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Executive Summary 

 

This collaborative, 12-month scoping study was developed in response to the increasing 

demands for managers to monitor and report on the sustainable management of native forests. 

A key mechanism for meeting these responsibilities is through quantitative and affordable 

monitoring of forest condition, including composition and structure. However, the large areas 

of native forest in Australia necessitate implementing hierarchical multi-source sampling 

designs, which link tree- and plot-level measurements to airborne and satellite acquired data. 

The fusion of Airborne Lidar Scanning (ALS) data with Mobile Laser Scanning (MLS) data 

could help meet these needs. This study aimed to evaluate the capacity of MLS data, acquired 

using a Hovermap (Emesent) unit, to provide quantified 3D structural information at the tree- 

and plot-level in six mixed-forest plots located in north-eastern NSW. A comparison was 

made between traditional manual tree and plot assessments and metrics derived from the 

Hovermap point cloud data. In addition, the acquisition of co-incident ALS data enabled a 

comparison of vertical profiles and metrics with the MLS data. 

 

Even with the challenging forest structure present in the field plots (e.g., dense understorey), 

this study demonstrates that both MLS and ALS point clouds can provide a higher accuracy 

than traditional field assessment for many plot-level structural attributes. Both lidar datasets 

produced very similar canopy height models, however, errors with respect to stem counts, 

particularly for smaller diameter trees, were observed. Nonetheless, when trees detected in the 

Hovermap data were manually matched with individual trees from the field data, close 

correspondence in tree height and DBH was obtained, especially for the larger trees (DBH > 

30 cm). In this study, we present a significant improvement to the automated detection of 

individual trees in the MLS point clouds by initially classifying tree crowns as overstorey, 

sub-canopy crowns or standing stag or dead-top trees. A novel tree detection and 

segmentation algorithm workflow was applied, resulting in significantly improved tree crown 

delineation and estimates of tree heights and DBH. 

 

Our comparison of the ALS and Hovermap point clouds show that the datasets are 

complimentary, due to one system operating from above and one from below. Although there 

are challenges to integrating these point clouds, due to significant differences in pulse 

densities, it is possible to improve the structural description of subcanopy vegetation by 

integrating these data. The MLS can be considered a sampling tool, enhancing the efficiency 

and accuracy of field measurements in native forests. The derived metrics could then be used 

for spatial modelling to impute traditional inventory metrics or incorporated into biomass, 

habitat, or wildfire risk modelling across the full ALS extent (and potentially across broader 

areas with satellite optical and lidar information). The MLS may also prove useful for 

collecting multi-temporal reference information such as post-disturbance recovery for training 

and validating broad scale mapping.    

 

It is recommended that a study comparing coincident TLS and Hovermap MLS data be 

undertaken to provide greater insight into the accuracy of the Hovermap for quantifying tree- 

and plot-level structural attributes. In particular, further work is required to identify the error 

source and type associated with estimated parameters of small trees (DBH > 30 cm) in the 
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presence of dense understorey vegetation. Having a survey-grade representative 3D dataset 

(i.e., TLS) to act as a truth would also allow for an investigation into possible error sources, 

such as the walking path, walking pace and loop closure points used when moving the 

Hovermap through the plot. This would also provide greater understanding of occlusion from 

the presence of understorey vegetation. This information would help guide recommendations 

for optimising the quality and precision of tree- and plot-level metrics extracted from the 

MLS and ALS point cloud data. 
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Introduction 

 

Over the past 20 years, forest resource management has been one of the main driving forces 

in the operational adoption of airborne laser scanning (ALS). However, due to the recognition 

that native forests provide ecological and social ecosystem services in addition to economic 

benefits from timber extraction, there is increasing demand for quantitative information on the 

condition and ecological status of native forests (Coops et al. 2022). Successful sustainable 

management of native forests requires detailed information on forest structural diversity and 

composition, where structural diversity explains the arrangement and distribution of the 

structure of vegetation elements (Donager et al. 2021). Therefore, accurate and timely 

retrieval of vegetation structure metrics is now a key component of management, monitoring 

and reporting activities undertaken by forest managers.  

 

Lidar data acquired by aircraft can cover forests at the estate-level and provide information 

related to the structural conditions covered by the dominant canopy and largest trees (i.e., as 

seen from above). ALS data is now frequently used operationally for plot imputation to create 

wall-to-wall estimates of inventory metrics (White et al. 2013). ALS data can also be used 

directly to derive a suite of stand level metrics including canopy height, cover and texture 

(e.g., Niemi & Vauhkonen 2016).   

 

While some authors have reported that ALS may not fully capture the vertical distribution of 

vegetation in complex multilayered and dense forests due to the attenuation of the laser pulses 

(Giannetti et al. 2018), vertical profiling using ALS data has been demonstrated in some 

native forests (e.g., Wilkes et al. 2016; Crespo-Peremarch et al. 2020). Jiang (2020), for 

example, extracted height percentiles and the density of points within height classes to 

provide canopy profile models for comparison of eucalypt forest structure in the Central 

Highlands of Victoria. The density of points was assumed to represent foliage density in 

different height strata and used to examine the connectivity between vertical layers. Thus, in 

addition to predicting traditional inventory metrics, ALS data is now being applied to quantify 

a broader suite of forest stand assessments including habitat suitability (e.g., Ciuti et al. 2018, 

Bakx et al. 2019, Carrasco et al. 2019, Jiang 2020); canopy change detection (disturbance / 

recovery) (Karma et al. 2020); above ground biomass estimates (e.g., Kim et al. 2016) and 

wildfire modelling / fuel load estimation (Price & Gordon 2016). Depending on the point 

density and complexity of the forest canopy, ALS has also been applied to locate individual 

tree crowns (e.g., Ene et al. 2012; Kandare et al. 2016; Aubry–Kientz et al. 2019).  

 

Estimation and mapping of inventory parameters require tree scale measurements from field 

reference plots located within a representative sampling design (Liang et al. 2018, Tompalski 

et al. 2021). These measurements can be employed to train, calibrate and/or validate spatial 

models that scale up to areas covered by remotely sensed data. Forest structural elements have 

traditionally been assessed by manual field inventories. While the tree level measurements of 

tree density, stem diameter and tree height can be reliably obtained by field crew, estimates of 

plot level structural attributes such as understorey density and cover, are often inaccurate, 

imprecise, and time-consuming. Ashcroft et al. (2014) reported a large variation between 

observers working in native eucalypt stands, partly due to misjudging the height of 

vegetation.  
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ALS, if acquired at a relatively high point density (> 10 points/m2) and over forests with 

homogenous canopy (without interlocking crowns and suppressed trees), can be used to 

derive accurate tree heights and locate and delineate individual tree crowns. Acquiring ALS 

data at greater than 20 pulses/m2, Corrao et al. (2022) achieved acceptable tree-level estimates 

of Diameter at Breast Height (DBH) and volume in a Pinus taeda plantation compared to 

conventional cruised measurements. However, ALS is limited in its capacity to directly 

measure parameters like DBH because of the sensor being positioned above the canopy. 

Terrestrial (TLS) and mobile laser scanning (MLS), on the other hand, are positioned below 

the canopy and are receiving considerable attention as an alternative approach to manual field 

collection (Hyyppa et al. 2020; Coops et al. 2022). Both platforms allow for much higher 

point densities below the forest canopy compared to ALS and are assumed to be the best 

available information to describe finer subcanopy elements, providing information with a 

‘bottom up’ perspective (Crespo-Peremach et al. 2020). The analysis of TLS data to estimate 

tree-scale attributes has made significant advances with the estimation of tree stem parameters 

principally focused on circle / cylinder fitting algorithms (e.g., Pitkänen et al. 2019). 

Numerous individual tree segmentation algorithms using dense point cloud data have now 

been published. For example, application of the random sample consensus (RANSAC) 

cylinder fitting algorithm (e.g., Hyyppä et al. 2020, Donager et al. 2021, Liu et al. 2021) and 

several open-source packages are now available (e.g., Krisanski et al. 2021, Wilkes et al. 

2022). Krisanski et al. (2021) developed the Forest Structural Complexity Tool (FSCT), 

which is a robust, sensor agnostic and fully automated approach to extracting detailed tree 

structural attributes (e.g., tree location, DBH and height) from dense point clouds.   

 

Registration of multiple TLS scans can be achieved with the use of retro-reflective targets as 

tie-points (e.g., Styrofoam spheres or reflective ground control points) and finer registration 

can be achieved using software, which can also remove ‘noise’. However, occlusion remains 

a major issue with static TLS (e.g., Donager et al. 2021). Occlusion is the fact that some 

stems, branches, and leaves may not be scanned as they are hidden by elements closer to the 

scanner. The use of TLS, therefore, requires a plot to be scanned from multiple locations 

using accurately positioned tie-points for the scan co-registration process to form a single 

point cloud. This can be a time-consuming task. 

 

More recently, MLS is proving to be a useful tool for rapid assessment and monitoring, 

especially in forests and plantations that present a relatively simple stand structure (Gollob et 

al. 2020, Hyyppa et al. 2020, Bienert et al. 2021, Stal et al. 2020). MLS techniques can be 

divided into vehicle-based scanning, unmanned aircraft (UAV), hand-held and other personal 

scanning techniques, including backpack MLS. 

 

MLS systems adds the aspect of movement along a track (trajectory) to static TLS acquisition 

methods. They can reduce tree level inaccuracies created by occlusion by incorporating many 

views during data collection as well as increasing the areas scanned (Donager et al. 2021; 

Mokos et al. 2021). Interpine Innovation have purchased two MLS units to enhance their 

inventory capacity (https://interpine.nz/adding-the-emesent-hovermap-slam-lidar-solution-to-

our-services/). Recently there has also been the release of colour and depth sensors (RGB-D) 

that have been integrated into consumer devices such as smartphones and tablets. These 

devices can be used outdoors and operate in a similar manner to MLS to reconstruct 3D 
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scenes in near real time. However, they offer a lower spatial resolution and effective range 

(dependant on depth sensor technology) when compared to conventional MLS. For example, 

the iPad Pro has an active projection RGB-D sensor with an effective range of < 5 m (Cakir et 

al. 2021).  

 

A significant advantage of MLS technology is the removal of the need for accurate Global 

Navigation Satellite System (GNSS) signals (which can be disrupted by forest canopy) 

through the adoption of Simultaneous Location and Mapping (SLAM) technology (Gollob et 

al. 2020). SLAM algorithms operate by using a combination of feature detection algorithms 

and motion data captured with an Inertial Measurement Unit (IMU) to estimate the location of 

features relative to the sensor. However, one challenging issue of native forest environments 

is that the objects have less clearly defined edges, which means that the SLAM algorithm can 

find it more difficult to accurately co-register objects. In general, MLS data tend to be 

‘noisier’ than fixed location TLS data, resulting in a more ‘fuzzy’ point cloud (Gollob et al. 

2020, Donager et al. 2021; Mokos et al. 2021). 

 

Several studies have demonstrated that MLS data can produce more accurate estimates of 

tree-level attributes such as DBH compared to ALS data (e.g., Giannetti et al. 2018). Interpine 

Innovation now have operational workflow solutions for remotely obtaining tree diameter and 

height measurements in Pinus radiata plantations using the point cloud data acquired by a 

Hovermap unit. Their data workflow applies deep learning algorithms for stem detection and 

segmentation. Far fewer studies have used MLS data for individual tree stem curve and 

volume (Hyyppa et al. 2020). Interpine Innovation and Drs Winyu Chinthamit (University of 

Tasmania) and Mitch Bryson (University of Sydney) have significantly progressed 

assessments of stem sweep and stem features of plantation trees by importing segmented trees 

into a Virtual Reality environment for visual and on-screen measurements (FWPA PNC520-

1920 ‘Operational immersive visualisation and measurement of dense point cloud data in 

forest inventory’).  

 

The range of the MLS scanner and the density of the point cloud depends on many factors: (1) 

stand characteristics, in particular stand density, tree species and age structure of the trees, as 

well as density and height of the understorey vegetation; and (2) technical features of the 

mobile mapping system, in particular the scan rate, speed of the platform and the precision of 

the trajectory (Bienert et al. 2021). Therefore, parameter accuracies are significantly 

influenced by the survey path followed by the user during data acquisition. Errors can be 

reduced by ‘closing the loop’ in the path survey (Gollob et al. 2020, Stal et al. 2021). The 

principal of loop closing is to minimize the ‘positional drift’ in the MLS IMU/SLAM process.  

Issues with TLS /MLS point cloud data 

There are several categories of descriptive, stand level ALS metrics based on canopy height, 

cover and density across height strata (e.g., Pearce et al. 2019, Fisher et al. 2020) that are now 

used routinely for the prediction of tree- and plot-level attributes. Many of these metrics can 

also be extracted from MLS data (e.g., Liu et al. 2017), however, the higher resolution of 

MLS, particularly at the terrestrial level that is often occluded in ALS, also enables additional 

plot-level metrics relating to stand structural complexity (e.g., Van Ewijk 2015, Ehbrecht et 

al. 2016, Tompalski et al. 2015; Atkins et al. 2018).  
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Unlike ALS data, which presents a consistent nadir perspective, TLS / MLS data are 

characterized by non-uniform point densities, because density is influenced by the distance to 

the objects and the speed of the MLS capture. The raw ground-based lidar points are biased 

towards proximity to the scanner. There are also issues associated with beam divergence; the 

higher beam divergence of MLS instruments reduces the penetration of the laser through the 

understorey compared to TLS scanners. The segmentation of forest MLS data is therefore 

challenging, as variable point density, together with occlusion, impacts the quality of the tree 

segmentation result. In addition, many of the structural complexity metrics require spatially 

homogeneous point clouds. 

 

One approach to manage the heterogenous high density of MLS data is through the 

application of voxels (Kim et al. 2016, Sumnall et al. 2016, Juchhelm et al. 2017, Zhang et al. 

2017, Pearce et al. 2019, Calders et al. 2020). Using this approach, the point cloud is 

portioned along both the vertical and horizontal axes to form volumetric pixels (i.e., voxels). 

Voxel-based metrics are then created by operating on or summarising the lidar points that fall 

within each voxel (Pearce et al. 2019). Metrics can be related to the number of lidar returns 

falling within each voxel, which is directly influenced by the chosen voxel dimensions. The 

voxel space can be simplified to approximate occupancy by classifying each voxel as empty / 

not empty based on the presence or absence of returns within each voxel (i.e., a binary voxel 

model indicating vegetation presence or absence). Ehbert et al. (2016), for example, presented 

the standardized plot metric ‘effective number of layers (ENL)’ as a measure of vertical stand 

structure. The vertical structure is stratified into layers of 1 m thickness and the number of 

populated voxels with a side length of 20 cm inside each layer is counted. The ENL is then 

computed using the inverse Simpson diversity Index. For the ENL, increasing stand height 

and a more even occupation along the vertical profile result in higher values.  

 

Voxelization has also been applied to derive compound structural parameters. For example, 

Hillman et al. (2021) utilized a binary voxel model derived from TLS data acquired in a dry 

sclerophyll forest to estimate vegetation cover at critical height thresholds and quantify ladder 

fuel as an approach to assess fire hazard.   

 

An important decision is to determine the appropriate voxel size. This can be made based on a 

preliminary investigation of multiple voxel size permutations (Kim et al. 2016). Another 

decision that is often considered is whether to utilise all of the return points, or only those 

labelled by ‘Return number’ as either first returns (the majority of points) or secondary or 

other returns (which tend to have weaker intensities). These decisions are considered in this 

project to reduce data volume and to harmonize the differing point densities acquired from 

MLS and ALS platforms. 

 

A key step to integrating ALS and MLS point clouds is their registration to common spatial 

alignment. However, the issue of accurately positioning and co-registering MLS point clouds 

with manually measured reference trees or other point cloud datasets (e.g., ALS) can be 

challenging. Commercial software provided by the MLS instrument providers (e.g., 

GeoSLAM software) processes the data automatically and can register multiple 3D point 

clouds using MLS IMU data and feature detection algorithms. Initially, coarse registration of 

scans is achieved by identifying common points within the plot. The point cloud coordinates 

are first assigned to a local reference system, with the start position of the walking path being 
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fixed at triple zero for the X, Y, and Z coordinates (Gollop et al. 2020). A common approach 

to co-register multiple point cloud datasets is to use software such as Cloud Compare. The 

point cloud can be rotated and translated using known geo-positioned reference points and 

converted from the local coordinate system to a global coordinate system.   

 

In addition to the extraction of plot-level structural attributes, numerous studies have 

successfully segmented individual tree stems using TLS, and more recently, MLS point 

clouds. However, while these algorithms have proven robust for uniform stems as occur in 

plantations, inaccuracies increase with trees having irregular stem features and the presence of 

dense understorey vegetation. (Kankare et al. 2015; Liang et al. 2018; Stal et al. 2021; 

Vatandaşlar & Zeybek 2021). 

 

Many of these algorithms can be accessed in open software packages such as lidR 

https://cran.r-project.org/web/packages/lidR/index.html (Roussel J.-R. et al. 2020), forestrR 

(https://cran.r-project.org/web/packages/forestr/index.html), LAStools (rapidlasso.com) and 

the Forest Structural Complexity Tool (https://github.com/SKrisanski/FSCT).  

Multisource integrated forest monitoring 

The concept of an integrated, multi-source, multi-scale framework for monitoring large areas 

of native forest is becoming a reality through the adoption of rapidly advancing remote 

sensing technology such as lidar (Figure 1; Coops et al. 2022, Sofia et al. 2022). However, 

integrating ALS data with plot-level, sub-canopy TLS or MLS has received limited attention. 

In one study, Lui et al. (2017) produced canopy height profiles (CHP) from TLS data based 

on the number of filled voxels at every 0.1 m layer of forest and from ALS using the 

percentile distribution of returns every layer at 0.5 m intervals. They then selected values 

from both CHPs for spatial modelling.   

 

The next level of data fusion in such a monitoring framework is the integration of airborne 

data (e.g., ALS) with data acquired by spaceborne sensors that cover large areas. An example 

of spaceborne lidar is Global Ecosystem Dynamics Investigation (GEDI) instrument onboard 

the International Space Station, which has been collecting data since April 2019. A 

description of the GEDI system and data acquisition specifications are presented in Spracklen 

& Spracklen (2021). GEDI is designed to provide high-resolution observations of forest 

vertical structure. Currently the data are being used to create a suite of vegetation structure 

and biomass products, including vegetation height and cover (Potapov et al. 2021). However, 

GEDI is a sampling instrument and as such wall-to-wall products are being derived through 

integration with optical data such as Landsat. ALS data can be used to provide the training 

data for GEDI-based spatial models (e.g., Dorado-Roda et al. (2021). 
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Figure 1. Possible multi-phase, hierarchical sampling design for an integrated monitoring 

system for native forests – illustrated for NSW. 

Project aims  

This collaborative, 12-month scoping study aimed to evaluate the capacity of MLS 

(Hovermap) data to provide quantified information characterising the complex vertical and 

horizontal structure in different eucalypt forest types, at both the tree- and plot-level, located 

in north-eastern NSW. The acquisition of co-incident ALS data allowed for a detailed 

comparison of derived vertical profiles and metrics, which is needed to better understand the 

commonalities and differences in how these data represent forest structure. While both 

systems are based on lidar, the different position of the sensor in relation to the forest canopy 

leads to different outputs. Understanding the strengths and weaknesses of different remote 

sensing systems is essential prior to forming conclusions about forest structure. 

 

The objectives pursued in this study were to: 

• determine the suitability of MLS (Hovermap) 3D data in characterising the vertical 

and horizontal spatial patterns in plots presenting differing stand structure and forest 

types 

• demonstrate the capacity of Hovermap data to estimate tree- and plot-level inventory 

parameters in native forests 

• identify and compare structural metrics extracted from dense point cloud data acquired 

from MLS (Hovermap) and ALS platforms 

• identify metrics and more complex parameters derived from MLS data potentially 

suitable for training and validation of ALS based spatial models 

• undertake a preliminary evaluation of spaceborne lidar GEDI data to detect short-term 

structural changes in native forests following wildfire.   

 

This study has leveraged another study funded by NSW Local Land Services and managed by 

the Forest Science team within NSW Department of Primary Industries. As all the field plots 

established for these two projects are located in native forests on private property, the precise 

location information has been ‘desensitised’ and remains confidential.  
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Methodology 

 

Plot descriptions 

The field plots for this study were located on six private property forests which were 

established as part of a larger NSW DPI and NSW Local Land Service (NSW LLS) project. 

Each property has a current NSW private native forestry vegetation plan (PNF PVP; i.e., a 

plan authorising timber harvesting). The precise location of the plots is confidential as 

required in a Licence Data Agreement with NSW LLS. Each plot was given a unique 

identifying code. The selection of these plots was based on a sampling design developed by 

Dr Amrit Kathuria (DPI Forest Science Biometrician). The plots were in stands covered by a 

PNF PVP and in areas that were not identified as exclusion areas (slopes exceeding 25 

degrees, close proximity to riparian areas or rocky outcrops or areas containing old regrowth 

or rainforest).  

 

 

Figure 2. Location of plots in the mid and upper North Coast of NSW 

A ‘fully monitored’ plot was established on each property during May 2021. A further two to 

three inventory plots were established on each property by Forestry Corporation of NSW 

(FCNSW) field inventory staff during May – August 2021, providing a total of 13 plots. 11 

plots were scanned with the Hovermap. A summary of the six monitoring plots is shown in 

Table 1.  

 



 

12 

 

Table 1. Plot descriptions for the six fully monitored plots 

‘Fully monitored’ 

Plot ID 

 

1384_FI1_hc 

 

18553_I0_a 

 

20736_FI1_a 

 

25703-02_FI1_bc 

 

26412_FI1_ec 

 

26739_I0_a 

Slope (Degrees) 8 1 10 3 23 25 

Large tree Plot 

radius (m) 

17.93 17.84 17.98 17.85 18.60 18.74 

Slope adjusted 

Plot area (ha) 

0.101 0.100 0.102 0.100 0.109 0.110 

Aspect - Degrees 

magnetic 

344 197 90 160 175 107 

Plot disturbance Fire Recent 

Moderate 

Fire Recent 

Light 

Fire Recent 

Severe, 

Harvesting 

within view 

of plot, 

Thick wattle, 

Soil erosion 

Fire Recent 

Moderate 

Harvesting within 

view of plot 

Harvesting 

within view of 

plot, Animal 

grazing 

Harvesting in 

plot boundary, 

Harvesting 

within view of 

plot 

Yield Association 

Group  

Dry 

Sclerophyll 

Forest 

Semi-moist 

and Taller 

Dry 

Eucalypts 

Spotted Gum Moist Coastal 

Eucalypts 

Semi-moist 

and Taller Dry 

Eucalypts 

Blackbutt  

 
2Baur G.N. (1965) Forest types in New South Wales. Research Note number 17, Forestry Commission of New South Wales  

 

Figure 3. Example photographs from the six fully monitored plots, illustrating the range of 

differing stand structural conditions 

1384_FI1_hc    South to Centre 1384_FI1_hc    West to Centre 

  
Figure 3a.  
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18553_10_a    South to Centre 18553_10_a    East to Centre 

Figure 3b.  

 

20736_FI1_a    West to Centre 20736_FI1_a    South to Centre 

Figure 3c.  
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25703-02_FI1_bc    North to Centre 25703-02_FI1_bc    Centre to South 

Figure 3d.  

 

26412_FI1_ec   North to Centre 26412_FI1_ec    South to Centre 

  
Figure 3e.  
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26739_I0_a    North to Centre 26739_I0_a    South to Centre 

Figure 3f.  

Manual plot measurements 

The plot data were collected by NSW DPI Forest Science staff, FCNSW inventory crew and a 

botanist (Birdwing Ecological Services). The plot data were acquired according to a draft 

Forest Monitoring Manual being prepared by John Samuel (NSW DPI Forest Science) for the 

NSW LLS PNF project. An outline of the manual is presented in Figure 4 as a suite of 

modules. Each module has been developed into data collection applications in ESRI Survey 

123. Survey 123 can be loaded on any smart device, works off-line, does not require a ESRI 

ARC GIS licence, integrates with ARC GIS, gathers geo-points and allows the capture of 

photographs. The application was pre-programmed with drop-down lists, mandatory fields 

and species look up tables. Once all the plot data were collected, the files were uploaded to 

the cloud and retrieved by an ESRI licenced analyst. 
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Figure 4. Outline of the PNF Forest Monitoring Manual 

 

The centre of each plot was accurately located using a Trimble dGPS. Each 0.1 ha circular 

plot was then marked to provide three concentric sub-plots; having radii of approximately 

17.84 m for large tree assessment, 11.28 m for growth assessment and 3.99 m for small tree 

assessment, after their areas were adjusted for slope. 

 

The species and DBHs were recorded for the large trees (DBH > 10cm) in both the fully 

monitored plots and traditional inventory 0.1 ha plots and each tree was clearly numbered. 

Small trees were defined as having DBH < 10 cm and height > 1.3 m. The traditional 

inventory plot/tree parameters were acquired by FCNSW inventory crews and data was 

recorded using the software package Plot Safe, proprietary software developed by Interpine 

Innovation (https://interpine.nz/plotsafe/). For all trees (DBH > 10cm) recorded attributes 

included tree diameter, species, dominance and status, tree bearing and distance from the plot 

centre, commerciality, canopy position and damage. Basal area was calculated from the DBH 

measurements of these trees. Tree heights were obtained using a vertex for 7 to 12 

representative large trees per plot. While plot areas were slope adjusted, analysis of the 

Hovermap data involved clipping all plots to a radius of 17.84 m irrespective of slope. 

Therefore, inventory parameters are reported on a per ha level to permit direct comparisons.  

 

A key structural attribute assessed in the fully monitored plots was an estimation of vegetation 

strata canopy cover. These assessments were done at the plot cardinals and centre point, with 

visual estimates of lower storey vegetation (> 1.3 m and < 2 m), mid storey (> 2 m and < 10 

m), upper storey (> 10 m), with emergent vegetation being those trees whose crowns reached 

above the upper storey. Average canopy cover (> 1.3 m) per plot was also obtained using the 

application ‘% Cover’ (https://percentagecover.com/). This application uses the device 

(iPhone / iPad) camera to estimate the proportion of photo filled with leaf and wood when 

orientated vertically, in our case at the four cardinal points and plot centre.   

F
o

re
st

 M
o

n
it

o
ri

n
g

 P
lo

t 
M

a
n

u
a

l
Contacting Owners or 

managers

Plot base information Plot features and location.    Setting out the plots, Differential GPS.

Larger Trees 

(>10cm DBH)

FCNSW Inventory  -Tree diameter, species, dominance and status, 

commerciality, canopy position, and damage

Floritsics & Small trees Plant and weeds species, cover, height and form (NSW BAM)

Tree health, height & 

Structure

Selected tree height, crown size and shape, Foliage Projected Cover, 

epicormics, damaged and dead components

Carbon and Coarse 

woody debris

Stag and stump measurments and decay class, litter collection, coarse 

woody debris  measurement and decay class, soil carbon collection

Fuel hazard 

assessment

Bark fuel, elevated fuel, near surface fuel, surface fuel 

(Victorian Overall Fuel Hazard Guide)

https://interpine.nz/plotsafe/
https://percentagecover.com/
https://www.lmbc.nsw.gov.au/bamcalc
https://www.ffm.vic.gov.au/__data/assets/pdf_file/0005/21110/Report-82-overall-fuel-assess-guide-4th-ed.pdf
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Plot level estimates of fuel hazard were also obtained through visual estimates of bark fuel, 

near surface fuel and surface fuel following the methodology provided in the Victorian 

Overall Fuel Hazard Guide. 

Lidar data 

Hovermap data acquisition and processing 

The Emescent Hovermap (https://www.emesent.io/hovermap/) is a lightweight (1.8 kg) 

mobile unit fitted with a Velodyne Puck (previously VLP-16) lidar scanner which can be 

handheld, attached to a backpack or mounted to a drone (Figure 5). It utilises real-time 

processing of 3D SLAM (Simultaneous Localization and Mapping) algorithms to generate 3D 

point clouds. The unit does not require a GNSS and therefore is not subject to the same 

challenges as other systems that are dependent on satellite derived positional information. In 

open areas the Hovermap unit has a lidar range of up to 100 m and a mapping accuracy of +/- 

20 mm. The sensor records both strongest returns (return number is 0) and last returns (return 

number is 1). The number of last returns is about 10% of total returns. For example, for the 

01384FI1hc plot, the total number of return 0 points was 89,184,258 and return 1 was 

10,016,359. 

 

 

Figure 5. Interpine Innovation’s backpack Hovermap unit used in the study 

 

Hovermap data was collected in each of the fully monitored plots as well as the additional 

inventory plots. The datasets were acquired according to instructions provided by Interpine 

Innovation (David Herries and Susana Gonzalez). The Hovermap survey path started at the 

centre of each plot and the operator proceeded in a spiral walk, walking at a brisk pace. The 

https://www.emesent.io/hovermap/
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survey aim was to pass most trees within a distance of 3 to 4 m. It is important that each 

survey start and finish at the same place. In plots on steep ground, Interpine Innovation 

recommends an extra loop up slope of the plot. The instructions also provide advice on the 

procedures on setting up the Hovermap unit and how to download the data. Following a scan, 

the raw data is transferred from the Hovermap computer to a secondary processing computer 

for computation of the global SLAM solution and final point cloud. Figure 6 presents the 

processing workflow applied to the MLS datasets. This involves point cloud classification 

(e.g. identifying points associated with stems and foliage), point height normalisation and 

then tree segmentation and computation of tree height and diameter. 

 

A novel component of this data workflow involves loading the processed 3D point clouds into 

a virtual reality environment allowing for supervised deep learning. This approach is now 

applied operationally by Interpine Innovation for MLS data acquired in pine plantations. The 

critical attribute of the classification algorithm is the quality of the training datasets for the 

deep learning approach. The VR screen operator can adjust the tree data inside the VR 

environment to improve it for subsequent measurements. These training datasets have not yet 

been acquired for examples of eucalypt species in native forests. 

 

Initially, coordinates of the registered point cloud are represented by a local reference system, 

with the start position of the walking path being fixed at triple zero for the X, Y, and Z 

coordinates. The point cloud can then be converted to a global coordinate system to enable 

co-registration of other spatial datasets (such as the ALS data). The dGPS data was post 

processed to the GDA2020 datum and MGA zone 56 (EPSG code 7856), which was then 

used to align the Hovermap data. 

 

Figure 6. Workflow for the Hovermap lidar data processing undertaken by Interpine 

Innovation 
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Airborne laser scanning data acquisition and processing 

As part of the LLS PNF project, ALS transects that were spatially coincident with the six PNF 

properties were acquired by Aerometrex Ltd. in May 2020 and 2021 using a Riegl LMS-

Q1560 scanner (Table 2). The discrete multi-return ALS data were acquired at a density of a 

minimum of 10 pulses / m2, with a scan angle of 14o either side of nadir and beam footprint of 

< 30 cm. In addition to the point cloud data, Aerometrex also provided the associated terrain 

and surface/canopy height models, along with RGB orthophotography. 

 

Table 2. Number of transects and area covered by ALS data 

Property ID No. of transects 

(2020)  

No. of transects 

(2021) 

ALS coverage 

(2020) (ha) 

ALS coverage 

(2021) (ha) 

01384 4 4 808 925 

18553 1 1 35 40 

20736 5 4 349 349 

25703-02 1 1 98 119 

26412 3 3 546 664 

26739 1 1 79 83 

Total 15 14 1,915 2,180 

 

Tree-level analyses 

Manual comparison of field and Hovermap tree-level measurements 

A manual comparison of spatially matched trees identified in the field plot measurements and 

the Hovermap 3D data processed by Interpine Innovation was undertaken for three plots: 

01384_FI1_hc, 26412_FI1_ec and Plot 26739_10_a. Trees with the magnetic bearing and 

distance from the plot centre recorded, as well as DBH and height measurements, were 

matched with the same trees in the processed Hovermap datasets using ArcGIS Pro. To 

convert the compass magnetic bearing and distance locations to a GIS point layer, the 

magnetic bearings were converted to true bearing (degrees clockwise from the North Pole). 

Initially there appeared to be poor locational correspondence between the datasets. This task 

was made more difficult as the tree numbering differed between the field and Hovermap 

datasets. In addition, while the field plot areas were adjusted for slope, the plot areas in the 

Hovermap datasets were defined by a fixed radius of 17.84 m. It was also assumed that 

observer error would occur in the bearing and distance field measurements, especially in plots 

having dense understorey vegetation. The matching of trees was improved by comparing 

DBH measurements of trees within the same neighbourhood. The neighbourhood height 

information was augmented by visual assessment of the co-incident ALS CHM raster.   

 

The comparison of tree heights in this study was achieved through two approaches. In the first 

method, the spatial datasets derived for location and DBH were imported into the open-source 

software, Cloud Compare. To estimate a Hovermap value, six (highest) nearest neighbour Z 

points were selected and averaged. Tree heights were also compared using the CHM layers 

derived from the co-incident ALS and Hovermap point cloud data. The DBH and tree height 

values of matched trees were then compared. 
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Evaluation of the FSCT to extract tree-level attributes from Hovermap data 

Parallel to the tree level comparison above, the Forest Structural Complexity Tool (FSCT; 

Krisanski et al. 2021) was evaluated in terms of its ability to extract tree level information 

from the Hovermap data for three plots (1384_FI1_hc, 18553_I0_a and 26412_FI1_ec). 

Outputs from two of these plots (1384_FI1_hc and 26412_FI1_ec) were used to compare with 

the field-measured individual tree locations, DBH and tree height. FSCT is a new open-source 

Python package (available at https://github.com/SKrisanski/FSCT) which requires a powerful 

desktop computer configuration. For this evaluation, the desktop computer used included an 

Intel Core i7 10700F, 64GB RAM and ASUS GeForce RTX 2070. To evaluate whether 

processing time could be improved without compromising results, we compared the FSCT 

outputs between using all Hovermap returns versus last returns only. The aim was to test if 

using only last returns was sufficient for characterising complex structures in eucalypt forests. 

 

The FSCT uses a deep learning technique to segment a normalised lidar point cloud into four 

categories: terrain, vegetation (foliage), CWD and stems. Vegetation and stems were then 

segmented into individual trees and assigned an individual tree ID. In the FSCT, the highest 

points of each tree are taken as the tree height measurement.   

 

To improve the accuracy of tree height estimates in the FSCT, especially for trees in the sub 

canopy, a new methodology was developed based on tree-level plant area density (PAD) 

profiles, which classified trees as either sub canopy or canopy trees and stag or dead top. The 

PAD at a given height (z) is estimated using the projection coverage of the point cloud at that 

height level. The PAD is based on the concept of leaf area index (LAI) and gap fraction 

profiles, and at a given height (z) is estimated using the projection coverage of the point cloud 

at that height level (Carrasco et al. 2019).  

 

This new workflow involved building separate tree-level PAD profiles for three categories: 

(1) foliage only (PADf), (2) stem only (PADs) and (3) foliage + stem (PADfs). Based on the 

changes of PAD by height, it was possible to identify the height break of the sub-canopy as 

the minimum density height layer where the plant density is smaller than its the upper- and 

lower-layer density. The PAD at a given height (z) is estimated using the projection coverage 

of point clouds at that height level. The shape of PADf, PADs and PADfs and the detected sub-

canopy height was then used to reclassify the individual trees detected in the Hovermap data 

into three crown types: Overstorey, sub-canopy, and stag or dead top.  

 

• Overstorey: there is no clear height break in all categories (PADf, PADs and PADfs) 

• Sub-canopy: clear height break identified in both PADf, and PADs, OR at least one 

clear height break in PADs  

• Standing stag or dead-top tree: clear height break identified in PADf  but no clear 

height break in PADs 

The detection of tree-level subcanopy vegetation in ALS data 

Individual tree segmentation was also undertaken on the ALS data. For this process, the 

algorithm used was the marker-control watershed segmentation in the lidR package in R 

3.6.3. Tree-level PAD profiles were then built for each segmented ALS overstorey crown to 

identify the height break between overstorey crowns and sub-canopies (mid-storey and 

https://github.com/SKrisanski/FSCT
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understorey trees). The above ground ALS point clouds were then classified into two 

categories: overstorey vegetation and sub-canopy vegetation. The marker-control watershed 

segmentation was then used to segment the overstorey crowns and sub-canopy crowns 

separately for these two point clouds. The result of detected sub-canopy trees from the 

Hovermap datasets were used as a reference to select the suitable set of parameters for the 

marker-control watershed segmentation to segment the subcanopy crowns in the ALS dataset. 

Plot-level analyses 

As mentioned above, there are now numerous lidar software packages available for 

processing and analysing lidar data (e.g., LAStools, FSCT, lidR). The plot-level and broader 

scale analyses presented below applied various combinations of these software packages. 

Voxel size 

The vertical distribution of points for a particular location (e.g., a plot) is commonly used to 

produce different metrics that represent forest structure. ALS has a reasonably uniform pulse 

density, however the same cannot be said for MLS, where pulse density is impacted by the 

distance between the object and scanner, and the walking speed of the operator. To account 

for this non-uniformity, the point cloud can be normalised using voxels. The process involves 

placing a 3D grid of specified dimensions over the point-cloud and recording the 

presence/absence of points within each voxel (cube). Voxel size is important to correctly 

represent the actual foliage density at a given height. If the voxel size is too small, there will 

be too many internal gaps between foliage, and it will underestimate the real foliage density. 

On the other hand, if the voxel size is too big, the true foliage density will be overestimated.  

 

A range of voxel sizes were tested to assess their impact on the vertical profile and common 

lidar metrics. A 10 cm voxel size was selected for further analysis and is used in most of the 

remaining Hovermap analysis in this section. In the voxelisation process used here, each 

voxel that contains at least one point was recorded as a single point in the centre of the voxel. 

The number of points in each voxel was also recorded (replacing the intensity value). Giving 

equal weight to a voxel containing a single point to a voxel containing many points may be 

problematic. To test this effect, voxels with low numbers were progressively filtered from the 

dataset. 

Plot-level vertical distribution vegetation patterns using Hovermap data 

Due to the much higher and irregular point densities from MLS data compared to ALS data, 

the traditional approach (e.g., Bouvier et al. 2015) to determining leaf area density across 

various vegetation layers is not practical. Therefore, approaches to obtaining uniform 

distribution patterns of Hovermap data, such as voxelisation (as described above) and filtering 

last returns only were examined for comparing LAD profiles. Two approaches were 

considered, one based on the relative returns after voxelisation and a second which applied a 

new canopy profile model to characterise the vertical structure. For the later approach, instead 

of using gap fraction at a given height (z), the approach used the projection coverage of point 

clouds to represent the foliage density for that height level (z), called the foliage coverage 

profile (FCP). The projection coverage of points at given height (z) can be adjusted by the 

voxel size of points.    
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Plot-level lidar metrics 

Many lidar metrics are based on the vertical height distribution of points for the whole plot. 

While numerous metrics have been proposed, many are highly correlated and therefore 

somewhat redundant. In general, metrics describing height, variation in height and vegetation 

cover will support a range of applications (White et al. 2013). Metrics used here included top 

height, mean height, standard deviation, coefficient of variation (CV), skewness and kurtosis. 

CV summarises the relative variation of the height distribution and as a measure of crown 

density, higher CV values indicate sparse, open canopies and low CV values dense, closed 

canopies. Haywood & Stone (2011) interpreted that positive skewness values were associated 

with sparse canopies and negative values with closed canopies when using ALS data to 

estimate structural attributes of mountain ash (Eucalyptus regnans) forests in Victoria.  

Evaluation and comparison of vertical profiles for Hovermap and ALS data 

As mentioned above, two approaches were undertaken for this evaluation, the first examined 

profiles based on relatives counts of points for the ALS data and voxels for the MLS data and 

the second compared leaf area density and foliage cover profiles.   

 

In the first approach, in addition to the six ‘fully monitored’ plots, field and Hovermap data 

from an additional five plots located and assessed on the private properties were also 

included. The data were processed by Interpine Innovation into height normalized 3D point 

clouds for circular plots with a 25 m radius. The same plot areas were extracted from the ALS 

capture for comparison between data sources.  

 

To increase the sample size to 44, four non-overlapping subplots were created in each larger 

plot to further explore the relationships between the ALS and Hovermap data. In a statistical 

sense, this process may be considered pseudo-replication, due to the spatial autocorrelation 

between subplots. However, it was only used here to aid interpretation in the comparison of 

the lidar metrics. Due to a rotational shift, the subplots were aligned manually using the 

canopy height models (CHM) to ensure that they covered the same area (Figure 7). 

 

  

Figure 7. Example of canopy height models for the ALS (A) and Hovermap (B) data for a 

sample plot, showing the location of four subplots 
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A number of standard lidar metrics were extracted from both the ALS data and the Hovermap 

10cm voxel data. The metrics used here included: Height at the 95th percentile (p95), Average 

height (avg), Density (dns; number of points above 2m divided by all points), Coefficient of 

variation (cv), Skewness (ske) and Kurtosis (kur). All metrics except for density use a height 

cut-off of 2 m. Although canopy cover is typically used for ALS data, its calculation uses 1st 

returns, which is not compatible with the Hovermap data in this context. 

Comparison of ALS and MLS cover estimates 

A comparison of percent cover in each cover class (as defined in the field-based manual) was 

undertaken, where lower storey is > 1.3 m and less than 2 m, mid storey is > 2 m and < 10 m, 

and upper storey is > 10 m. Emergent canopy (treetops sticking out above the canopy) was 

combined with upper storey for this exercise. It is difficult to directly compare cover between 

the sensors, due to the different point densities. The method employed here was to filter the 

points based on height class and then create a canopy height model (CHM) for each class 

using a 25 cm pixel size. The CHM algorithm used was a simple point to raster conversion, 

where the highest point in each raster cell is used. Cover was then calculated for each height 

class as the percentage of pixels in the plot with any cover. A 0.1 ha plot (radius 17.84 m) was 

used here as per the field data. 

Derivation of fuel hazard metrics and fuel connectivity using Hovermap 

data 

For each plot, the height normalised Hovermap point clouds were translated into a 3D voxel 

space, using a voxel size of 4 cm. This was done to normalise the point density across each 

plot. A voxel was considered filled when it contained at least one point. The resultant output 

was a 3D model that indicated the presence and absence of vegetation elements across the 

plot. Mean vegetation height and cover was estimated for each strata layer from the 

reclassified Hovermap point clouds. Using the voxel space models, the mean height was 

calculated as the average surface height of the top layer of each column within each strata 

layer. Percent cover was then determined as the number of voxel columns within each strata 

layer that had at least one filled voxel.  

 

A vertical layer pouring algorithm (Hillman et al. 2021) was then used to identify the 

connection between different vegetation layers, which considers any element that is directly 

adjacent or overlapping with a higher strata layer to be a part of that layer. Each voxel is 

assigned a unique identifier depending on its connectiveness to neighbouring voxels, both 

horizontally and vertically and the procedure repeated for each voxel layer continuing 

downwards.  Each voxel is then assigned to a strata class based on the Overall fuel hazard 

assessment guide (OFHAG) height thresholds. The strata layers used in this assessment were 

near-surface (< 0.6 above ground height (AGH)), elevated (< 0.6 m – 3 m AGH), sub-canopy 

(3 m – 5 m AGH) and canopy (> 5 m AGH) (OFHAG; Victorian DS&E, 2010).   

 

Due to the noise present within the Hovermap point clouds and the difficulty discerning 

points representing the ground surface layer and surface level vegetation, only the near 

surface and elevated fuel layers derived from the Hovermap point clouds were assessed in 

comparison to those acquired using visual assessment practices.  
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Evaluation of GEDI data for characterising forest structure changes 

following wildfire 

GEDI Version 2 data for each of the study sites were downloaded. The ISS has an irregular 

orbit, so the GEDI samples are also irregular in space and time. Figure 8 indicates GEDI 

samples available over one of the ALS transects. Due to limited actual GEDI samples that 

coincided with the ALS captures, the decision was made to simulate GEDI observations using 

the GEDI simulator (Hancock et al. 2019). The simulator also allows for two time-steps of the 

same footprint location to be directly compared (one of which could be a real GEDI 

observation). 

 

 

Figure 8. GEDI footprints over a canopy height model of one of the ALS transects 

ALS data were available over the study sites for two points in time: April/May 2020 and 

April/May 2021. Thus, the ALS was captured after the 2019/2020 wildfires, providing two 

points in time to explore short-term forest recovery. Virtual GEDI observations were 

simulated from the ALS for all the real GEDI footprint locations. This resulted in two sets of 

simulated RH observations for every footprint location: one from 2020, and one from 2021. 

Forest recovery was then assessed as change across all relative height (RH) metrics between 

2020 and 2021.  

 

The aim was to investigate structural recovery shortly after fire and then one year later. The 

simulated datasets were therefore filtered only to areas that intersected with the NSW fire 

history records. In addition, non-forest observations were discarded, using the forest type map 

from Australia’s State of the Forests Report 2018. Following this the simulated footprints 

were intersected with the Fire Extent and Severity Mapping (FESM) product 

(https://datasets.seed.nsw.gov.au/dataset/fire-extent-and-severity-mapping-fesm) to extract 

fire severity information. The FESM outputs, based on modelled satellite data, broadly 

matched the visual plot assessment of fire severity (plot 18553_10_a – low, plots 

1384_FI1_hc & 25703-02_bc – Moderate and plot 20736_FI1_a – High). Due to some areas 

https://datasets.seed.nsw.gov.au/dataset/fire-extent-and-severity-mapping-fesm


 

25 

 

within the fire history layer being unburnt (according to FESM), some unburnt footprints 

remained. The final number of samples in each class is shown in Table 3. 

Table 3. Number of simulated GEDI observations in each fire severity class 

Fire Severity 

Number of 

samples 

Unburnt 272 

Low 180 

Moderate 204 

High 294 

Extreme 66 

Total 1016 

Project data management 

A secure directory channel in the NSW DPI Microsoft TEAMs system was established, with 

all project research collaborators given access. All the project datasets and related reports 

were uploaded into this channel and were manually checked for obvious errors. 
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Results 

 

A detailed description of the six field plots is provided in Tables 1 and 4 and Figure 3 and 

illustrate that although only six plots were assessed in this scoping study, they presented a 

range of multi-layered structures. In particular, the plots that had been burnt during the 2019 

bushfires in eastern NSW (Plots 1384_FI1_hc and 25703_02_FI1_bc with moderate fire 

damage and, Plot 20736_FI1_a with severe fire damage). 

Tree-level analyses 

Manual comparison of field and Hovermap tree-level measurements 

The detailed comparison of matched trees obtained from the field (distance and bearing) 

measurements and from the Hovermap tree data from Interpine Innovation for three plots 

(01384_FI_hc, 26412_FI1_ec and 26739_1a) revealed that while there was a close match for 

the larger trees (DBH > 300 mm) in all three plots, significantly more smaller diameter trees 

were identified in the Hovermap data. Figure 9 illustrates the matched trees for Plot 

26412_FI1_ec. This plot was established on a steep slope (23 degrees), had not been recently 

burnt but contained moderate amounts of understorey vegetation (Figure 3c, Tables 1 and 4).  

 

Plot 26412_FI1_ec - Field measured tree 

map 

Plot 26412_FI1_ec - Hovermap measured 

tree map 

  

Figure 9. Comparison of manually matched trees located from the field and Hovermap 

datasets for plot 26412_FI1_ec 

 

The difference in DBH measurements between the inventory field and Hovermap datasets for 

a subset of carefully matched trees ranged from 3 mm to 91 mm (absolute mean = 15.45 mm; 
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S.D. = 19.13 mm; S.E. = 4.28 mm), while the differences in tree height ranged from 0.2 m to 

2.67 m (absolute mean = 0.709 m; S.D. = 0.838; S.E. = 0.187 m) (Table 4). There appeared 

no obvious trend in bias for the difference for these two tree parameters.  

 

Table 4. Comparison of tree DBH and heights for a subset of larger trees located in the field 

and Hovermap datasets for plots 01384FI1_hc and 26412FI1_ec  

Plot ID Field tree 

ID 

Hovermap 

tree ID 

Field DBH 

(mm) 

Hovermap 

DBH (mm) 

Δ Hovermap 

DBH – field 

DBH (mm) 

Field tree 

Ht. (m) 

Δ Hovermap 

Ht. - field Ht. 

(m)* 

01384_FI1_hc 11 14 485 491 6 21.8 -1.32 

01384_FI1_hc 13 19 102 119 17 10.1 -0.52 

01384_FI1_hc 12 21 113 135 22 10.0 -0.24 

01384_FI1_hc 19 25 285 289 4 21.5 -0.37 

01384_FI1_hc 22 27 684 661 -23 21.8 -1.94 

01384_FI1_hc 25 32 229 216 -13 18.0 -0.02 

01384_FI1_hc 27 36 432 428 -4 14.0 0.76 

01384_FI1_hc 30 38 620 602 -18 29.3 -2.19 

01384_FI1_hc 40 44 122 116 -6 11.1 -0.11 

01384_FI1_hc 43 63 291 294 3 21.2 -2.05 

26412_FI1_ec 21 3 451 441 -10 19.7 -0.44 

26412_FI1_ec 22 4 643 631 -12 42.1 -2.67 

26412_FI1_ec 1 5 834 743 -91 34.6 0.073 

26412_FI1_ec 2 7 571 561 -10 25.7 0.004 

26412_FI1_ec 3 8 543 539 -4 22.0 0.37 

26412_FI1_ec 5 11 356 337 -19 19.0 0.32 

26412_FI1_ec 6 12 718 729 11 30.0 -0.05 

26412_FI1_ec 7 13 518 510 -8 18.7 0.29 

26412_FI1_ec 13 15 669 666 -3 32.2 0.44 

26412_FI1_ec 18 27 686 661 -25 32.5 0.003 

*Comparisons based on the Hovermap tree location 

Evaluation of the FSCT to extract tree-level attributes from Hovermap data 

The Hovermap data of plot I8553_I0_a was used to test the processing efficiency of the last 

returns only dataset (MLSr1) compared with the outputs of all returns (MLSa). With the same 

set of parameters in FSCT, the processing time of MLSa was 441.8 minutes while the time of 

MLSr1 was 166.9 minutes. The last returns reduced the processing time by 60%. The number 

of detected trees for MLSa was 1785 stems per ha, while the number detected trees of MLSr1 

was 855 stems per ha. Compared to the field results (Table 7), the MLSa data had a 

significantly higher stem count estimation while the MLSrl data provided a stem count per ha 

compatible with the Interpine processed data. Both the FSCT and Interpine analysis produced 

higher stem counts per ha than was recorded by the field-crew, but this is understandable as 

only trees with DBH > 10 cm were measured by the inventory crew, small trees with DBH < 

10 cm were only measured in the inner subplot having a radius of 3.99 m and analysed 

separately. A detailed examination of the FSCT stem cylinder maps revealed that most of the 

non-detected stems by the MLSrl data are for trees with DBH < 10 cm (Figure 10). Figure 11 

presents a frequency histogram of the DBH size classes apparently missed by the MLSrl when 

compared by the MLSa data. 
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Figure 10. Illustrating the detection of stem cylinders in the MLSa (green and blue stems) and 

the MLSr1 data (red stems aligned with the same green stems but smaller blue stems missing).   

 

 

Figure 11. A histogram of DBH size classes of stems identified as missing in the MLSrl data 

Comparison of DBH and tree height between field measurements and FSCT outputs 

DBH values were compared using the field plot data and the stem maps produced from first 

returns (MLSr1) in the FSCT. Individual trees were matched for plots 1384_FI1_hc and 

26412_FI1_ec (Figures 12a and 12b). For these two plots, the FSCT accurately estimated the 

DBH of individual trees. The R2 of plot 1384_FI1_hc is 0.754 and in plot 26412 FI1_ec it is 

0.991 (Figure 12a). Figure 12b combines both datasets and also provides a 1:1 line. 
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Figure 12a.  Tree-level comparison of DBH between the field measurements and the FSCT 

outputs of the MLSrl datasets for plots 1384_FI1_hc (left) and plot 26412 FI1_ec (right). 

Fitted regression lines shown in blue. 

 

 

Figure 12b. Both graphs presented in Figure 12a combined, with a fitted regression line in 

black and 1:1 line in red. 
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There was, however, a much poorer correspondence when this exercise was repeated for tree 

height. Examination of the MLSrl data indicated that the FSCT failed to accurately extract tree 

heights for the sub-canopy trees. This is examined further using tree-level PAD profiles. 

Height estimates using the tree level PAD profiles 

The tree-level PAD profiles are illustrated in Figure 13 and show the relative plant area 

density of the MLS and how it changes with vertical canopy height (z values). For sub-canopy 

trees over-topped by relatively few upper-canopy tree crowns (Figure 13 a, b and c), there is a 

large vegetation density gap between the highest point clouds and the sub-canopy point 

clouds. The relative density at the height break for this type of sub-canopy tree is close to 

zero. Where sub-canopy trees are hidden under dense overstorey there is no clear height break 

or zero vegetation density layer of the foliage and stem PAD (PADfs), but a height break can 

be identified by the stem only point cloud density profile (PADs) (Figure 13d). With the 

adjustments of sub-canopy height using the PADs and by comparing with field-measured tree 

height, the tree height of MLSr1 datasets were successfully extracted (Figure 14 a & b). The 

R2 of tree height was notably improved – in plot 1384_FI1_hc it was 0.913 and in plot 26412 

FI1_ec it was 0.798. 

 

 

 

Figure 13. Examples of estimates of tree height for sub-canopy trees using tree-level Plant 

Area Density (PAD) profiles. The y-axis represents tree height (Z). In panel 2 of each group, 
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voxel densities are shown in the X direction (foliage + stem), while in panel 3, they are in the 

Y direction (stem only). Panel 4 shows the relative density (rd) of voxels across height levels. 

 

(a)       (b) 

 

Figure 14. Comparison of tree heights between field measurements and detected sub-canopy 

height by PADs for plot 1384_FI1_hc (a) and plot 26412 FI1_ec (b) 

 

Standing stag or dead-top tree detections using MLS data  

By comparing the tree-level plant area density profile between foliage only (PADf) and stem 

only (PADs) point clouds, we found that standing stag or dead-top trees could be identified. 

For the PADs of stag trees, there is no clear height break in PADs but a clear height break in 

PADf (Figure 15). Meanwhile, as a stag, the total plant area density above half of the tree 

height of stems is higher than the density of foliage. Whereas in the types of live trees (live 

overstorey and sub-canopy tree), the top layer plant area density of stems is always lower than 

the density of foliage. Even for a sub-canopy stag (Figure 15d), after accurately identifying 

the tree height, based on the PAD of the top foliage points being lower than stems, we could 

identify this sub-canopy stag. 
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Figure 15. Examples of Plant Area Density profiles for stags in plot 1384_FI1_hc (a and b), 

plot 18553_I0_a (c), and plot 26412_FI1_ec (d). The y-axis represents tree height (Z). In 

panel 2 of each group, voxel densities are shown in the X direction (foliage + stem), while in 

panel 3, they are in the Y direction (stem only). Panel 4 shows the relative density (rd) of 

voxels across height levels. 

Summary of crown types extracted from the Hovermap data from the 3 plots 

As shown in Table 5, the highest stem density of stags and lowest stem density of sub-canopy 

trees is in plot 1384_FI1_hc. The proportion of sub-canopies in both plot I8553_I0_a and plot 

26412_FI1_ec are very similar, around 77-78%. The tree size in both overstorey and sub-

canopy trees in plot 26412_FI1_ec are bigger than the trees in plot I8553_I0_a and plot 

1384_FI1_hc. While a direct comparison of the field data in Table 6 with the results in Table 

5 is not possible, the relative ranking of the tree attributes corresponds very closely, including 

the MLS derived information on the dead stag trees. 

Table 5. The number of trees per plot, the average DBH (m) and the average tree height (m) 

of each crown types, extracted from Hovermap data 

Plot ID 

all overstorey sub-canopy stag or dead top 

Trees 

/plot 

DBH 

(m) 

height 

(m) 

Trees 

/plot 

DBH 

(m) 

height 

(m) 

Trees 

/plot 

DBH 

(m) 

height 

(m) 

Trees 

/plot 

DBH 

(m) 

height 

(m) 

01384_FI1_hc 83 0.213 14.5 27 0.290 18.6 47 0.152 11.3 9 0.298 19.1 

18553_I0_a 173 0.195 14.8 35 0.252 19.7 134 0.176 13.4 2 0.524 24.5 

26412_FI1_ec 60 0.311 17.5 12 0.459 27.0 47 0.265 15.1 1 0.713 16.0 
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Detection of tree-level subcanopy vegetation in ALS data  

The marker-control watershed segmentation algorithm was applied to identify individual 

overstorey crowns in the ALS data. Repeating the approach used with the Hovermap data, the 

height break between the overstorey crowns and sub-canopies was also successfully identified 

from the ALS PADs (Figure 16 a & b). Based on the marker-control watershed segmentation 

applied separately to the overstorey and sub-canopy point clouds, a total of 63 overstorey 

crowns and 182 sub-canopy trees were detected from the ALS data for plot 18553_I0_a 

(Figure 17 a & b).    

 

(a)

  

(b)

  

Figure 16. Examples of PAD profiles for ALS individual crowns and identified height breaks 

between overstorey and sub-canopy height. 

 

(a)

 

(b)

 

Figure 17. The canopy height model (CHM) and segmented individual crown map of (a) 

overstorey vegetation and (b) sub-canopy vegetation from the ALS data for plot 18553_I0_a 
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Plot-level analyses 

Summary of field measurements presented at a plot level or per hectare basis  

While all six ‘fully monitored’ plots presented complex vegetation structure they were 

different in terms of their structure and composition (Table 6). Plot 25703-02_FI1_bc had the 

largest BA and the highest ‘emergent canopy cover’ score (8%), with some of the tree crowns 

scorched from the 2019-2020 bushfire. This plot also had dense regrowth, likely due to fire 

recovery and its location in a riparian area (Figure 3d). Not surprisingly, the most severely 

burnt plot, Plot 20736_FI1_a, had the lowest BA and lowest canopy cover estimates, with the 

remaining trees receiving low crown health scores and presenting dead branches and 

epicormic growth. Notably, this plot was burnt following a selective harvesting event. Dense 

regrowth was also present in this plot (Figure 3c). Table 6 also presents plot averages of the 

visual estimates at each of the five-point locations, however, considerable within plot 

variation was observed. 

 

Table 6. Summary of plot structure and condition of the six ‘fully monitored’ plots 

 

Plot ID 

 

1384_FI1_hc 

 

18553_I0_a 

 

20736_FI1_a 

 

25703-02_FI1_bc 

 

26412_FI1_ec 

 

26739_I0_a 

Slope adjusted field plot 

area (ha) 

0.101 0.100 0.102 0.100 0.109 0.110 

Hovermap plot area (ha) 0.1 0.1 0.1 0.1 0.1 0.1 

Live stems/ha 317 680 159 350 212 299 

Dead stems/ha 

(% dead to live stems) 

149 

(47%) 

20 

(3%) 

217 

(136%) 

90 

(26%) 

0 

(0%) 

0 

(0%) 

Average DBH (mm) 218 213 238 282 317 287 

Basal area - live trees DBH 

> 100 mm (m2/ha) 

 

23.6 

 

22.8 

 

8.5 

 

42.8 

 

32.9 

 

28.7 

Average height (m) -  

Healthy trees* 

17.9 21.1 25.9 27.6 21.6 29.1 

BA (m2/ha) of dead trees 8.14 0 8.53 1.89 1.47 0 

Overall tree crown 

‘healthiness’ score**  

13.5 19.6 8.3 14.3 19.0 22.3 

Emergent canopy cover 

(%)*** 

0 2 0 8 0 0 

Upper storey canopy cover 

(%) 

19 14 13 23 16 28 

Mid-storey canopy cover 

(%) 

9 33 6 7 17 12 

Lower storey canopy cover 

(%) 

5 1 4 13 4 8 

Canopy cover >1.3 m using 

‘% cover’ App. 

33 50 23 51 36 48 

*7-12 trees with DBH > 10 cm 

**Crown healthiness score: 25 = very vigorous health crown; 5 = crown with obvious dieback 

***Averaged canopy cover estimates as a % for Lower storey > 1.3 m and < 2 m, Mid-storey > 2 m and < 10 m, Upper 

storey > 10 m, Emergent trees with crowns above the Upper storey. Plot canopy cover = average visual estimates obtained 

from the 4 cardinal points and plot centre. Percent canopy cover was based on photo area cover by plant material using the 

application ‘% Cover’  

 

Overall, there was a positive (right-sided) skewed distribution for stem size distribution across 

all six plots. Plot 18553_I0_a had the highest stem density, with most stems in the smaller 

diameter classes (Figure 18). Examination of the percentage of dead trees per plot reflect the 
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observed fire severity following the 2019–20 bushfires, with plot 20737_FI1_a the most 

severely burnt plot, plots 1384_FI1_hc and 25703-02_FI1_bc assessed as moderately burnt 

and plot 18553_10_a lightly burnt (Table 1). Plot 20736_FI1_a was burnt following a 

selective harvesting event. In addition, the majority of dead trees in the fire impacted plots are 

in the diameter classes of 100-200 mm and 200-300 mm. Many of the remaining trees in the 

fire-affected plots had low crown health scores presenting dead branches and epicormic 

growth (Table 6).  

 

 

Figure 18. DBH classes of live trees 

Comparison of inventory stem counts/ha and basal area with Hovermap derived 

estimates (Interpine Innovation) 

As was shown in the analysis using the FSCT, the differences between the inventory and 

Hovermap data were largest for total stem counts/ha, ranging from 8.5% to 33% while the 

differences for BA ranged from 1% to 29% (Table 7). For four of the plots, the stem counts 

derived from the Hovermap data were greater than from the field inventory data. The tree-

level examination indicates that the stem count errors are mostly associated with smaller 

stems, hence would have a lesser effect on overall BA estimates. The field inventory stem 

count, however, was higher than obtained from the Hovermap data for the most severely burnt 

plot 25703-02_bc and 26739_10_a, which had recently been selectively harvested. Both of 

these plots had dense undergrowth that would have resulted in stem occlusion, as well as 

making it difficult to walk at a consistent pace along the Hovermap survey pathway. A 

notable difference between the field inventory and Interpine’s Hovermap tree-level workflow 

is that the later does not distinguish between live and dead stems. 
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Table 7. Comparison of the number of stems and basal area acquired from the field and 

Hovermap assessments (from Interpine Innovation) for trees > 100mm DBH 

 

Plot ID 

 

1384_FI1_hc 

 

18553_I0_a 

 

20736_FI1_a 

 

25703-02_FI1_bc 

 

26412_FI1_ec 

 

26739_I0_a 

Inventory live stems/ha 317 680 158 350 212 680 

Inventory dead stems/ha  149 0 217 90 0 0 

Inventory total stems/ha 466 680 375 440 212 680 

Hovermap stems/ha 520 880 500 370 230 600 

Inventory live BA (m2/ha) 23.6 36.6 8.5 40.9 33.0 28.7 

Inventory dead BA (m2/ha) 2.6 0.0 10.4 1.9 0.0 0.0 

Inventory total BA (m2/ha) 26.2 36.6 18.9 42.8 33.0 28.7 

Hovermap BA (m2/ha)  26.8 37.2 16.4 33.1 31.3 34.0 

The results above highlight the difficulty in determining the source and type of errors 

associated with stem counts, especially for trees with DBH < 30 cm. Both omission (e.g., due 

to occlusion) and commission errors may have occurred for both the on-ground inventory and 

MLS data analysis. In the presence of dense understorey, it cannot be assumed that the 

manual survey was error free. To determine if ‘double counting’ may have occurred due to 

sensor data (SLAM) slippage or drift, the Hovermap point clouds from two plots (18553_I0_a 

and 20736_FI1_a) were examined in Cloud Compare. No sensor drift was detected (S. 

Krisanski, pers. comm.).   

Comparison of the ALS and Hovermap MLS data 

The point density of the Hovermap MLS is significantly greater than the ALS (Table 8). Even 

using 50 cm voxels, the MLS data has twice the number of points across the example plot 

18553I0a. Using all Hovermap data without voxelisation results in height metrics that are 

substantially different than the ALS, whereas the voxelised versions are much closer. As the 

voxel size increases, the p50 and p95 slightly increase. As expected, the ALS indicates 

slightly higher values for both height metrics. The entire vertical profile for plot 18552I0a and 

different voxel sizes is shown in Figure 19A. This indicates that the profile using all 

Hovermap points is markedly different, but the profiles from each of the voxel sizes is 

reasonably similar. There appears to be a cross-over point at around 10 m where the ALS 

picks up less and the MLS more, comparatively speaking. In Figure 19B the impacts of 

removing voxels with low point densities is shown. This indicates that many of the higher 

voxels contain fewer points than the lower voxels. 

  

Table 8. Point density and two example height metrics (p50 and p95) from the ALS data, 

Hovermap data and different sized voxels for plot 18553I0a 

  

Point density 

(m2) 

% > 

2m p50 p95 

ALS 32 69.5 14.6 27.5 

Hovermap 39,000 64.3 7.0 16.9 

10cm voxel 2,226 81.3 10.7 23.7 

20cm voxel 491 83.9 11.1 24.7 

50cm voxel 63 85.8 11.3 25.3 

 



 

37 

 

 

 

Figure 19. Vertical profiles for plot 18553I0a. In (A), different voxel sizes are compared with 

all Hovermap points and the ALS. In (B), voxels with a small number of points are discarded 

using different threshold values. 

 

The vertical profiles for all points above 2 m are shown for three plots in Figure 20. These 

indicate that the ALS data favours the upper canopy, whereas the MLS favours the 

understory. A comparison of six common lidar metrics for both the full plots and subplots are 

shown in Figure 21. The three plots in Figure 20 are labelled in the charts in Figure 21. 

Correlations between the ALS and MLS datasets are generally high, ranging from 0.98 for 

p95, to 0.23 for kurtosis. However, for most metrics (all except kurtosis), there is a uniform 

bias. For the two height metrics (p95 and average) the ALS values are higher. The MLS data 

has a greater density of points and higher coefficient of variation and is also more skewed 

towards the ground. Kurtosis has both a low correlation and no clear bias. 
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Figure 20. Vertical profiles of ALS and Hovermap 10 cm voxels for three plots for all points 

above 2 m in height 
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Figure 21. Comparison of common lidar metrics calculated from the ALS and Hovermap 

10cm voxel products. Metrics include: Height at the 95th percentile (p95), Average height 

(avg), Density (dns), Coefficient of variation (cv), Skewness (ske) and Kurtosis (kur). The 

three plots shown in Fig. 3 are labelled. The red line is a 1:1 line. Correlation between the two 

datasets (subplots only) is also shown. 

 

Table 9 provides an additional comparison of ALS and Hovermap height distribution metrics 

using the ALS height normalised data and the Hovermap 10 cm voxels. For all six ‘fully 

monitored’ plots, the p99 values were only slightly higher for the ALS data than the 

Hovermap data (mean = 1.46, SD = 0.624). The p99 difference was lowest for plot 
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20736_FI1_a, which also had the lowest estimate for total canopy cover, while the largest 

difference was for plot 18553 I0_a which had the highest visual estimate for the mid storey 

cover (Table 6). This trend of ALS data producing higher values than the Hovermap data held 

true for p95, p50 and average (Table 9), although the differences were greater. This trend, 

however, did not hold for the metrics standard deviation, coefficient of variation (cv), 

skewness and kurtosis. For five of the six plots, the ALS skewness values were negative (left 

skewed), indicating the data was dominated by the upper storey, while for the Hovermap data, 

all the skewness values were positive, indicating the influential presence of the understorey. 

The values for kurtosis were all positive but difficult to interpret. The relative differences in 

standard deviation were not notable except for plot 25703-02_FI1_bc (ALS 12.70 versus 

Hovermap 10.60), this plot also had the highest estimate in lower storey canopy cover (Table 

6). 

Table 9. Comparison of ALS and Hovermap height distribution metrics for the six fully 

monitored plots 

 

Plot ID 

 

1384_FI1_hc 

 

18553_I0_a 

 

20736_FI1_a 

 

25703-

02_FI1_bc 

 

26412_FI1_ec 

 

26739_I0_a 

ALS metrics       

p99 26.02 30.06 28.83 42.38 37.28 36.57 

p95 23.19 26.51 27.27 40.50 34.29 35.31 

p50 15.69 13.90 16.32 23.43 22.96 25.62 

Average 14.90 14.86 14.72 20.97 21.11 23.22 

Standard 

deviation 

5.41 6.56 9.20 12.70 9.51 9.64 

Skewness -0.30 0.37 -0.13 -0.14 -0.28 -0.64 

Kurtosis 2.61 2.43 1.52 1.71 1.90 2.30 

Coefficient of 

variation 

0.36 0.44 0.62 0.62 0.45 0.42 

Hovermap metrics       

P99 24.85 27.95 28.25 40.55 35.25 35.55 

P95 21.65 23.35 26.15 32.45 31.85 32.65 

P50 11.75 10.55 9.95 11.75 13.45 16.15 

Average 12.05 11.45 11.85 14.25 15.55 16.55 

Standard 

deviation 

5.70 6.10 8.80 10.60 9.40 10.3 

Skewness 0.20 0.70 0.30 0.60 0.40 0.10 

Kurtosis 2.20 3.00 1.60 2.20 2.00 1.60 

Coefficient of 

variation 

0.47 0.53 0.74 0.74 0.60 0.62 

 

A comparison of percent cover for each sensor in each of the cover categories (low 1.3–2m, 

mid 2–10m and upper >10m) is shown in Table 10. This indicates that cover is much higher 

in the MLS data, which is most likely a function of point density. In general, the ALS shows 

higher levels of cover in the upper canopy and lower in the mid and low classes. Two plots 

(20736FI1a, 2570302FI1bc) stand out as having a sparse upper canopy, with a lot of cover in 

the low height class in both datasets. 
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Table 10. Percent cover in each cover class for ALS and Hovermap 10 cm voxels 

ALS     

Plot 1.3 - 2m 2 - 10m >10m Total > 1.3 

01384FI1hc 4.1 23.0 59.1 70.9 

18553I0a 1.5 24.6 58.8 70.2 

20736FI1a 31.6 21.6 28.4 58.1 

2570302FI1bc 17.2 30.3 50.9 78.8 

26412FI1ec 2.4 25.2 74.5 82.2 

26739I0a 2.9 16.8 64.8 72.1 

     
Hovermap     

Plot 1.3 - 2m 2 - 10m >10m Total > 1.3 

01384FI1hc 22.8 54.4 77.3 91.1 

18553I0a 27.8 82.2 85.9 96.8 

20736FI1a 83.6 73.8 59.7 96.2 

2570302FI1bc 86.9 86.4 65.8 99.1 

26412FI1ec 25.6 63.2 91.0 96.7 

26739I0a 39.7 50.0 76.0 88.8 

 

Derivation of fuel hazard metrics and fuel connectivity using Hovermap 

data 

Two observers collected the field plot fuel hazard data in an attempt to increase the estimation 

accuracy, but notable differences still occurred. Tables 11 and 12 present the cover (%) and 

height estimates derived from the classified Hovermap point clouds for each of the fuel 

hazard height strata layers. When compared to near surface and elevated fuel estimates 

derived from visual assessments captured in the field the correlation is low (near surface 

RMSE = 41.46%, elevated RMSE = 44.34%). 

 

Table 11. The mean and standard deviation of fuel height estimates derived from Hovermap 

point clouds for the near surface (<0.6m), elevated (0.6m – 3m), sub-canopy (3m – 5m), and 

canopy (>5m) strata layers. 

 

Plot Near Surface Elevated Sub-Canopy Canopy 

Mean SD Mean SD Mean SD Mean SD 

1384_FI1_hc 0.27m 0.11m 0.77m 0.46m 3.56m 0.99m 15.58m 05.18m 

18553_I0_a 0.24m 0.11m 0.76m 0.68m 3.48m 1.04m 15.80m 05.74m 

20736_FI1_a 0.24m 0.11m 1.14m 0.75m 2.93m 1.06m 20.31m 09.07m 

26412_FI1_ec 0.28m 0.11m 0.78m 0.54m 3.58m 0.86m 23.85m 08.25m 

26739_I0_a 0.25m 0.10m 1.19m 0.78m 3.37m 0.96m 28.88m 09.91m 

25703-02_FI1_bc 0.26m 0.11m 1.50m 0.70m 3.26m 0.95m 24.03m 10.41m 
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Table 12. Fuel cover estimates derived from Hovermap point clouds for the near surface (< 

0.6m), elevated (0.6m – 3m), sub-canopy (3m – 5m), and canopy (>5m) strata layers. Values 

are expressed as percentage of total plot size. 

Plot Near Surface 

(%) 

Elevated (%) Sub-Canopy (%) Canopy (%) 

1384_FI1_hc 7.4 86.3 10.7 75 

18553_I0_a 43.8 47.6 19.2 88.1 

20736_FI1_a 9.7 76 19.9 52.6 

26412_FI1_ec 11.4 79.3 15.4 87.8 

26739_I0_a 15.9 54.2 38.3 88.6 

25703-02_FI1_bc 4.5 60.1 40.3 69.2 

 

Figure 22 presents a cross section taken from plot 18553_I0_a depicting how the layer 

pouring algorithm classifies voxels based on their strata class and connectivity. 

 

 
 

Figure 22. Cross section of a 2.5 m width transect taken from plot 18553_l0_a depicting how 

the vegetation strata layers of near surface (<0.6 m), elevated (0.6 m – 3 m), sub-canopy (3 m 

– 5 m), and canopy (>5 m) are passed down through vertically connected voxels 

 

An example of the vertical connectivity assessment is presented in Figure 23, depicting the 

distribution of classified voxels across the fuel strata classes for plot 25703-02_FI1_bc. This 

plot also had the highest lower storey canopy cover (%) estimate (Table 6). 
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Figure 23. Above ground height distribution of filled voxels (4 cm) from the respective fuel 

layers within plot 25703-02_FI1_bc captured by the Hovermap 

 

Evaluation of GEDI data for characterising forest structure changes 

following wildfire 

Figure 24 shows the change across all relative height (RH) metrics from 2020 to 2021 in each 

of the fire severity classes. Negative values indicate a decline in RH. The results show a 

decline in RH metrics in moderate, high and extreme fire severity classes, particularly in the 

RH80 to RH95 metrics, where the median RH experienced a decline of up to 1 m. Lower 

strata RH values indicated a much smaller decline. In the low and unburnt classes, the median 

change in all RH values was close to zero. 
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Figure 24. Change across simulated GEDI RH metrics between 2020 and 2021 in each fire 

severity class. Negative values indicate a decline in forest height 
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Discussion 

 

Although ALS systems can cover thousands of hectares of forest there is also a need for on-

ground reference data to train prediction models and collect information that cannot be 

measured well from above the canopy. The manual assessment of moist native eucalypt 

forests, however, is physically demanding, time consuming and often imprecise. Visual 

estimations of cover and density of vegetation strata within a native forest stand is particularly 

challenging, with significant variation between observers reported (Ashcroft et al. 2014). In 

addition, there is often substantial variation within stands and plots. For example, in this 

study, the five-point assessments of canopy cover for each plot produced significant variation 

in both the visual strata-level estimates and the overall canopy cover obtained using the ‘% 

Cover’ application. It is also acknowledged that the field measurement of tree heights using a 

Vertex can be imprecise in native eucalypt forests, especially in burnt plots having dense 

understorey regrowth and many trees presenting irregular crowns and epicormic growth. 

Dense understorey also hinders gathering tree location based on compass bearing and distance 

measurements. Therefore, field measured tree location and height may not be a good source 

of ground-truthing. Lidar technology, on the other hand, appears well suited to improving 

both the accuracy and efficiency in acquiring reference data for predicting wall-to-wall 

estimates.  

 

Numerous studies have evaluated both ALS and MLS point cloud data for forest assessment 

although few have been undertaken in native eucalypt forests (ref. references in the 

Introduction). Interpine Innovation have successfully developed operational workflow 

solutions for obtaining tree diameter and height measurements using the MLS Hovermap unit 

in Pinus radiata plantations, but prior to this study, the capability of the technology has not 

been evaluated in more structurally complex eucalypt forests. 

Tree-level analyses 

The manual matching of field trees and with the extracted Hovermap trees for 3 of the field 

plots processed by Interpine Innovation revealed good correspondence for stem diameters and 

tree heights (Table 4), although omission errors for small diameter trees were apparent in the 

inventory data (Figure 9), noting that field crews did not collect information for trees with 

DBH < 10 cm. In an earlier study Gianneti et al. (2018) were not able to segment tree stems 

smaller than 10 cm DBH using the ZEBI hand-held scanner. Improvement in the accuracy of 

stem counts may be achieved through optimising the MLS survey pathway. Del Perugia et al. 

(2019), for example, examined the influence of MLS scan density on the estimation of single-

tree attributes and reported that the number of trees was influenced by the survey path taken.  

 

The challenges of tree level measurement from MLS data in complex stands with dense 

understorey have been highlighted in several overseas studies. Liang et al. (2018) evaluated 

the performance of a back-pack MLS and reported an increasing relative RMSE% of DBH 

estimates in plots classed as ‘easy’, ‘medium’ and ‘difficult’ in terms of tree density and 

understorey growth. Hyyppä et al. (2020) also used a backpack MLS and reported DBH 

estimation error ranges of approximately 1.0 cm in ‘easy’ forests and 2.5 – 4.0 cm in 

‘moderate’ to ‘difficult’ forest plots while Vatandaşlar & Zeybek (2021) reported both over- 

and underestimation of tree-level attributes using a hand-held Zeb-Revo (GeoSLAM) in their 



 

46 

 

more ‘difficult’ plots. Liang et al. (2018) concluded that the accuracy of single tree attributes, 

using MLS data decreased as forest complexity increased due to reduced positioning 

accuracy, decreased accessibility of the plot, data coverage and increased occlusion effects. 

This study demonstrated a good correspondence between large trees (DBH > 30 cm) 

measured by the inventory crew and with the Hovermap. Due to the understorey vegetation 

impeding both the manual and Hovermap measurements, further work is required to identify 

the source and type of errors associated with smaller trees.  However, preliminary visual 

examination of two plots having higher stem counts in the Hovermap data relative to the 

manual estimates did not reveal any SLAM slippage/point cloud issues.  

 

Our results show a close correspondence between the field measurements of the dominant 

trees and the Canopy Height Models derived from both the Hovermap and ALS data. 

However, while the initial application of the FSCT resulted in acceptable estimates of tree 

DBH, it failed to accurately estimate tree height from the Hovermap data, particularly for sub-

canopy trees. To address this problem, we present a novel, significant improvement to the 

detection and segmentation of individual trees using a workflow based on the interpretation of 

Plant Area Density profiles generated from the Forest Structural Complexity Tool (FSCT) 

outputs (Krisanski et al. 2021). Quantitative assessment of the tree-level PADs permitted the 

identification of canopy trees versus sub-canopy trees (Figure 13). The detection and 

segmentation of trees from these two separated strata significantly improved tree height 

estimations (Figure 14). In addition, by comparing foliage only and stem only PAD point 

clouds it was possible to identify and count stag trees (Figure 15, Table 5).  

 

Through this novel analysis, the Hovermap sensor provided smaller tree level differences in 

tree height and diameters than have been reported in other studies. For example, Cabo et al. 

(2018), using a hand-held Zeb-REVO, and Gianneti et al. (2018), using a ZEB1, both 

reported that tree height estimation was hindered for trees taller than 15 – 20 m due to the 

limited range of the MLS instruments. Donager et al. (2021) also claimed that the direct 

extraction of individual tree heights from CHMs is largely inadequate when sub-dominate 

canopy layers exist and dense conditions commonly make it unclear which heights relate to 

which trees. While it is acknowledged that tree segmentation algorithms using MLS data are 

continuing to improve (Lui et al. 2021), the workflows we developed resulted in significant 

improvements over current methods and may have broader potential for lidar-based 

applications in native forests. The approach of using PADs to identify overstorey and sub-

canopy trees was also successfully applied to ALS data (Figure 16 a & b), enabling the 

production of tree crown maps for both overstorey trees and sub canopy vegetation.  

Plot level analyses 

Comparisons were undertaken to show the differences between the ALS and Hovermap 

(normalised using 10 cm voxels) plot-level datasets, but no accuracy assessment was 

attempted due to the truth being uncertain. While there was a third source of information 

based on manual field assessment, it is well known that for certain measurements lidar has 

superior accuracy. It is highly recommended that in future studies co-incident TLS data is also 

acquired to be used as a reference baseline for evaluation. Nevertheless, a close 

correspondence in tree heights was also obtained in the comparison of height metrics derived 

from the ALS and voxelised MLS point clouds (Table 9, Figure 21). In contrast, a recent 
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study by Donager et al. (2021) in Ponderosa pine forests reported that both the TLS and MLS 

produced less reliable canopy heights than those derived from ALS data.  

 

Our results showed that canopy top height (p95) was uniformly higher in the ALS for all but 

one of the 44 subplots investigated, which was expected given the sensor position. Average 

height was also generally higher in the ALS, but this is more variable and increases where 

trees are taller. The density of points (the percentage of points above 2m) was generally 

higher in the Hovermap data, which could be a function of both point density and the 

voxelisation process. If looking only at the raw number of Hovermap points, there are a huge 

number of returns under 2 m in height. However, voxelisation gives equal weight to voxels 

with many points to those with few. The coefficient of variation was generally higher in the 

MLS data, as was the skewness. Positive skewness may indicate a sparser canopy and denser 

understory. The kurtosis did not favour either dataset and had a much lower correlation than 

the other metrics. The comparison of cover in each height class revealed that cover was much 

higher in the MLS data in all classes. This likely reflects the overall higher point density of 

the MLS data. It is potentially an over-estimation, which could be accounted for by removing 

voxels containing few points. Except for one plot (heavily burnt 20736FI1a), the ALS 

favoured the upper canopy, reflecting the position of the sensor and its limitations in 

penetrating the upper canopy. 

 

It is clear from this analysis that the Hovermap data captures different elements of forest 

structure than the ALS. The Hovermap data suggests that the forest structure in these plots is 

likely more complex, particularly in the lower and mid stories, than the ALS suggests. 

Whether this can be generalised across all southeast Australian forests is unknown. A more 

extensive forest monitoring plot network would be necessary to confirm this. It is not yet 

apparent how best to combine the two datasets to get an accurate representation of plot-level 

structure. ALS can offer wall-to-wall information, whereas the MLS could only be considered 

a sampling tool akin to traditional field measurements. Therefore, the MLS information could 

enhance field measurements and be used for spatial modelling to impute traditional inventory 

metrics (e.g., basal area, above ground biomass) across the full ALS extent. The MLS may 

also prove useful for collecting multi-temporal information for applications such as post-

disturbance recovery. 

 

A rotational shift was required to align both the field located trees with the Hovermap point 

clouds as well as the Hovermap and ALS point clouds and this was evident, to a greater or 

lesser degree, in all plots. It is assumed that the ALS is the more accurate dataset in terms of 

absolute spatial position. Although the Hovermap data can potentially be realigned in post-

processing, there are steps in the field that could be undertaken to aid this process, such as 

collecting dGPS at cardinal points (at least one) along with the plot centre. However, the issue 

of achieving accurate spatial co-registration of data acquired from various platforms remains a 

challenge due to the inherent differences in locational accuracy of the different sensors. In 

future studies it is highly recommended that attention be paid to improving the installation of 

reference markers (e.g., reflective ground control points) as well as evaluating the use of 

reflective paint on tree stems for numbering and DBH lines. 
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Fuel assessments 

The results of the comparison between the Overall Fuel Hazard Assessment Guide (OFHAG) 

observations and the cover estimates derived from the Hovermap point clouds showed poor 

correlation when predicting both near-surface vegetation cover (r2=0.46, RMSE = 41.5%) and 

vegetation cover at the elevated layer (r2=0.16, RMSE = 44.3%). However, these results were 

not unexpected, due to the nature of visual assessment approaches and the difficulty 

associated with accurately estimating vegetation characteristics over a 0.1 ha plot. Visual 

assessment accuracy is also highly dependent on the experience of the field operators 

conducting the assessment and the structural complexity, density and composition of the 

forest environment being assessed (Watson et al. 2012, Volkova et al. 2016). 

 

Nevertheless, this study has indicated that Hovermap point clouds were able to provide a 

connectivity assessment using the layer pouring algorithm by Hillman et al. (2011) to identify 

potential fuel ladders and classify voxels into strata layers. However, challenges remain 

within this approach as it is difficult to accurately separate points that originate from different 

strata layers when they are located along one of the layer boundaries. Furthermore, the 

algorithm biases vertical connectivity over horizontal, resulting in some cases where a cluster 

of voxels is connected horizontally to another from a higher class, but the classification is not 

passed across. Whist this method can provide a visual representation of potential fuel ladders, 

and the classification of voxels can be used to extract further metrics relating to fuel hazard, 

there is still no metric that can be used to define the overall structural connectivity of a plot to 

allow for ease of intercomparison.   

Fusion of point clouds from multiple platforms 

Neither ALS nor TLS / MLS systems can provide complete information on the vertical 

structure of forests. Results from this study suggest that the ALS and Hovermap systems are 

more suited to different applications, due to one system operating from above the canopy and 

one system from below. Therefore, it is tempting to form the conclusion that, together, they 

describe forest structure more completely than either system in isolation. However, there are 

significant challenges to overcome to use and interpret the combined data properly. 

Nevertheless, this study has demonstrated that when the point clouds are accurately co-

registered or trees accurately matched, the Hovermap sensor can measure tree stems and 

understorey elements in finer detail than can be achieved by either manual/visual assessment 

or ALS data. At present, because of the complexity and irregularity of native forests, current 

multiplatform data fusion still involves substantial manual effort, but researchers overseas are 

now evaluating approaches to fuse multiplatform lidar datasets in forest environments 

(Giannetti et al. 2018, Guan et al. 2021). Donager et al. (2021), for example, successfully 

fused MLS (hand-held GeoSLAM Zeb Horizon scanner) to match an ALS dataset by initially 

manually shifting the MLS point cloud data before using an iterative closest point algorithm.   

 

Coops et al. (2022) advocate linking lidar metrics with broad-area predictors derived from 

spaceborne platforms such as the GEDI (Global Ecosystem Dynamics Investigation) on board 

the International Space Station. Plot-level lidar metrics can be used in estimation approaches 

that could involve hybrid or model-based inference from hierarchical modelling. 
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In our study, the results from the analysis of simulated GEDI observations in post-fire 

recovery areas were somewhat unexpected. Relative height metrics, particularly in upper 

canopy, showed a decline for areas that were burnt at moderate or greater severity, despite 

anticipated forest regrowth. In the extreme class, this is particularly pronounced in the RH 80 

to RH 95 metrics and, interestingly, this class showed an increase in the RH 40 to RH 70 

metrics. The results suggest that the initial recovery following the 2019–2020 wildfires (i.e., 

the first few months) may have been more pronounced in the upper canopy, which was then 

followed by more regrowth in the lower and mid-stories as recovery progressed. This is an 

important finding and demonstrates how spaceborne lidar has the potential to increase our 

understanding of the dynamic nature of forests. Further research should be undertaken to 

confirm and further investigate these findings. It is recommended that the analysis should be 

extended over a much broader area to see whether these patterns are similar in other regions. 

A broader area would also enable real GEDI data to be used. ALS data should be considered 

as a source of validation. 

Future research 

It is recommended that a study comparing coincident TLS and Hovermap datasets captured 

within the same plots be undertaken to provide greater insight into the accuracy of the 

Hovermap for quantifying tree- and plot-level structural attributes, including fuel hazard 

metrics. Having a survey-grade representative 3D dataset to act as a truth would also allow for 

the exploration of possible error sources, such as the walking path and loop closure points 

used to move the Hovermap through the plot. Over-sampling with Hovermap may lead to 

increased noise whereas under-sampling may result in occluded space. For the operational 

adoption of this technology in native forest environments, a set of guidelines should be 

developed, which covers elements such as the distance between each ‘pass’ of the sensor 

through the plot, how frequent each loop closure should be to account for inertial drift in the 

positional accuracy and at what speed the sensor should be moved. 
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Conclusions  

 

While numerous studies have evaluated MLS technology in plantations or relatively simple 

native forests, far fewer studies have been conducted in complex forests, particular eucalypt 

forests. Our scoping study has demonstrated that the Hovermap sensor can measure tree stems 

and understorey elements in more detail than can be achieved by either manual/visual 

assessments or ALS data. The estimation of tree height, in particular, was significantly 

improved through the application of a novel approach to the detection and segmentation of 

individual trees using a workflow based on the interpretation of Plant Area Density profiles 

generated from FSCT outputs. Quantitative assessment of the tree-level PADs permitted the 

identification of canopy trees versus sub-canopy trees. The detection and segmentation of 

trees from these two separated strata significantly improved tree height estimates. In addition, 

by comparing foliage only and stem only PAD point clouds it was possible to identify and 

count stag trees. 

 

At the plot scale, there were notable differences between the inventory and Hovermap results 

for stem counts, most notably for trees with DBH < 30 cm, however these differences were 

less pronounced for basal area, because most missed stems were in the smallest diameter 

classes. The differences varied between plots and appeared to be influenced by understorey 

density and terrain. 

 

While both ALS and MLS systems are based on lidar, the different position of the sensor in 

relation to the forest canopy leads to different outputs. Understanding the strengths and 

weaknesses of these remote sensing systems is essential prior to forming conclusions about 

stand structure. It is advisable to correct for the inherent heterogeneity of pulse density in the 

MLS point clouds and one approach is to normalise the point cloud using voxels. A 10 cm 

voxel was used for much of this work, except for the fuel hazard assessment, which used a 

smaller 4 cm voxel due to the nature of fine fuel assessments.  

 

A direct comparison of plot-level ALS and Hovermap height distribution metrics revealed a 

close correspondence for p99 and p95, with the ALS values only slightly higher than the 

Hovermap values. As expected, ALS skewness values were negative (left skewed), indicating 

the data was dominated by the upper storey, while for the Hovermap data, all the skewness 

values were positive, indicating the influential presence of the understorey. There appears to 

be a cross-over point at around 10m where the ALS picks up less and the MLS more, 

comparatively speaking.   

 

The Hovermap point clouds were also evaluated in terms of their ability to quantify fuel 

hazard, particularly the vertical connectivity between the strata layers. This preliminary 

evaluation demonstrated that Hovermap point clouds show promise in this regard, however 

further work is needed to optimise parameters and workflows, including a comparison with 

TLS data.  
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Recommendations 

 

This 12-month study was only intended to be a proof of concept. It has, however, 

demonstrated that MLS technology has the capacity to improve the efficiency and accuracy of 

structural information sought by native forest managers. The operational fusion of point cloud 

data acquired by multiple platforms is also desirable. Below are recommendations for future 

research: 

 

• The acquisition of coincident TLS and Hovermap MLS datasets captured within the 

same plots, for improved insight into the accuracy of the Hovermap sensor for 

quantifying tree- and plot-level structural attributes.   

 

• Evaluation of walking survey patterns and pace of acquisition under varying 

understorey densities and local topographies. 

 

• Future captures should also aim to improve co-registration of point cloud datasets 

through use of ground control markers and painting plot tree numbers and DBH stem 

bands with high reflective paint that can be detected in the lidar point clouds. 

 

• Further research into the use of plant area density (PAD) profiles to discriminate live 

and dead trees in 3D point clouds. 

 

• Evaluation of the Hovermap’s ability to represent forest changes (e.g., wildfire 

recovery) by re-scanning plots at multiple time steps. 

 

• Further research into the capabilities of the GEDI sensor in its abilities to characterise 

forest structural changes over time. 

 

Results from these research tasks would contribute to formulating guidelines on the best use 

of these technologies in Australian native forests. 
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