, the improvements 
produced by using voxel-based metrics were largely constrained to attributes that could be 
expected to relate primarily to variation in the horizontal structure such as variations in basal 
area and stand density. 
A key question that was not addressed in this study relates to the fine-tuning of the voxel-based 
metrics. Many of these metrics require selection of voxel size, height threshold to be considered, 
or selection of other metric-specific parameters. An assessment of the impact of these 
parameters on the usefulness of these metrics in different contexts is required to simplify future 
applications of this approach and potentially reduce both the computation and modelling times. 
In addition, further validation of voxel-based metrics should be trialled in larger studies with 
sufficient data to more closely examine the linkage between the structure of important voxel-
based metrics and forest inventory attributes. 
Models created using standard metrics were largely invariant to pulse density and showed little 
change in precision even at the lowest pulse density. This agrees with most studies in 
coniferous forest, including stands of P. radiata, that have found LiDAR can be reduced to 
pulse densities of 1 pulse m-2 or lower with little impact on the precision of forest inventory 
attributes predicted from standard LiDAR metrics (Jakubowski et al. 2013; Treitz et al. 2012; 
Watt et al. 2013a). Watt et al. (2014) found a higher threshold of 2 – 3 pulses m-2 when 
predicting forest inventory attributes of Douglas-fir. However, this is likely to be attributable 
to the dense canopy cover of this species that results in a low number of ground returns, 
compared to other coniferous species. This sparsity of ground returns impacts on the quality of 
the digital terrain model and consequently the precision of the above ground point cloud (Watt 
et al. 2014).  
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The precision of predictions made using voxel-based metrics was also largely invariant to pulse 
density; however, the lowest precision for all four forest inventory attributes was recorded at 1 
pulse m-2. This deterioration in precision at low pulse densities most likely reflects the sparsity 
of returns per voxel at a pulse density of 1 pulse m-2. Voxel-based metrics are likely to be more 
sensitive than standard metrics at this pulse density as this latter group of metrics is able to 
utilise the greater number of points associated with the entire point cloud. We are unaware of 
any previous research that has examined the effect of data thinning on the precision of 
predictions made using voxel-based metrics. 
It is important to note that although predictions from voxel-based metrics did not improve at 
greater pulse densities, higher density data are likely to have applications beyond the voxelised 
approach. There are many individual tree approaches currently in use or under development 
that may benefit from the high pulse densities used in this study (Dalponte & Coomes 2016; 
Dalponte et al. 2012). Higher pulse density is not only useful for delineation of individual trees 
but also increases the incidence of reflections from the lower and upper stem that can be used 
to directly characterise the stem shape. 

 
Implementation of Voxelised Metrics Within LAStools 
The voxelised metrics were originally implemented using modules within Numeric and 
Scientific Python. Although fast, these modules do not integrate easily into the traditional tile-
based LiDAR analysis pipelines widely used in forestry. LAStools is the most popular 
application for processing and characterising LiDAR in Australasia and the ‘lascanopy’ feature 
is traditionally used to derive forestry metrics for use in e.g. k-Nearest Neighbour yield 
assessment within a tile-based processing chain. As a result of the analysis carried out for this 
work, Scion discussed with Dr Martin Isenberg of RapidLASSO the potential to implement 
voxelisation into LAStools. Recently, RapidLASSO has released a beta version of ‘lasvoxel’ 
to enable voxelisation of LiDAR within a tile-based processing chain. A brief comparison 
revealed nearly identical results between a set of simple voxel-based metrics computed using 
Numpy and Lasvoxel. While the results were nearly identical, the approach of lasvoxel differs 
significantly from other tools. Lasvoxel defines a flexible voxel size determined by two 
parameters defining the X&Y and Z voxel dimensions respectively. At present, return count 
per voxel is computed by default but further options are likely to be available in the future. A 
key advantage of the lasvoxel tool is the use of the LAS format to store voxelisation results. 
This has the advantages of 1) being highly compressible, 2) allowing other LAStools (and many 
other software packages) to process and visualise the voxelised outputs (Fig. 9 below). In this 
approach, the XYZ values for each ‘return’ in the LAS file store instead of the XYZ location 
of a voxel’s centroid with the density or other metric stored in the intensity field. Empty voxels 
are not stored and the original voxel size is recorded in an additional field within the LAS file. 
Early testing suggests this approach works well within tile-based processing and analysis 
chains and joint use of other tools such as lascanopy allow more complex metrics to be derived. 
Conversion from LAS voxel to Numpy arrays is more complex but remains feasible. 
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Figure 9: Example of LiDAR data voxelised with lasvoxel. XYZ attributes are used locate 
the voxel centroid and the intensity field is used to represent the chosen voxel metric (e.g. 

count of returns within voxel shown above). 
 

Conclusions 
The results presented here clearly show that voxel-based metrics have considerable potential 
for improving the precision of forest inventories. As extraction of voxel-based metrics does not 
greatly add to inventory cost, the significant precision gains demonstrated here are likely to 
markedly improve estimates of inventory attributes for a given cost, or allow equivalent 
accuracy at a lower cost. The invariance of precision gains to all but the lowest pulse density 
(1 pulse m-2) suggests voxel-based metrics could be implemented using LiDAR captured at 
standard pulse densities associated with aerial capture allowing immediate and widespread 
implementation. Further research should be undertaken to verify these results and to examine 
how voxel-based metrics capture a greater proportion of the variance in forest inventory 
attributes than standard LiDAR metrics. 
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Appendices 
 

Appendix 1. Standard LiDAR metrics included in models predicting stand variables. 

Lidar Metric Details 
Avg Average height of all returns 
Qav Quadratic mean height of all returns 
Std Std. deviation of all return heights 
Ske Skewness of all return heights 
Kur Kurtosis of all return heights 
Percentiles Height percentiles: p(1, 5, 10, 20,… ,90, 95, 99) 
Deciles Canopy densities: b(10, 20,… ,90) 
Densities Percentage of all returns within height bins d(0,1,… ,5) 
Cover Canopy cover from first returns above 10 and 20 m 

 

 

Appendix 2: Voxelised metrics included in models predicting stand variables. 

LiDAR Metric Description Classification Source and definition 
VCI Vertical complexity index using bins 

of height vci_h(0.3, 0.5, 1, … 3). 
Evenness Van Ewijk (2015), Pope 

and Treitz (2013). 
CC_above Subpixel canopy closure at height: 

cc(6, 9,…, 21) m 
Closure Pope and Treitz (2013) 

P_cc Mean percentage canopy closure 
above: pcc_z(1.5, 5, 10, 15, 20) m 

Closure Griffin et al. (2008), 
Popescu and Zhao 
(2008). 

VB Metrics Biomass voxel metrics with sub-
voxels at i(5,10,…, 45 m). 

Multiple – 
Evenness / 
intensity 

Kim et al. (2016) 

SVi Variable sub-voxel i  Kim et al. (2016) 
Di Variable density i  Kim et al. (2016) 
SVM Variable sub-voxel maximum  Kim et al. (2016) 
ENL Effective number of layers with 30 

cm voxels. 
Evenness Ehbrecht et al. (2016) 

 

 
References  
 
Baalman, E. (2003). Tree volume and taper equations for New South Wales radiata pine. 

Technical Note 9, Resources Branch, Forests NSW. 
Béland, M., Widlowski, J.-L., & Fournier, R. A. (2014). A model for deriving voxel-level tree 

leaf area density estimates from ground-based LiDAR. Environmental Modelling & 
Software, 51, 184-189. 

Bienert, A., Hess, C., Maas, H., & von Oheimb, G. (2014). A voxel-based technique to estimate 
the volume of trees from terrestrial laser scanner data. The International Archives of 
Photogrammetry, Remote Sensing and Spatial Information Sciences, 40(5), 101. 

Brede, B., Lau, A., Bartholomeus, H. M., & Kooistra, L. (2017). Comparing RIEGL 
RiCOPTER UAV LiDAR Derived Canopy Height and DBH with Terrestrial LiDAR. 
Sensors, 17(10), 2371. 



193 
 

Breiman, L. (2001). Random Forests. Machine Learning, 45, 5-32, 
doi:10.1023/A:1010933404324. 

Coops, N. C., Hilker, T., Wulder, M. A., St-Onge, B., Newnham, G., Siggins, A., & Trofymow, 
J. A. (2007). Estimating canopy structure of Douglas-fir forest stands from discrete-
return LiDAR. Trees-Structure and Function, 21, 295-310. 

Dalponte, M., Bruzzone, L., & Gianelle, D. (2012). Tree species classification in the Southern 
Alps based on the fusion of very high geometrical resolution 
multispectral/hyperspectral images and LiDAR data. Remote sensing of environment, 
123(Supplement C), 258-270, doi:https://doi.org/10.1016/j.rse.2012.03.013. 

Dalponte, M., & Coomes, D. A. (2016). Tree-centric mapping of forest carbon density from 
airborne laser scanning and hyperspectral data. Methods in Ecology and Evolution, 
7(10), 1236-1245, doi:10.1111/2041-210X.12575. 

Dash, J. P., Marshall, H. M., & Rawley, B. (2015a). Methods for estimating multivariate stand 
yields and errors using k-NN and aerial laser scanning. Forestry, 
doi:10.1093/forestry/cpu054. 

Dash, J. P., Watt, M. S., Bhandari, S., & Watt, P. (2015b). Characterising forest structure using 
combinations of airborne laser scanning data, RapidEye satellite imagery and 
environmental variables. Forestry, cpv048. 

Ehbrecht, M., Schall, P., Juchheim, J., Ammer, C., & Seidel, D. (2016). Effective number of 
layers: A new measure for quantifying three-dimensional stand structure based on 
sampling with terrestrial LiDAR. Forest Ecology And Management, 380, 212-223. 

Genuer, R., Poggi, J.-M., & Tuleau-Malot, C. (2010). Variable selection using random forests. 
Pattern Recognition Letters, 31(14), 2225-2236, 
doi:https://doi.org/10.1016/j.patrec.2010.03.014. 

Grau, E., Durrieu, S., Fournier, R., Gastellu-Etchegorry, J.-P., & Yin, T. (2017). Estimation of 
3D vegetation density with Terrestrial Laser Scanning data using voxels. A sensitivity 
analysis of influencing parameters. Remote sensing of environment, 191, 373-388. 

Griffin, A. M., Popescu, S., & Zhao, K. Using LIDAR and normalized difference vegetation 
index to remotely determine LAI and percent canopy cover. In, 2008 2008 (8th) 

Hall, S. A., Burke, I. C., Box, D. O., Kaufmann, M. R., & Stoker, J. M. (2005). Estimating 
stand structure using discrete-return lidar: an example from low density, fire prone 
ponderosa pine forests. Forest Ecology And Management, 208(1-3), 189-209. 

Holmgren, J., Nilsson, M., & Olsson, H. (2003). Estimation of tree height and stem volume on 
plots using airborne laser scanning. Forest Science, 49, 419-428. 

Hudak, A. T., Strand, E. K., Vierling, L. A., Byrne, J. C., Eitel, J. U., Martinuzzi, S., & 
Falkowski, M. J. (2012). Quantifying aboveground forest carbon pools and fluxes from 
repeat LiDAR surveys. Remote sensing of environment, 123, 25-40. 

Hyde, P., Dubayah, R., Peterson, B., Blair, J., Hofton, M., Hunsaker, C., Knox, R., & Walker, 
W. (2005). Mapping forest structure for wildlife habitat analysis using waveform lidar: 
Validation of montane ecosystems. Remote sensing of environment, 96(3), 427-437. 

Jaakkola, A., Hyyppä, J., Kukko, A., Yu, X., Kaartinen, H., Lehtomäki, M., & Lin, Y. (2010). 
A low-cost multi-sensoral mobile mapping system and its feasibility for tree 
measurements. ISPRS journal of Photogrammetry and Remote Sensing, 65(6), 514-522. 

Jakubowski, M. K., Guo, Q. H., & Kelly, M. (2013). Tradeoffs between lidar pulse density and 
forest measurement accuracy. Remote Sensing of Environment, 130, 245-253, doi:DOI 
10.1016/j.rse.2012.11.024. 

Kim, E., Lee, W.-K., Yoon, M., Lee, J.-Y., Son, Y., & Abu Salim, K. (2016). Estimation of 
Voxel-Based Above-Ground Biomass Using Airborne LiDAR Data in an Intact 
Tropical Rain Forest, Brunei. Forests, 7(11), 259. 

https://doi.org/10.1016/j.rse.2012.03.013
https://doi.org/10.1016/j.patrec.2010.03.014


194 
 

Liaw, A., & Wiener, M. (2002). Classification and regression by randomForest. R news, 2(3), 
18-22. 

Maguya, A. S., Tegel, K., Junttila, V., Kauranne, T., Korhonen, M., Burns, J., Leppanen, V., 
& Sanz, B. (2015). Moving Voxel Method for Estimating Canopy Base Height from 
Airborne Laser Scanner Data. Remote Sensing, 7(7), 8950-8972. 

McGaughey, R. J. (2015). FUSION. (3.42 ed.). Washington, USA: USDA. 
Means, J. E., Acker, S. A., Fitt, B. J., Renslow, M., Emerson, L., & Hendrix, C. J. (2000). 

Predicting forest stand characteristics with airborne scanning LiDAR. 
Photogrammetric Engineering and Remote Sensing, 66(11), 1367-1371. 

Means, J. E., Acker, S. A., Harding, D. J., Blair, J. B., Lefsky, M. A., Cohen, W. B., Harmon, 
M. E., & McKee, W. A. (1999). Use of large-footprint scanning airborne LiDAR to 
estimate forest stand characteristics in the Western Cascades of Oregon. Remote 
Sensing of Environment, 67(3), 298-308. 

Moskal, L. M., & Zheng, G. (2011). Retrieving forest inventory variables with terrestrial laser 
scanning (TLS) in urban heterogeneous forest. Remote Sensing, 4(1), 1-20. 

Mutlu, M., Popescu, S. C., Stripling, C., & Spencer, T. (2008a). Mapping surface fuel models 
using lidar and multispectral data fusion for fire behavior. Remote sensing of 
environment, 112(1), 274-285. 

Mutlu, M., Popescu, S. C., & Zhao, K. (2008b). Sensitivity analysis of fire behavior modeling 
with LIDAR-derived surface fuel maps. Forest Ecology And Management, 256(3), 289-
294. 

Næsset, E. (2002). Predicting forest stand characteristics with airborne scanning laser using a 
practical two-stage procedure and field data. Remote sensing of environment, 80(1), 88-
99. 

Næsset, E. (2004). Practical large-scale forest stand inventory using a small-footprint airborne 
scanning laser. Scandinavian Journal of Forest Research, 19(2), 164-179, doi:Doi 
10.1080/02827580310019257. 

Næsset, E. (2005). Assessing sensor effects and effects of leaf-off and leaf-on canopy 
conditions on biophysical stand properties derived from small-footprint airborne laser 
data. Remote sensing of environment, 98(2-3), 356-370. 

Naesset, E. (1997). Estimating timber volume of forest stands using airborne laser scanner data. 
Remote sensing of environment, 61(2), 246-253. 

Naesset, E. (2002). Predicting forest stand characteristics with airborne scanning laser using a 
practical two-stage procedure and field data. Remote sensing of environment, 80(1), 88-
99. 

Naesset, E. (2004). Practical large-scale forest stand inventory using a small-footprint airborne 
scanning laser. Scandinavian Journal of Forest Research, 19(2), 164-179, doi:Doi 
10.1080/02827580310019257. 

Naesset, E. (2005). Assessing sensor effects and effects of leaf-off and leaf-on canopy 
conditions on biophysical stand properties derived from small-footprint airborne laser 
data. Remote sensing of environment, 98(2-3), 356-370. 

Naesset, E. (2007). Airborne laser scanning as a method in operational forest inventory: Status 
of accuracy assessments accomplished in Scandinavia. Scandinavian Journal of Forest 
Research, 22(5), 433-442, doi:10.1080/02827580701672147. 

Næsset, E., & Bjerknes, K. O. (2001). Estimating tree heights and number of stems in young 
forest stands using airborne laser scanner data. Remote Sensing of Environment, 78(3), 
328-340. 

Naesset, E., & Bjerknes, K. O. (2001). Estimating tree heights and number of stems in young 
forest stands using airborne laser scanner data. Remote sensing of environment, 78(3), 
328-340. 



195 
 

Næsset, E., Gobakken, T., Holmgren, J., Hyyppä, H., Hyyppä, J., Maltamo, M., Nilsson, M., 
Olsson, H., Persson, Å., & Söderman, U. (2004). Laser scanning of forest resources: 
The nordic experience. Scandinavian Journal of Forest Research, 19(6), 482-499, 
doi:10.1080/02827580410019553. 

Næsset, E., & Okland, T. (2002). Estimating tree height and tree crown properties using 
airborne scanning laser in a boreal nature reserve. Remote Sensing of Environment, 
79(1), 105-115. 

Nilsson, M. (1996). Estimation of tree heights and stand volume using an airborne LiDAR 
system. Remote Sensing of Environment, 56(1), 1-7. 

Nord-Larsen, T., & Schumacher, J. (2012). Estimation of forest resources from a country wide 
laser scanning survey and national forest inventory data. Remote Sensing of 
Environment, 119, 148-157, doi:DOI 10.1016/j.rse.2011.12.022. 

Palminteri, S., Powell, G. V., Asner, G. P., & Peres, C. A. (2012). LiDAR measurements of 
canopy structure predict spatial distribution of a tropical mature forest primate. Remote 
sensing of environment, 127, 98-105. 

Pearse, G. D., Morgenroth, J., Dash, J. P., & Watt, M. S. (2017). Optimising prediction of forest 
leaf area index from discrete airborne LiDAR. Remote Sensing and Environment. 

Peduzzi, A., Wynne, R. H., Fox, T. R., Nelson, R. F., & Thomas, V. A. (2012). Estimating leaf 
area index in intensively managed pine plantations using airborne laser scanner data. 
Forest Ecology And Management, 270, 54-65. 

Pope, G., & Treitz, P. (2013). Leaf Area Index (LAI) Estimation in Boreal Mixedwood Forest 
of Ontario, Canada Using Light Detection and Ranging (LiDAR) and WorldView-2 
Imagery. Remote Sensing, 5(10), 5040. 

Popescu, S. C., Wynne, R. H., & Nelson, R. F. (2002). Estimating plot-level tree heights with 
lidar: local filtering with a canopy-height based variable window size. Computers and 
Electronics in Agriculture, 37(1-3), 71-95. 

Popescu, S. C., & Zhao, K. (2008). A voxel-based lidar method for estimating crown base 
height for deciduous and pine trees. Remote sensing of environment, 112(3), 767-781. 

Puliti, S., Ørka, H. O., Gobakken, T., & Næsset, E. (2015). Inventory of small forest areas 
using an unmanned aerial system. Remote Sensing, 7(8), 9632-9654. 

Sheridan, R. D., Popescu, S. C., Gatziolis, D., Morgan, C. L., & Ku, N.-W. (2014). Modeling 
forest aboveground biomass and volume using airborne LiDAR metrics and forest 
inventory and analysis data in the Pacific Northwest. Remote Sensing, 7(1), 229-255. 

Stephens, P. R., Kimberley, M. O., Beets, P. N., Paul, T. S. H., Searles, N., Bell, A., Brack, C., 
& Broadley, J. (2012). Airborne scanning LiDAR in a double sampling forest carbon 
inventory. Remote sensing of environment, 117, 348-357. 

Strobl, C., Boulesteix, A.-L., Kneib, T., Augustin, T., & Zeileis, A. (2008). Conditional 
variable importance for random forests. BMC Bioinformatics, 9(1), 307, 
doi:10.1186/1471-2105-9-307. 

Strobl, C., & Zeileis, A. (2008). Danger: High Power! – Exploring the Statistical Properties of 
a Test for Random Forest Variable Importance. In  Proceedings of the 18th 
International Conference on Computational Statistics, Porto, Portugal. 

Sumnall, M., Peduzzi, A., Fox, T. R., Wynne, R. H., & Thomas, V. A. (2016). Analysis of a 
lidar voxel-derived vertical profile at the plot and individual tree scales for the 
estimation of forest canopy layer characteristics. International Journal of Remote 
Sensing, 37(11), 2653-2681. 

Teo, T.-A., & Shih, T.-Y. (2013). Lidar-based change detection and change-type determination 
in urban areas. International Journal Of Remote Sensing, 34(3), 968-981. 



196 
 

Treitz, P., Lim, K., Woods, M., Pitt, D., Nesbitt, D., & Etheridge, D. (2012). LiDAR Sampling 
Density for Forest Resource Inventories in Ontario, Canada. Remote Sensing, 4(4), 830-
848, doi:Doi 10.3390/Rs4040830. 

Van Ewijk, K. (2015). Estimating Forest Structure from LiDAR and High Spatial Resolution 
Imagery for the Prediction of Succession and Species Composition. Queen's University,  

Vierling, K. T., Vierling, L. A., Gould, W. A., Martinuzzi, S., & Clawges, R. M. (2008). Lidar: 
shedding new light on habitat characterization and modeling. Frontiers in Ecology and 
the Environment, 6(2), 90-98. 

Wallace, L., Lucieer, A., Malenovský, Z., Turner, D., & Vopěnka, P. (2016). Assessment of 
Forest Structure Using Two UAV Techniques: A Comparison of Airborne Laser 
Scanning and Structure from Motion (SfM) Point Clouds. Forests, 7(3), 62. 

Wallace, L., Lucieer, A., Watson, C., & Turner, D. (2012). Development of a UAV-LiDAR 
system with application to forest inventory. Remote Sensing, 4(6), 1519-1543. 

Wallace, L., Musk, R., & Lucieer, A. (2014). An assessment of the repeatability of automatic 
forest inventory metrics derived from UAV-borne laser scanning data. IEEE 
Transactions on Geoscience and Remote Sensing, 52(11), 7160-7169. 

Watt, M. S., Adams, T., Aracil, S. G., Marshall, H., & Watt, P. (2013a). The influence of 
LiDAR pulse density and plot size on the accuracy of New Zealand plantation stand 
volume equations. New Zealand Journal of Forestry Science, 43(1), 15. 

Watt, M. S., Meredith, A., Watt, P., & Gunn, A. (2013b). Use of LiDAR to estimate stand 
characteristics for thinning operations in young Douglas-fir plantations. New Zealand 
Journal of Forestry Science, 43(1), 18. 

Watt, M. S., Meredith, A., Watt, P., & Gunn, A. (2014). The influence of LiDAR pulse density 
on the precision of inventory metrics in young unthinned Douglas-fir stands during 
initial and subsequent LiDAR acquisitions. New Zealand Journal of Forestry Science, 
44(1), 1-9. 

Watt, P., & Watt, M. S. (2013). Development of a national model of Pinus radiata stand 
volume from LiDAR metrics for New Zealand. International Journal of Remote 
Sensing. 

Yu, X., Hyyppä, J., Kaartinen, H., & Maltamo, M. (2004). Automatic detection of harvested 
trees and determination of forest growth using airborne laser scanning. Remote sensing 
of environment, 90(4), 451-462. 

 

  



197 
 

5. Conclusions 

This project has highlighted the increasing capacity of remote sensing systems to capture 3D 
dense point cloud data.  These significant technological advancements permit the extraction of 
detailed 3D structural information that cannot be derived from LiDAR surfaces such as Canopy 
Height Models.  A focus on the pointcloud data not only utilises the shape and structure of the 
canopy surface but allows access to much more sub-canopy information.  In this report we have 
evaluated several remote LiDAR systems and provide specifications and procedures for 
optimal data acquisition.   

Although results described in this report demonstrate significant utility from dense LiDAR data 
they clearly show that further research is required to fully utilise this data. Analyses using UAS 
LiDAR data demonstrate that the absolute accuracy of the Velodyne puck (3 – 7 cm) is 
sufficient to detect stems and crowns of individual trees but is unlikely to be sufficiently precise 
to measure tree dimensions such as stem diameters. Unlike, the Velodyne puck, the more 
expensive Riegl VUX-1LR is a survey-grade lidar sensor with a reported accuracy/precision 
of 15 mm and theoretically could be used to detect large branches. However, further research 
will be required to fully explore the capabilities of this sensor.  

The authors of Section 4.1 plan to progress their evaluation of stem segmentation algorithms 
on the same high quality dataset used in Section 3.2 which was acquired with a Reigl VUX 
1LR lidar sensor, under, what we believe to be superior acquisition specifications. This analysis 
has been included in a project proposal submitted for NIFPI funding.   

Section 3.3. presents the first attempt of acquiring UAV stereo-camera imagery below a P. 
radiata canopy in order to capture tree stem information.  The authors present a RMSE for 
DBH estimation of 5.0 cm which is likely to be inadequate for stem volume estimations. 
However, while the individual diameters may be less accurate than those obtained using a 
manual tape, a major advantage of this approach is that diameter estimates can be obtained at 
multiple locations along the tree stem.  The approach of deriving multiple diameters and 
applying existing taper functions is developed further in Section 4.1 “Algorithms and 3D 
modelling techniques for tree detection and tree-level volume estimates”. 

Parallel to these advances made in system hardware has been the recent advances in software 
systems that can process, visualise and analysis these very large pointcloud datasets.  We have 
demonstrated that these 3D datasets can be imported into an immersive virtual reality 
environment.  A new FWPA project (PNC464-1718) is aimed at developing software tools that 
will allow the user to measure stem and tree structure interactively as well as integrating into 
the same VR environment algorithms that can automatically segment and reconstruct 
individual trees identified within the 3D point cloud data. 

The accurate estimation of stem level attributes, however, requires not only dense point data 
but also very geospatially accurate data.  A range of different UAV and ALS LiDAR systems 
now exist but there is a trade-off between the cost of the instrument and the quality of the 
acquired datasets.  In all cases it is strongly recommended that the LiDAR systems are 
calibrated and appropriate ground control geo-registration is obtained.  The application area 
and quality of information required determine the type of platform/sensor system chosen.  For 
example, the remote assessment of reference tree stems (possibly replacing conventional 
inventory plot sampling strategies) will require dense, very high quality point data that can be 
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provided by the survey-grade Riegl VUX1 systems.  Cheaper LiDAR-UAS or new ALS 
systems can also acquire dense pointcloud data that can provide tree-level information such as 
accurate tree counts and the extraction of new 3D metrics such as voxel metrics.  These 
parameters will improve inventory estimates when applied to existing ABA based modelling 
approaches. 

Further research that analyses a sufficient number of datasets from a varying mix of sensors 
& platforms, acquisition specifications and stand conditions will be required to gain 
confidence around recommendations for operational specifications.  Nevertheless, report 
findings do suggest that utilisation of dense point cloud data for characterisation of stand and 
tree-level attributes does look like a promising approach. As a result certain aspects of this 
project are now being progressed in new projects e.g. FWPA PNC464-1718.  One area that 
requires particular attention and is the topic of future research plans will be the exploration of 
the potential of the VUX-1 LR lidar sensor to undertake detailed stem characterisations. An 
important issue which we did not address in this project was the potential cost benefits related 
to the trade-offs between estimation accuracies and cost of the sensor/platform systems.  

Finally, a key operational constraint to UAS operations in any Australian forested environment 
is the compliance with current Civil Aviation Safety Authority (CASA) regulations, in 
particular the requirement for the UAS to be within visual line of sight.  The Civil Aviation 
Authority (CAA) in New Zealand, however, permit a UAS to fly beyond the line of sight if the 
operator is appropriately certified (with 102 certification) by the CAA and the operator has 
prepared a flight plan to the required standards defined by the CAA.  We recommend that the 
Australian UAS industry and the forestry industry continue to lobby CASA for beyond visual 
line of sight for operations within commercial forests.  
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Appendix 1 - Airborne Laser Scanner acquisition specifications 
for plantation inventory 

 

Susana Gonzalez1, David Herries1, Christine Stone2 

1 Interpine Group Ltd, Rotorua, NZ, Susana.Gonzalez@interpine.nz 
2 NSW Department Primary Industries - Forestry, Christine.Stone@dpi.nsw.gov.au 

 

Introduction and Discussion 

LiDAR acquisition specifications are heavily influenced by the intended application.  
Requirements should consider the type of terrain, the complexity of the forest characteristics, 
and the required information.  When writing a contract for the acquisition and delivery of 
LiDAR data, there are several survey specifications that need to be defined including: 1) data-
acquisition parameters; 2) accuracy specifications; 3) Completeness and consistency of the data 
set; 4) spatial reference framework (datum, projections, etc.); 5) deliverables and 6) formats 
and data organization.  

Several documents have recently been published that provide excellent advice on the 
specification considerations for forestry applications (e.g. White et al. 2013, Natural Resources 
Canada 2017; Mitchell et al. 2018).  These guides tend to be relatively generic since forest 
environments vary and the technology evolves quickly.  Therefore foresters need to select the 
specifications best suited for their information needs and budget.   

The Area Based Approach (ABA) has become the standard procedure for processing Airborne 
laser Scanner (ALS) point cloud data for spatial metrics that can then be used to generate 
predictive models for inventory attributes (White et al. 2017).  The ABA usually provides an 
estimation of forest inventory attributes of interest over a grid that typically corresponds to the 
size of the measured ground plots.  The Report by White et al. (2017) provides excellent advice 
on the ABA data workflow procedure for modelling and mapping using ALS data for spatially 
explicit forest inventory.  If however, the ALS data is sufficiently dense (> 5 pulses/m2), then 
individual tree crowns can be detected using the ALS point clouds, enabling tree-level 
attributes such as stocking to be accurately estimated.  ALS technology, however, is advancing 
rapidly with new survey-grade laser sensors now capable much higher pulse rates.  ALS sensors 
with pulse rates > 500,000 pulses/second are now available in Australia and New Zealand.  
Increased pulse rates allow data vendors to fly aircraft at higher altitudes and faster speeds to 
obtain data within a specified pulse density target, which in turn reduces acquisition costs.  In 
addition, it is these new sensors having very high pulse rates that provide the potential for stem 
reconstruction and segmentation.  As usual there are the trade-offs between data quality and 
cost-efficiencies. 

mailto:Susana.Gonzalez@interpine.nz
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Most discrete return laser systems can now provide 4 or more returns per pulse.  This occurs 
when the laser pulse intercepts an object through which it can penetrate, such that some of the 
energy will be returned to the instrument (first return), and some continue through the canopy 
and intercepts stems, branches, leaves before reaching the ground.  The last returns are assumed 
to originate from the ground or objects near the ground.  Full waveform systems, on the other 
hand, record the reflected energy from each pulse emitted as a continuous signal.  The new 
Riegl laser sensors now capture full waveform data, however, discrete points are commonly 
extracted from the waveform using sophisticated algorithms to isolate targets at the highest 
peaks of reflectance along the wave.  This technology provides the flexibility of extracting 
more or less discrete points from the wave based upon detection thresholds and range 
tolerances settings for best target estimation. 

With ALS data, the vertical accuracy is always greater than the horizontal accuracy, with the 
absolute accuracy stating that the x, y, z, attributes of the return are within a certain limit in the 
real-world.  For the large New Zealand acquisition campaigned managed by Interpine, they 
sought a vertical accuracy of =< 10 cm and a horizontal accuracy of =< 50 cm (Table 1).  White 
et al. (2013) also point out that relative accuracy is also important for calibrating data from 
adjacent flight lines against each other (i.e. swath-to-swath matching).  

The collection and processing of ground control points (GCPs) is highly recommended as they 
are used of undertaking data quality assurance and quality control (QA/QC) (refer to Section 
3.2.2 in this Report).  The GCPs are used for both survey calibration and assessment of absolute 
vertical accuracy.  Strongly clustered GCPs are useful for the calibration process.  It is also 
good practice to use ALS calibration arrays (usually at least three open, un-vegetated sites 
across an ALS block).  These assist with identification and removal of systematic errors during 
the post-processing of raw ALS data.  Differential GNSS can be used to acquire ground heights 
at each of the calibration arrays, which are incorporated into the ALS processing workflow to 
adjust the block of ALS data onto terrain.   

For the coverage of large areas, the operating parameters of the LiDAR system are usually 
selected that optimize point density and area coverage rate.  Table 1 presents the LiDAR data 
and delivery specifications that were defined by Interpine for a recent, very large acquisition 
campaign over hundreds of thousands of hectares in New Zealand.  Key sensor parameters 
include: accuracy; pulse density; returns per pulse; scan angle; beam divergence; pulse 
repetition frequency; beam footprint and flight line overlap.  Pulse density is a function of 
multiple sensor parameters including pulse rate, instrument energy, receiver sensitivity, flying 
height and speed and scan angles.  As mentioned, pulse density per square metre affects what 
can be achieved from the derived metrics.  Higher point densities enable an improved 
description of the forest stands. We have demonstrated in this FWPA project that ultra-high 
point densities provide the capability for stem reconstruction and segmentation (refer to Section 
4.1 in this Report).   

Forestry operations usually specify a relatively narrow scan angle (i.e. <+ 15o).  Narrow scan 
angles increase penetration through the canopy, support smaller footprints, and increase 
incident pulse energy.  Conversely ground returns decrease as scanning angle increases.   
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Laser Beam divergence represents the angular spread of the laser pulse which is a combination 
of the height of the aircraft, scan angle and motion of the aircraft as well as the slope of the 
terrain.  Narrow beam divergence improves the penetration rate into the canopy.  Both the beam 
divergence and flying altitude influence footprint size, in turn, influence the footprint size of 
the laser pulse on the ground. For example, a laser at an altitude of 1000 m with a beam 
divergence of 0.3 mrad will have a footprint that is approximately 30 cm in diameter.  Small 
footprints (< 30 cm) provide more information on canopy gaps and have greater ranging 
accuracy.  Also small footprints with high pulse energy are preferred for individual tree feature 
extraction. 

Pulse repetition frequency is the frequency of transmitted laser pulses. Newer systems are 
continually offering greater pulse frequencies.  The pulse repetition frequency directly 
influences the ability of the laser pulses to penetrate the forest canopy.  Flight line overlap or 
swath overlap is another important ALS acquisition specification and refers to how much 
overlap exists between scanning swaths.  A total swath overlap of > 50% is now requested.  
Fifty percent sidelap provides 100% total overlap, so each area is being scanned twice.  Hence 
overlapping swaths enable higher pulse densities and multiple look angles, both of which 
increase the likelihood of ground returns in dense canopies but decrease data occlusions. 

The planned LiDAR acquisition parameters should be designed and conducted with no data 
gaps and no data void areas except in those areas where low near infrared surface reflectance 
features are present, such as water.  It is now also common for ALS aircraft to carry a 3-band 
camera which is acquired simultaneously with the LiDAR capture.  These images can be 
provided as high spatial (10 – 20 cm) resolution imagery individual georeferenced and ortho-
rectified frames.  

In terms of data deliverables, all the discrete multi-return data are classified.  All the above 
ground level features (e.g. vegetation, buildings, water etc.,) are filtered from the ‘bare—earth’ 
ground point data, using a schema based on the ASPRS (American Society for Photogrammetry 
& Remote Sensing) LAS standard.  The current ASPRS LAS format standard is version 
LAS1.4.  In addition to the point classification, each laser return is assigned the following 
values; x, y, z, intensity, return number, number of returns, flagged if overlap, scan angle and 
point source ID.  The return intensity is a measure of the energy in the originating infrared 
pulse that returns to the sensor. Intensity data can be processed into an image corresponding to 
a non-calibrated infrared reflection that is like an orthophoto.  

Interpine also define the required datum and map projection, the tiling, size and naming 
nomenclature of the data files, the data formats, how the data should be stored and supplied 
and the project acquisition metadata.. 

In conclusion, the LiDAR data specifications selected are dependent on the intended project 
objectives and associated information needs (e.g. stand level ABA versus individual tree level 
information).  Therefore, forest managers need be aware of the specifications and capacity of 
currently available LiDAR systems while the ALS data vendor needs to be aware of the project-
specific objectives and issues in order for a clearly worded ALS acquisition contract.  Finally, 
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once delivered, a process of quality assurance and control evaluation of the data is essential 
because errors in the quality of the data will directly influence parameter accuracies derived 
from imputation. 

 

Table 1: ALS acquisition specifications for plantation inventory provided by Interpine Group 
Ltd 

LiDAR Point Cloud Specifications 

Ref Specification Expectation and Criteria 
1.  Coverage Wall-to-wall coverage required including a buffer to avoid edge effects.  A 50m buffer is 

currently included in the area of interest provided. 

2.  LiDAR Equipment Riegl LMS-Q1560 or LMS-Q780 LiDAR Scanner (or equivalent scanner type, if outside 
of these units please provide a detailed specification and an example dataset over 
vegetation). 

3.  Accuracy Vertical =< 10 cm 
Horizontal =< 50cm 

4.  Ground Survey 
Control and 
Network Accuracy 

Additional ground control survey will be conducted.  

5.  Pulse Density Recording a minimum pulse density of four (4) outbound pulses per square metre. 

6.  Returns Per Pulse It is expected the supplier will work with the client to review full waveform datasets to 
result in an acceptable delivery of multiple discrete returns during post processing.   It is 
important for the supplier to realise the data is capture over dense forest canopy. 

7.  Pulse Intensity Recording of intensity of each return is required. 

8.  Scan Angle  Flight line will be designed to ensure the scan angle is a maximum of 14° either side 
of nadir, with a total effective field of view of 28°.   

 It is acknowledged that the total field of view of the LiDAR unit deployed is 58-60° 
and that all flights will capture and deliver to the client the full dataset across this 
entire 58-60° field of view.   By design this will result in an approximate total overlap 
of ~50%. 

9.  Beam Divergence Narrow beam divergence. 

10.  Pulse Repetition 
Frequency (PRF) 

Pulse repetition frequency good enough to ensure good LiDAR pulse penetration through 
the forest canopy.    

11.  Beam Footprint =<30cm 

12.  Flight Line Overlap  Based on the scan angle being a maximum of 14° either side of nadir, with a total 
effective field of view of 28°. 

 It is acknowledged that the total field of view of the LiDAR unit deployed is 58° and 
that all flights will capture and deliver to the client the full dataset across this entire 
58° field of view.   By design this will result in an approximate total overlap of ~50%.   

 Any data with gaps between the geometrically usable portions of the swaths will be 
rejected in QA.    
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13.  Cross Track Ratio of cross track to down track point collection should not exceed a ratio of 2:3 in 
compliance with international standards. 

14.  Data Voids Data voids caused by system malfunctions, data dropout, clouds, or flight line data gaps, 
or excessive classification of withheld / overlap flagged points are considered 
unacceptable.  These can be defined as Data Voids => 4x NPS2 measured using 1st-
returns only within a single swath are not acceptable, except:  

1) where caused by water bodies  
2) where caused by areas of low near infra-red (NIR) reflectivity such asphalt or 

composition roofing 
3) where appropriately filled-in by another swath within the target scan angle from 

Nadir. 
15.  Flight Conditions Conditions for data capture should be: 

1) Cloud and fog free between aircraft and the ground. 
2) Flights should not be taken during periods of heavy smoke or haze. 
3) Floodplain/wetland data must be captured during times of base-flow and outside 

of significant surface inundation due to natural events and /or regulated 
environmental flows. 

16.  Aerial Photos Acquisition of 3-band imagery simultaneously with LiDAR capture, processing and 
delivery of 10-20cm resolution imagery as individually georeferenced and ortho-rectified 
frames.  

 

LiDAR Derivative Data Specifications 

Ref Specification Expectation and Criteria 
1  Output Formats Output data will be provided in ASPRS LAS format files.    

1) Discrete multi-return data with point classifications consistent with the ASPRS 
LAS standard.    

2) Each laser return will have a minimum of: 
a. GPS times recorded as adjusted GPS time, at a precision sufficient to 

allow unique timestamps for each pulse. 
b. Easting, northing and elevation above sea level. 
c. Intensity 
d. Return number 
e. Number of returns 
f. Classification (including classification of all overlap) 
g. Overlap flagged as withheld point as not to be classified as Class 12 
h. Scan angle. 
i. Channel 1 or 2 from dual channel sensor. 
j. Point source (flight path ID) 

3) Minimum of version 1.4 LAS format in LAZ compression format (see notes on 
Classification).    

4) Geo-referencing information in all LAS headers (as VLR to ASPRS standard). 
5) Data will be supplied for the full fixed field of view of the scanner. 
6) Full waveform will be provided in Riegl waveform formats or a format agreed by 

both parties (consideration of PulseWaves format will be discussed). 
2 Datum and Map 

Projection 
The coordinate system for all deliverables is the New Zealand Transverse Mercator 2000. 
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Ref Specification Expectation and Criteria 
This includes the: 

- Horizontal datum: New Zealand Geodetic Datum 2000 
- Vertical datum: New Zealand Vertical Datum 2016 
- Geoid Model: LINZ NZGeoid2016 

Elevation will be provided above sea level, where geoid model above shall be used to 
derive orthometric heights from ellipsoidal data. 

3 Tiling and  
File sizes 

Output should be split into tiles 500x500m (Larger tile sizes which maximise workflow 
efficiency will be considered, but files should contain no more than 20 million returns.   
The origin of the tile must be placed on a whole metre coordinate value of the south west 
corner of each tile. e.g. 426000mE_7243000mN 

Tile Naming: ProjectYYYY_ProductType_xxxxxxx_yyyyyyy.laz 
Example:  HB2015_C2_1444000_5082000.laz 

Project Interpine Project Name / Tile Owner 
YYYY  2017  Year of Survey  
ProductType _C2 or _UNC ICSM Classification level (C1, C2, C3, C4) or 

Unclassified (UNC). 
xxxxxxx_yyyyyyy  _1444000_5082000  

(1,444,000mE)  
(5,082,000mN)  

The full easting and northing value of the south- 
west corner of the tile.  
A single “_” must be used to separate the 
remaining file name components.  

 

4 Data Storage and 
Supply 

All data is to be provided on external HDD with a minimum 2TB capacity. Provisions for 
download from an online portal can be made available for initial data delivery to check 
data structure and specification compliance.   External HDD supplied with be retained by 
the client. 

5 Data Thinning No data will be removed, and all points collected will be supplied.    

6 Point Classification Classification of the point data as follows: 

1. Undertake automatic classification of all collected data (Level 1 (ICSM 2010)) 

2. Automatically remove any atmospheric points above all collected data (Level 1 
(ICSM 2010)) 

3. Automatically classify all overage outside 28 degree FOV into a separate class (so 
that manual improvement of ground is not impeded by this additional data) 

4. Manually improve the ground definition where required up to 28 degree FOV, then 
automatically reclassify overage data back to the appropriate classes and attach the 
withheld flag to any overage points.  This will be provided to Level 2 (ICSM 2010) 
classification to achieve 98% accuracy levels for ground data classification.  It is 
expected this is for ground surface improvement using automated and manual 
methods be used to obtain ground (2 and model key points).     

5. Then automatically reclassify overage data back to the appropriate classes and attach 
the withheld flag to any overage points. 

Minimum automated ASPRS classification scheme shown below. (ICSM 2011).   

0 Unclassified (Created, never classified) 
1 Default (Unclassified) 
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Ref Specification Expectation and Criteria 
2 Ground (Bare Ground) 
3 Low Vegetation (0-0.3m, essentially sensor noise) 
4 Medium Vegetation (0.3-2m) 
5 High Vegetation (>2m) 
6 Buildings and structures (buildings, houses, sheds, silos etc) 
7 Low/high points (spurious high/low returns (unusable)) 
8 Model key points (Reserved for ‘model key points’ only) 
9 Water (any point in water) 
10-11 Defined by supplier 
12 DO NOT USE FOR OVERLAP IN FINAL DELIVERY – must be defined as 
withheld flag and overlap classified as part of step 5 in workflow above 
13-31 Defined by supplier 

*It is understood that through the process of Level 2 ground surface improvement that 
best practice stipulates level 1 classification is carried out to aid manual validation.    
Focus of level 1 classification should be on a “clean vegetation cloud” free of atmospheric 
clouds and noisy return data.   It is however expected that there will be within the 
vegetation layer some misclassification of structures such as buildings, vehicles, and 
power cables due to the automated nature of level 1 classification.  

 

Commination and Reporting Requirements 

The LiDAR provider is expected to provide progress updates throughout all stages of the 
project, in the form of verbal conversations, email and formal reports.    

• Progress Reports must be provided weekly via email and include a KML, GPX file of 
Shapefile of the captured flight lines. These reports will provide updates on progress 
of the capture and data processing tasks, whether tasks are still within timeframe 
expectations. 

• A Final Project report will be provided with the delivery of the final data and derived 
products upon project completion.   

 

Data Supply Specifications 

Deliverable Format Notes 
Classified 
point cloud 

.LAS (.LAZ) Classified dataset as outlined above in tiles. 

Unclassified 
Point cloud 

.LAS (.LAZ) Full unclassified point cloud in tiles (raw return data prior to noise filtering and 
classification) 

Full wavelength  PulseWaves 
Format  

Full waveform in PulseWaves compression format. 

1m Intensity 
Images 

.TIF Derived 1m resolution images of intensity. 

1m Contours ESRI Shape 
file 

Derived 0.5m resolution contours. 

1m DTM .TIF 
 

Derived 1m resolution DEM surface, from triangulated mesh from processed 
LiDAR ground points (class 2,8). 

Aerial Photos ECW & .TIF  0.10-0.20cm resolution (preference for 0.10cm) 
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Deliverable Format Notes 
Flight Trajectory ESRI Shape 

file 
Actual flight lines including a minimum of date, time, altitude, point source ID. 

Project Report PDF This report provides a single point of reference, describing the project, work 
undertaken, processing steps followed and dataset accuracy checks completed.    
For each supplied LiDAR data product this report should either include a metadata 
statement consistent with the ANZLIC Metadata Profile (Version 1.1) or supply the 
ANZLIC approved XML format. The ANZMET Lite metadata tool will be used to 
validate all XML records if these are being provided.  
http://www.anzlic.org.au/infrastructure_metadata.html  
Example of metadata information: 

 

 
Tile Index 
Metadata 

ESRI Shape 
file 

Tile index polygon showing meta data including date of acquisition for the LiDAR 
dataset. 

 

Finally, after all the data is received and a quality assurance (QA) is compete the data is sign 
off. Otherwise, the airborne LiDAR supplier has 30 days from final data delivery to ensure data 
products meet project standards.   

For further information please contact: 

Susana Gonzalez 

Email :   Susana.Gonzalez@interpine.nz 

Mobile :  +64 21 026 49733 

Office:   +64 7 3503209  

 

  

http://www.anzlic.org.au/infrastructure_metadata.html
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Disclaimer 

The information in this document has been prepared and approved by Interpine Group Limited 
(Interpine). Access to the information in this document is being given by Interpine specifically 
to the person(s) to whom it was intended. The information contained in this document remains 
the intellectual property of Interpine and may not be reproduced, distributed or published by 
any recipient for any purpose without the prior written consent of Interpine. 

Although all reasonable care has been taken to ensure that the information contained in this 
document is accurate, neither Interpine nor its respective officers, advisers or agents makes any 
representation or warranty, express or implied as to the accuracy, completeness, currency or 
reliability of such information or any other information provided whether in writing or orally 
to any recipient or its officers, advisers or agents.  

Interpine and its respective officers, advisers, or agents do not accept: any responsibility arising 
in any way for any errors in or omissions from any information contained in this document or 
for any lack of accuracy, completeness, currency or reliability of any information made 
available to any recipient, its officers, advisers, or agents; or any liability for any director or 
consequential loss, damage or injury suffered or incurred by the recipient, or any other person 
as a result of or arising out of that person placing any reliance on the infomation or its accuracy, 
completeness, currency or reliability. 

Interpine Group Ltd 
P.O. Box 1209, Rotorua 

Telephone. (07) 345 7573  
Email. info@interpine.co.nz   

Website. www.interpine.com 
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